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ABSTRACT: Near-surface warming by either an increase in air temperature or radiation is believed to 
have a significant effect on dry-snow slab avalanche formation. However, it is unclear how and to which 
degree warming promotes instability. We have therefore quantified surface warming with respect to the 
contributing meteorological processes and investigated in situ the fracture behavior under conditions of 
surface warming. The relevant energy fluxes at the snow surface were partly measured and partly mod-
eled with the snow cover model SNOWPACK and used to determine the energy input into the snowpack. 
To determine the effect of surface warming on slab properties, we derived the stiffness of snow layers 
from penetration resistance measurements on nine field days with the snow micro-penetrometer. On eight 
of these days propagation saw test experiments were performed at the same time and compared to the 
energy input at the snow surface. Moreover, the specific fracture energy of the weak layer, which in com-
bination with the slab properties controls crack propagation propensity, was determined by means of finite 
element modeling. A reduction in stiffness by a factor of about 2 was observed in near-surface snow lay-
ers when the energy input at the surface exceeded 300 kJ m-2. Meanwhile, weak layer properties showed 
no trend. Softer slabs were found to cause shorter cut lengths in propagation saw test experiments – 
suggesting that surface warming increases crack propagation propensity. For the first time the effect of 
surface warming on instability has been quantified. The results demonstrate a subtle influence of surface 
warming on snowpack stability. It is suggested that a pre-existing weakness and considerable energy 
input are required that surface warming may promote instability. 
 
 
1.  INTRODUCTION 
 

Avalanche forecasting services frequently 
predict a rise in avalanche danger in the course of 
the day due to day-time warming. We found the 
corresponding wording in about 20% of the bulle-
tins issued for the Swiss Alps in the months of 
November to March when typically dry-snow con-
ditions prevail. High avalanche activity is occasio-
nally reported on days just after a snowfall fol-
lowed by an increase in air temperature. 

 Crack propagation is the ultimate step in the 
chain of events preceding the detachment of a 
slab (Schweizer et al., 2003). Crack propagation 
may drive the initial failure to a size that a slab is 
created which will slide down-slope if friction is 
overcome (van Herwijnen and Heierli, 2009). In 
order to assess the crack propagation propensity 
of the snowpack it is common practice to perform 
field tests such as the PST (Gauthier and 
Jamieson, 2006; Sigrist and Schweizer, 2007) or 
the ECT (Simenhois and Birkeland, 2006) and 
interpret the observed results in regard to slab 
avalanche release probability. 

The crack propagation propensity in any ma-
terial depends on its mechanical properties and 
their interaction. Snow is a rather warm material 
given that observed snow temperatures range not 
far below the melting point. It seems clear that this 
close to a thermo-dynamical phase transition an 
increase in snow temperature will result in a dras-
tic change of the mechanical properties of snow 
(e.g. Schweizer and Camponovo, 2002). A de-
crease of stability due to warming of the dry snow-
pack has often been discussed among practition-
ers and researchers (e.g. Schweizer and Jamie-
son, 2010). Exner and Jamieson (2008) found a 
lengthening of the stress bulb below a skier under 
warming suggesting a wider zone of influence of a 
skier at depth.  

The objective of our study was to find out 
whether a change in PST results on days with 
significant daytime warming can be observed and 
if so, how the key mechanical parameters change. 
Therefore, we derived three quantities: the stiff-
ness of slab layers, the fracture energy of the 
weak layer and the critical cut length. These quan-
tities were compared to the energy input at the 
snow surface. 

 
2.  DATA COLLECTION AND ANALYSIS 
 

In the course of a single day with significant 
day-time warming, we performed a series of prop-
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the snowpack within a certain time. With this 
integral measure of warming we capture the inte-
raction of the meteorological processes acting on 
the snow cover. Solely considering air temperature 
and its change is not sufficient to describe the 
near-surface warming of snow layers. 

 
3.  RESULTS AND DISCUSSION 

 
On all field days a fairly prominent weak layer 

in the snowpack existed (as found with a CT) and 
significant daytime warming in the top 10 cm of the 
snowpack was observed. The maximum day-time 
snow temperature rise at 10 cm depth was 4.6°C 
on average, whereas it was only 1.2°C at the 
depth of the weak layer. Average snow tempera-
ture at 10 cm depth and at the depth of the weak 
layer in the early morning was -7.5°C and -3.9°C, 
respectively. 

We related the stiffness of slab layers, the 
weak layer fracture energy and the critical cut 
length to the observed amount of warming. Warm-
ing was quantified by the cumulative energy input 
derived from the surface energy flux balance. The 
energy input derived from the energy surface flux-
es are prone to errors – not least because turbu-
lent fluxes were modeled based on a bulk ap-
proach and atmospheric stability assumptions. To 
each of the energy fluxes contributing to the ener-
gy input we assigned an uncertainty and eventual-
ly determined the overall uncertainty of the hourly 
energy input to 40 kJ m-2, which is about 8% of the 
mean energy input per day.  

In order to observe changes in slab stiffness 
the values derived from SMP measurements per-
formed during the day were related to the nearest 
reference measurement performed at the begin-
ning of the day. Top layers experienced a more 
pronounced reduction in stiffness than deeper 
layers. To reduce the effective modulus of the 
layers located within the top 5 cm by about 50% 
an energy input of about 300 kJ m-2 was required. 
The observed reduction in stiffness decreased 
with layer depth and was not observed in layers 
located deeper than 20 cm below the surface. This 
observation agrees with measured snow tempera-
ture profiles and confirms that warming of the 
snow mainly occurs in near-surface layers (e.g. 
Fierz, 2011).  

As snow temperature changes at the depth of 
the weak layer were small, we expected the spe-
cific fracture energy of the weak layer to remain 
unaffected. The first PST measurement performed 
in a pit was used as the reference for the mea-
surements later conducted in this pit. In the 168 
PSTs we modeled, the critical energy release rate 

ranged from 0.4 to 2.2 J m-2 with a mean of 
1.3 J m-2. No trend between warming and the 
change of critical energy release rate was ob-
served. Hence, we note that the specific fracture 
energy was largely unaffected by surface warm-
ing. This observation is in agreement with the 
snow temperature measurements that only 
showed small changes at the depth of the weak 
layer.  

The critical cut lengths measured in the PSTs 
in the course of a field day were related to the first 
measurements in the morning. For cumulative 
energy inputs below about 400 kJ m-2 the change 
of critical cut length varied widely; positive and 
negative changes were observed. For a cumula-
tive energy input larger than about 400 kJ m-2, 
however, most cut lengths were shorter than the 
initial cut length. Notwithstanding considerable 
scatter a statistically significant trend (p=0.022) 
was found towards shorter cut lengths in PST 
experiments under surface warming. 

Former analyses of contributory factors had 
shown that warming played a subordinate (or at 
best controversial) role (e.g. Perla, 1970). This 
study is the first to quantitatively measure the ef-
fect of surface warming on instability. Our results 
show decreasing values of slab stiffness and criti-
cal cut length with ongoing warming in dry snow-
packs that have initially contained a potential 
weakness. As we only examined cases which 
were favorable to crack propagation and when 
surface warming was anticipated to play a role, we 
do not see our results in contrast with previous 
studies. 

 
4.  CONCLUSIONS 
 

We related the energy input as a measure of 
surface warming – calculated from the partly 
measured and partly modeled surface energy 
fluxes – to stiffness observed in near surface snow 
layers and to the critical cut length found in 168 
PST experiments. 

We observed decreasing values of slab stiff-
ness derived from the SMP penetration force sig-
nal with increasing cumulative energy input. The 
critical cut length in propagation saw test experi-
ments tended to decrease with increasing energy 
input into the snowpack – though the effect was 
less pronounced than for the slab stiffness. The 
critical cut length is an integral measure of the 
crack propagation propensity. We conclude that 
the reason for increased crack propagation pro-
pensity was increased bending of the slab layers, 
as we measured a reduction of stiffness, but did 
not observe a trend in the weak layer fracture 
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energy on days with considerable surface warm-
ing. Several hours of medium or high energy input 
were required for a notable effect on crack propa-
gation propensity. The amount of energy leading 
to warming can be accumulated by either insola-
tion on a suitably inclined slope or positive adding 
of turbulent fluxes and radiative fluxes. Hence, 
estimating warming in the field solely from ob-
served air temperatures or cloud coverage seems 
challenging and is likely to be error-prone. 

Despite the uncertainty arising from the calcu-
lation of surface energy fluxes it seems clear that 
a considerable amount of energy is needed to 
change slab layer properties and in combination 
with a pre-existing weakness to promote instabili-
ty. 
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