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ABSTRACT: Meteorological conditions play an important role for the mechanical stability of the 
snowpack. Statistical algorithms can be used to determine the likelihood of the occurrence of 
avalanches which was shown in several previous studies. The common use of two statistical methods 
offers the possibility to analyze the data set in regard to specific weather conditions. In the first step 
the k-mean cluster analysis selects days with similar weather conditions; so that each day is assigned 
to a predefined group. Significant weather conditions are used for the definition of the initial conditions 
of each cluster. Each group represents a typical weather situation. In the second step the discriminant 
analysis is used to separate between avalanche and non-avalanche days for each group. 
Consequently the coefficients of the discriminant functions can differ and the best fit of the discriminant 
function depending on the predominant weather situation is applied. 
Results of the clustering algorithm and the hit rate of the subsequent discriminant analysis are shown.  
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1 INTRODUCTION 
 
Obled and Good (1980) classified three different 
approaches of statistical avalanche forecasting. 
The first method (model I) consists of a simple 
discriminant analysis applied to a sample of 
avalanche days against a sample of non-
avalanche days. The second approach (model 
II) tries to take into account different types of 
avalanche phenomena associated with different 
types of snow and weather conditions. It 
requires two-stage decision criteria. The third 
method (model III) aims to find the nearest 
neighbours of recorded weather conditions and 
avalanche observations.  
Numerous algorithms similar to the type model I 
have been developed using different statistical 
methods like fuzzy-logic (Terada et al., 1991; 
Kleemayr et al., 2000), discriminant analysis 
(Obled and Good, 1980), regression and 
classification trees (Davis et al., 1999; Howley, 
2007). The subdivision for model II may be done 
using the avalanche classification based on de 
Quervin (1973), applying a non-hierarchical 
clustering method (Obled and Good, 1980) or a 
multiple discriminant analysis (Wilks, 1995). The 
nearest neighbours model (model III) is based 
on hierarchical clustering and has often been 
applied to avalanche forecasting issues (Obled 
and Good, 1980; Buser, 1983; Brabec and 
Meister, 2001; Gassner and Brabec, 2002; 
Zeidler and Jamieson, 2004). 
The approach proposed in this study can be 
assigned to the type model II. The clustering 
with the k-means algorithm (non-hierarchical) 
groups days with similar meteorological and 
snowpack conditions. 

Using the same data set the discriminant 
function decides between avalanche or non-
avalanche day.  
It is proposed that the discriminant analysis can 
separate avalanche days and non-avalanche 
days under similar weather conditions. 
 
 
 
2 METHODS 
 
 
2.1 Weather and snow data 
 
The study was carried out in an avalanche 
controlled area of the ski resort Lech 
(Vorarlberg, Austria). The release areas extend 
between 1680m and 2540m a.s.l. Data were 
collected from 2003 to 2007. 
An automatic weather station located in the 
study area recorded air temperature, snow 
depth, wind speed and direction. Daily 
observations of the snowpack and data 
collected with the Swiss Rammsonde are 
available.  
The variables describing the meteorological 
conditions and the properties of the snowpack 
were chosen similar to Singh et al. (2005). For 
the statistical analysis the air temperature, the 
snow temperature (0.1m below the snow 
surface), the snow depth, the daily snowfall 
accumulation, the difference of the maximum air 
temperate (previous day) and the minimum air 
temperature (during the last 24h) were used.  
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2.2 Cluster analysis  
 
The k-means cluster analysis requires a 
predefined number of k clusters. It generates k 
different clusters of the greatest possible 
distinction.  
The original k-means cluster analysis algorithm 
starts its iteration with randomly selected data 
sets for the initialization. This procedure leads to 
different solutions; especially conditions which 
are rarely observed can be underrepresented.  
In order to overcome these restrictions the initial 
conditions are set manually. Specific data sets 
of the weather data are used to select the initial 
values for the k-means algorithm. The 
conditions are: minimum air temperature, 
maximum air temperature, maximum snow 
depth change, maximum snow depth, minimum 
snow temperature, maximum snow temperature, 
mean snow depth, minimum snow depth, mean 
air temperature, minimum penetration depth of 
the Rammsonde, maximum penetration depth of 
the Rammsonde, maximum daily air 
temperature change (table 1).  
Each of these data sets represents a day with 
significant weather conditions. The iterative 
process of the k-means cluster analysis starts 
with the assignment of each data set to the 
cluster under the condition that the Euclidian 
distance to the centroid of a cluster in the k-
dimensional phase space is a minimum. The 
centroids are recomputed and the iteration is 
repeated until no changes in any cluster occur. 
Finally each day is a member of a cluster and 
each cluster represents a significant weather or 
snowpack situation. 
The cluster analysis does not aim to differ 
between avalanche and non-avalanche days. It 
is supposed that within each cluster the records 
contain information which forces processes of 
an avalanche release, but they do not 
compensate. 
For example, rising air temperature forces the 
settlement of a cold snowpack decreasing the 
long-term probability of an avalanche release. 
But an isothermal snowpack loses mechanical 
stability caused by melting which may result 
from high air temperatures. Such cases should 
not be in the same cluster, so that the 
discriminant analysis is able to separate 
between avalanche and non-avalanche days 
effectively. 
 
2.3 Discriminant analysis 
 
Within each cluster the linear discriminant 
analysis has been applied. The existing data 
pool has been divided by the discriminant 
function. 
The sign of the distance D from a actual data set 
to the discriminant function separates avalanche 
and non-avalanche days. 
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The coefficients generated by the discriminant 
analysis refer to each individual cluster. 
 
2.4 Combining procedure 
 
On a new forecasting day new weather and 
snowpack observations are available and the 
Euclidian distances to all data sets are 
calculated. The data set with the minimal 
distance is the closest. Concurrently it is 
member of a group of the cluster analysis.  
The coefficients of the discriminant function of 
that specific group are used to calculate the 
distance D from the actual data set. Both, the 
sign and the absolute value of D contain 
information about the likelihood of the 
occurrence of an avalanche. 
The information of the sign of D is binary; the 
absolute value of D represents the distance to 
the discriminant function which separates the 
data set. Unfortunately the distance D in the k 
dimensional phase space can assume any value 
which inhibits the interpretation.  
Results generated with different discriminant 
functions from other groups of the cluster 
analysis are not comparable. Therefore a 
scaling is applied. The scaling of D is 
accomplished by a fit with equation (1) which 
ensures that the scaled avalanche danger S is 
between 1S0 ≤≤ . 
 

2
1

σ
μD

tanh
2
1

S +
−

= ⎟
⎠
⎞

⎜
⎝
⎛          (1) 

 
where μ is the median of all D and σ is 
parameterized, so that the point ( 0,D =  

0.75S = ) is reached. High avalanche danger 
0.75S ≥ corresponds to positive distances D 

(avalanche days) and 0.75S <  indicate 
negative distances D (non-avalanche days). The 
parameterization generates results which makes 
the calculations comparable among each other. 
The procedure can be applied for both, the 
regional and the local scale. Avalanches were 
always artificially triggered at the same positions 
(release areas). The attempts and the success 
of an avalanche release had been recorded. 
The weather conditions at these locations are 
estimated from the data of the automatic 
weather station. The air temperatures were 
calculated using the lapse rate and the altitude. 
The new snow depth depends on the intensity of 
snow drift which differs at each release area. A 
snow drift index was determined at selected 
release areas. It is based on the estimation of  
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experts and the wind speed. The index 
correlates to the exposition of the slope 
(r2 = 0.71), so that the snow drift index for all 
other release areas was estimated by that 
relationship. 
 
 
3 RESULTS 

The cluster analysis accomplished by the k-
means algorithm generated k different clusters 
or groups. The initial conditions were pre-
defined using selected weather conditions. The 
results from the cluster analysis are summarized 
in table 1. First, the number of avalanche days 
and the number of members of each cluster 
gives an impression on the probability for an 
avalanche day. The frequency of the avalanche 
danger (according to the European avalanche 
danger scale), provided by the avalanche 
warning center, within each group, is the second 
information. 
The first cluster (ID=1) in table 1 has no 
members. Both, the minimum air temperature 
and the minimum snow temperature have been 
used for the initialization. The two variables are 
very similar, so that one of these two groups 
became empty by the clustering algorithm. In 
contrast both groups 2 and 6, which represent 
high air and snow temperatures, exist, because 
the snow temperature can only reach 0°C.  
The 5 members of cluster 4 correspond to large 
snow depths. Avalanches occurred on all of the 
days and the avalanche danger was 3 or 4.  
The groups which had low snow depths (8) or 
average air temperatures (9) had no avalanche 
days and the avalanche danger was less or 
equal 3. 
Both groups with high and low penetration depth 
of the Rammsonde (10, 11) include many 
avalanche days with moderate to high 
avalanche danger. High penetration depths 
occurred after large snowfall events where the 

artificial release of avalanches is easier. A low 
penetration depth indicates a hard layer at the 
snow surface which may form a bed surface for 
slab avalanches (e.g. drifted snow during the 
day). 
The largest group (6, high snow temperature) 
contains 42 members and 4 avalanche days. 
The avalanche danger was less or equal 3. It 
seems that the daily temperature change (12) 
consists of all, avalanche days with high and low 
avalanche danger and days without avalanches. 
High daily temperature change occurs mostly in 
spring and it has no effect to the avalanche 
danger on a well settled snowpack.  
 
The discriminant analysis which depicts 
between avalanche or non-avalanche days was 
carried out for each group of the cluster 
analysis. The overall success of the estimated 
avalanche days is shown by pie charts at each 
release area (Fig. 1). The hit rate is defined as 
the ratio of the number of correct estimated 
avalanche days to the number of avalanche 
days. A black solid circle represents a hit rate of 
100% and a white solid circle corresponds to a 
total failure. The number of observed avalanche 
days is plotted right to each pie chart.  
In the majority of the cases the discriminant 
analysis is able to separate between avalanche 
and non-avalanche days.  
The previous separation of the data set by the 
cluster analysis reduced the sample size of each 
sub data set which was used for the discriminant 
analysis. For release areas with more than 20 
avalanches the hit rate is between 70% and 
85%. If less avalanches were observed the hit 
rate seems to be rather random. The hit rate 
does not vary with the exposition of the release 
areas.     
It seems that the proposed snow drift index 
provides acceptable results, but it should be 
noted that the micro relief was neglected. The  

Table 1: Groups generated by the cluster analysis (details see text). 
 

    Cluster number of frequency of the  
avalanche danger 

ID name (initial conditions)  members avalanche days 1 2 3 4 5 
1 minimum air temperature 0 0 0 0 0 0 0 
2 maximum air temperature 21 2 7 12 2 0 0 
3 maximum new snow event 25 1 5 10 10  0 0 
4 maximum snow depth  5 5 0 0 2 3 0 
5 minimum snow temperature 18 10 0 1 14 3 0 
6 maximum snow temperature 42 4 7 28 7 0 0 
7 mean snow depth 25 1 5 19 1 0 0 
8  minimum snow depth 7  0 5 1 1 0 0 
9  mean air temperature 19 0 10 8 1 0 0 
10  maximum Rammsonde penetration 28 13 0 15 10 3 0 
11 minimum Rammsonde penetration 8 7 0 0 3 5 0 
12 maximum daily temperature change  37 5 0 28 8 1 0 
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solar heating of south facing slopes may play an 
important role for cluster 2 and 12.  
The artificial triggering of avalanches with 
remote-controlled devices (e.g. Gazex) 
handicaps the rigorous documentation of the 
success of avalanche releases.  
 
 
4 CONCLUSIONS  
 
The basic idea that weather conditions are 
responsible for the avalanche danger can be 
confirmed and if numerous observations are 
available, statistical methods are able to 
estimate the avalanche danger without a 
detailed knowledge of complex physical 
processes which proceed simultaneously. The 
combination of the two algorithms, cluster 
analysis and discriminant analysis, permits more 
detailed statements on the avalanche danger.  
Further investigations may optimize the 
selection of the initial conditions and the number 
of clusters.  

It applies to all statistical methods for the 
estimation of the avalanche danger or the 
probability of the occurrence of avalanches that 
a larger amount of data with a sufficient quality 
improve the hit rates.  
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