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ABSTRACT: In this article we summarize a pattern recognition workflow to automatically detect
avalanche events from passive seismic data collected from geophones near Davos, Switzerland
during the 2010-2011 snow season. Our workflow consists of three steps: 1) spectral flux based event
selection, 2) feature extraction, and 3) classification. The results are quite promising: our workflow
achieves 93% overall classification accuracy with 13% precision for detecting avalanches for the entire
season.

1. INTRODUCTION

Automatically detecting avalanches in near
real-time (and in any visibility) would provide
avalanche forecasters and highway crews with
very important information to help make informed
decisions regarding avalanche danger or road
closures. In this article we describe a pat-
tern recognition workflow to automatically de-
tect avalanches from passive seismic (geophone)
data. In particular, we describe the signal pro-
cessing and machine learning techniques we
used to detect avalanches from geophone data
collected during the 2010-2011 winter season
near Davos, Switzerland.

Previous researchers have used pattern
recognition algorithms to detect avalanches from
preprocessed seismic data. Most notably, the
SARA (System for Avalanche Recognition Anal-
ysis) software suite uses manually trained fuzzy
logic rules to identify avalanches (Leprettre et al.
(1996, 1998a,b); Navarre et al. (2009)). The
downside to their approach is that the fuzzy logic
rules are based on manual (expert) analysis of
previous data; in other words, the rules are not
derived automatically or in a timely manner.

Bessason et al. (2007) used a distanced
weighted k-nearest neighbor approach (k=3) on
previously recorded seismic data. The classifica-
tion results of this automated method were unsat-
isfactory; specifically, only 65% (78 of 119) of the
avalanches were correctly identified using their k-
nearest neighbor algorithm approach. This work
suggests that there is considerable room for im-
provement for automated avalanche detection.
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2. PATTERN RECOGNITION

In this section we describe the pattern recog-
nition workflow we used. First, we briefly de-
scribe the seismic data set collected from geo-
phones. Second, we detail how we used spectral
flux based event selection to pick sizable events
of interest. Third, we highlight the 10 features
we extracted from the frequency domain and sub-
sequently use for event classification. Lastly, we
summarize our experimentation with 12 different
classification algorithms trained and tested on the
seismic data.

2.1. Geophone Data

The data set consisted of seismic data col-
lected during the 2010-2011 snow season from
seven geophones located in a snow slope near
Davos, Switzerland. The geophones recorded
data at 500 Hz with 24-bit precision for over 100
days. More details regarding the deployment can
be found in Herwijnen and Schweizer (2011).

Within the seismic data, 385 possible
avalanches were identified, ranging from three
seconds to nearly two minutes in length. Of the
385 possible avalanches, 33 were considered
large avalanches while the remaining 352 were
assumed to be small avalanches (i.e., sluffs). Our
pattern recognition workflow focused mainly on
positively identifying the 33 large events, i.e., we
felt it was acceptable to miss some of the smaller
events in favor of improved results for detecting
the larger events.

The seismic data was far from clean. There
was much background and spurious noise
caused by a variety of sources: e.g., wind, ski
lifts, snow cats, avalanche bombing, helicopters,
airplanes, earthquakes, etc. The next section dis-
cusses how we processed the noisy data.
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2.2. Spectral Flux Based Event Selection

To select only events of interest from the seis-
mic data set, we used spectral flux to determine
five second frames with significant instantaneous
increases in spectral energy. Spectral flux is
simply the Euclidean distance between all points
in two consecutive spectral frames (a 2048-bin,
non-overlapping fast Fourier transform (FFT)). An
event was selected if the instantaneous energy
was above a predetermined percentage thresh-
old.

In our workflow, we chose a threshold of 90%,
meaning that a five-second frame was selected
if the spectral flux increased by 90% relative to
the surrounding five minutes of data (Figures 1
and 2). Using this method, we selected 32 of
33 slabs, 246 of 352 sluffs, and 32,544 non-
avalanche events.
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Figure 1: The spectral flux of a slab avalanche event
that occurred on January 22, 2011 (at time 400 sec-
onds). The red line represents the 90% threshold.
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Figure 2: The frequency domain of a slab avalanche
that occurred on January 22, 2011 (at time 400 sec-
onds).

2.3. Feature Extraction

The next step was to transform each five-
second selected event into quantifiable features
that differentiate the avalanches from the non-
avalanche events. Using an open-source Matlab
toolbox created for music signal processing (i.e.,
MIRToolBox developed by Lartillot and Toiviainen
(2007)), we extracted 10 features from the fre-
quency domain (Table 1). These features, often
used in music pattern recognition (e.g., Klapuri
and Davy (2006)), provide a numerical summary
of the size, shape, and peak of the frequency
spectrum (e.g., Figure 3). It is important to note
that the relatively slow sampling rate (500 Hz) and
close proximity of the seven geophones (five to
10m) made estimating characteristics of the seis-
mic waveform (e.g., velocity, arrival times, back
azimuth, etc.,) implausible.

Source Features
Top 1% Energy mean, standard deviation,

maximum
Frequency Domain centroid, spread, skewness,

regularity, flatness, 85% rolloff,
kurtosis

Table 1: We extracted 10 features from the frequency
domain to create a quantitative summary of each five-
second spectral frame. Three features (i.e., mean,
standard deviation, and maximum) were calculated
from the 1% most powerful frequencies of each frame.
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Figure 3: For each five second frame, we calculated
several features from the frequency spectrum (2048-
bin FFT). This event is a slab avalanche recorded on
January 22, 2011.

2.4. Classification

The last and most important step in our pat-
tern recognition workflow was to build a model
to detect the 278 avalanche frames from the
32,822 total selected events. To do this, we ex-
perimented with 12 different classification algo-
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rithms ranging from probabilistic and statistical
(e.g., Bayes, Gaussian processes), to highly non-
linear function approximators (e.g., artificial neu-
ral network, support vector machine). Specifically,
we tested an artificial neural network (ANN), naive
Bayes, Bayes network, CART tree, fuzzy logic
rules, Gaussian processes (Gauss), J48 Tree, k-
nearest neighbors (KNN), random forest (RanFor-
est), RIPPER, decision stump, and support vector
machine (SVM).

The classification experiments consisted of
100 iterations of training and testing, where
training was performed using 10% of all known
avalanches (both slabs and sluffs) and an equal
number of non-avalanche events. In each itera-
tion, all remaining data not used for training was
used to test the classifier.

The non-avalanche events were selected us-
ing stratified cluster-based subsampling, which
is a method used to mitigate the unfavorable ef-
fects of extreme class imbalance issues (Yen and
Lee (2009)). Briefly, we used K-means cluster-
ing to separate the non-avalanche events into
seven different groups, and then employed strati-
fied subsampling to insure fair representation of
each cluster in the training subset. We chose
seven groups because there were roughly seven
types of noise events: i.e., wind, ski lifts, snow
cats, airplanes, helicopters, avalanche control
work (bombing), and earthquakes.

The results from our experiments are quite
promising (Table 2). All 12 algorithms had 80%
overall classification accuracy or above, with 10
performing over 90%. Furthermore, all classifiers
(with the exception of KNN) reported precision
rates at or above 7%, with seven achieving pre-
cision rates over 10%. The best classifier was a
decision stump, which reached 93% overall accu-
racy, nearly 90% recall, and over 13% precision
for the entire season’s worth of data. We note
that neither Leprettre et al. (1998a) nor Bessason
et al. (2007) report the precision of their classifi-
cation models.

3. CONCLUSIONS

In this article we present our successful pat-
tern recognition workflow to detect avalanches
from geophone data. There are several conclu-
sions that can be made from our results. Most
notably, using data from only a single geophone
sensor, we can detect avalanches with over 90%
accuracy and 13% precision. For the avalanche
forecasting practitioner, these results imply that a
single geophone may be a viable and inexpensive
option to monitor specific avalanche paths. Addi-

tionally, with the rapid improvements in wireless
sensing technology, the possibility of using inex-
pensive wireless geophones to detect avalanches
is becoming a reality.

Algorithm Accuracy∗ Recall† Precision‡

STUMP 93.0 89.5 13.2
SVM 92.9 89.7 10.5
CART 92.4 89.7 12.3
Gauss 92.4 91.2 09.9
RanForest 92.1 89.5 10.2
RIPPER 91.6 88.8 11.7
Bayes 91.3 90.3 10.4
J48 90.9 88.6 10.7
BayesNet 90.4 89.9 07.9
ANN 90.3 88.1 08.1
Fuzzy 89.7 90.5 08.2
KNN 81.4 82.8 03.6

Table 2: The mean results of 12 machine learning algo-
rithms trained and tested 100 times on a single sensor’s
data. The results are sorted by accuracy.

There are two future directions we plan to
take in our work. First, for the 2012-2013 snow
season, we plan to deploy the seven wired geo-
phones in a circular pattern with a radius of 30m
(similar to Lacroix et al. (2012)). With such an
arrangement, we should be able to estimate the
seismic waveforms of each event. In addition, by
estimating arrival times, we should be able to cal-
culate an avalanche’s seismic velocity and direc-
tion of travel; this information will be very helpful
in differentiating ambiguous signals.

Second, in addition to the circular arrange-
ment of wired geophones, we also plan to install
an inexpensive wireless geophone in the same lo-
cation. The wireless geophone is a prototype sys-
tem developed by the Colorado School of Mines
to record continuous geophone data at 250 Hz
with 24-bit precision and 64X gain (Figure 4). Ini-
tial field tests revealed that our inexpensive wire-
less prototype (˜$100 excluding sensor) performs
nearly identically to a $750 single channel digi-
tizer (i.e. Cirrus Logic CRD5378 excluding sen-
sor). Results from the 2012-2013 field deploy-
ment will inform the viability of our inexpensive
wireless platform for detecting avalanches.

∗Accuracy: Percentage of all frames correctly predicted.
†Recall: Percentage of avalanches correctly predicted.
‡Precision: Percentage of frames labeled as avalanches

that were actually avalanches.
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Figure 4: The GeoMoteShield, designed by Colorado
School of Mines, will be used to interface a geophone
sensor with an Arduino Fio wireless mote platform.
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