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ABSTRACT:  Stability prediction from SnowMicroPen (SMP) profiles would support avalanche forecasting 
operations, since stability information could be gathered more quickly than with standard tests, thereby 
allowing sampling at higher resolution and over larger spatial scales. In previous studies, the snow 
properties derived from the SMP have been related to observed snow properties at Rutschblock and 
compression test failure planes. The goal of this study is to show to what extent Rutschblock stability can 
be derived from SMP measurements. Our analysis is based on measurements at 36 different sites, which 
each included a Rutschblock test, a manual profile, and up to 8 adjacent SMP measurements, for a total 
of 262 SMP profiles.  A recently improved SMP analysis procedure is used to estimate the micro-
structural and mechanical properties of manually defined weak layers and slab layers. SMP signal quality 
control and different noise treatment methods are taken into consideration in the analysis. The best and 
most robust predictor of Rutschblock score is the weak layer compressive strength. In combination with 
the SMP-estimated density of the slab layer, the cross-validated total accuracy of predicting Rutschblock 
stability classes is 85% over the entire data set, and 88% when signals with obvious signal dampening 
(11% of the dataset) are removed. The effect of SMP data quality on the analysis is quantified. The 
analysis is robust to trends and offsets in the absolute SMP force, which is a frequent signal error but is 
sensitive to dampened or disturbed SMP force micro variance. Our sensitivity analysis shows that SMP 
data quality has a significant influence on classification results. It also shows that the best predictor of 
instability, the weak layer micro-scale compressive strength, is robust to the choice of SMP signal noise 
removal method. 
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1.  INTRODUCTION 
 

Snowpack measurements and stability 
tests are, along with observations of recent 
avalanche activity and weather history, currently 
the basis for snowpack stability assessment in 
most avalanche forecasting operations. The 
Rutschblock test is currently the standard 
snowpack stability test in the context of 
operational avalanche forecasting in Switzerland. 
The snow properties and the Rutschblock score, 
an index of snow stability for skier triggering, are 
the most important parameters for the assessment 
__________________________ 
* Corresponding author address: Christine 
Pielmeier, Swiss Federal Institute for Snow and 
Avalanche Research SLF, Flüelastr. 11, CH-7260 
Davos, Switzerland; tel: +41-81-4170125; fax: 
+41-81-4170110; email: pielmeier@slf.ch. 

 
 
of current snowpack conditions, itself a basis for 
forecasting the current avalanche danger.  
 Schweizer and Jamieson (2003) and  
Schweizer et al. (2007, 2008) developed a stability 
classification method based on stability test scores 
and manual observations of failure interface 
properties. These studies show the significance of 
observed snow properties at failure interfaces with 
respect to snowpack stability. 

The SnowMicroPen (SMP), a high-
resolution automated penetrometer for snow, 
measures penetration resistance or snow 
hardness at the grain scale (Schneebeli and 
Johnson, 1998). A physical theory for 
characterizing snow properties from the SMP 
signal was first introduced by Johnson and 
Schneebeli (1999). The three basic micro-
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structural parameters are the structural length (L), 
the deflection at rupture (δ) and the rupture force 
(ƒ), and from these, mechanical parameters can 
be derived. Sturm et al. (2004) improved the 
theory by removing a key assumption, and 
Marshall (2006) added several improvements 
including an algorithm for accounting for 
simultaneous ruptures. Pielmeier and Schweizer 
(2007) and Pielmeier et al. (2006) applied both 
versions of the theory in a statistical approach to 
predict a-priori known weak interfaces from the 
SMP signal. The classification accuracies in 
discriminating stable and unstable failure 
interfaces from SMP signals reached 65% and 
70% respectively. Recently, Marshall and Johnson 
(submitted) significantly improved the SMP 
analysis procedure. Verified by both extensive 
Monte-Carlo simulated and observed snow 
signals, they showed a much higher accuracy 
when estimating the micro-structural and 
mechanical parameters than with previous 
versions of the theory.  

 Applying the improved theory by Marshall 
and Johnson (submitted) to a dataset comprised 
of snow profiles, Rutschblock tests and SMP 
measurements, we obtain more accurate and 
robust predictors of stability from the SMP signals. 
Furthermore, the effect of signal quality control 
and SMP signal noise filtering on the accuracy of 
the results is shown. 
 
2.  DATA AND QUALITY  

 
2.1 Data 
 

The 36 combined profiles were taken in 
dry snow conditions between December 2007 and 
March 2008 in the Swiss Canton of Graubünden 
(Figure 1). All locations were chosen for the 
operational assessment of regional avalanche 
danger. Altitudes range between 2000 and 2600 m 
a.s.l. and the slope angles range between 30 and 
40°. The majority of the profiles were taken on 
north facing slopes (NW-N-NE: 69%, SE-S-SW: 
15%, E: 6%, W: 11%). 

A combined profile consists of one manual 
profile with at least one vertical and one slope-
perpendicular SMP measurement adjacent to it, as 
well as a Rutschblock test with up to six SMP 
measurements at its perimeter and one in the 
middle of the block. 262 SMP measurements are 

available for analysis. The 36 observed 
Rutschblock scores range from 1 to 7. 
 

 
Fig. 1:  Map of a portion of the Swiss Canton 
Graubünden showing the profile locations. Red 
diamonds represent Rutschblock scores ≤ 3 and 
RB 4 whole block (n=20), green crosses represent 
Rutschblock scores 4 partial break and RB scores 
5-7 (n=16).  
 

 
Figure 2 shows the range and frequency 

of the 36 observed snowpack types (Schweizer 
and Lütschg, 2001). 

 

 
Fig. 2: The distribution of the 36 snow profiles in 
terms of profile types (blue icons). There is an 
equal split between profiles with weak (type 1-5) 
and consolidated basal layers (type 6-10). 
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2.2 SMP data quality 
 

All 262 SMP measurements were 
qualitatively checked for obvious signal errors and 
classified into four quality categories (Table 1).  

 
Tab. 1: Categories and distribution of SMP data 
quality. 
Quality Type of SMP signal error N [%] 

Q1 None 158 [60%] 
Q2 Trend or offset in absolute 

SMP force 
75 [29%] 

Q3 Dampened or disturbed  
SMP force micro-variance  

5 [2%] 

Q4 Both, Q2 and Q3 24 [9%] 
 

Amongst the 36 profiles were 5 profiles 
that had no first quality SMP measurement at all. 
Signal errors may stem from a variety of sources 
such as a frozen SMP measuring tip, a defect 
sensor or a defect coax cable. The sources of 
error are not specified here, but the data quality is 
accounted for in the analysis to show the effect on 
the accuracy of the results. 
 
3.  METHODS 

 
3.1 Field methods 
 

Manual snow profiles were taken 
according to the International Classification for 
Seasonal Snow on the Ground (Colbeck et al., 
1990). Three different stability tests were taken 
adjacent to the manual profile: one Rutschblock 
test (RB), two Extended Column tests (ECT) and 
two Compression tests (CT). Figure 3 shows the 
experimental design of the combined profiles. The 
ECT and CT scores are not the subject of this 
study, but are analyzed in a comparison of stability 
tests by Winkler and Schweizer (2008).  

In this study, the weak layer depth and the 
stability were determined by the Rutschblock test 
as described by Föhn (1987). The RB score (1 to 
7), release type (whole block vs. partial 
break/edge) and fracture surface character (clean 
vs. rough/irregular) were observed (Schweizer, 
2002). Within the immediate vicinity of the manual 
profile (5 to 20 cm), two slope perpendicular and 
one vertical SMP measurement were taken. Up to 
six SMP measurements were taken at the 

perimeter and in the center of the Rutschblock 
area (Figure 3). 

 

 
Fig 3: Experimental design of combined profiles, 
where one manual profile was taken with three 
adjacent SMP measurements along with one RB, 
two ECT and two CT tests with seven adjacent 
SMP measurements. 
 
3.2 Analysis methods 
 
Stability classification 

Unstable und stable profiles were 
classified according to the RB scores. Profiles are 
classified unstable with RB scores 1 to 3 
independent of release type and RB score 4, if 
release type is whole block (n=140). Profiles are 
classified stable with RB score 4, if release type is 
partial break and RB scores 5 to 7 independent of 
release type (n=122). This entails a small 
difference to the previously used stability 
classification (Pielmeier et al., 2006), where 
profiles with RB 4 and release type whole block 
were considered stable. 
 
SMP signal analysis 

By graphically superimposing the manual 
profile onto the slope-perpendicular SMP 
measurement that is closest to the manual profile, 
the layer boundaries at the failure interface are 
manually delineated (aided by vertical SMP 
measurements). Furthermore, all SMP 
measurements from one site were graphically 
aligned to track the failure interface. An example 
of the manual delineation of the weak layer (WL), 
the transitional layer (TL), the adjacent layer (AL) 
and the slab layer (SL) is shown in Figure 4.  

The SMP signal is first filtered to reduce 
signal noise. Three different methods are applied 
to the raw SMP signal: a static threshold of 
0.023 N rupture force (based on the fluctuations in 
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air measurements), a dynamic threshold of 10% of 
the maximum rupture force, and a combination of 
both. In addition to data quality, the filter type is 
also accounted for in the analysis to show the 
effect on the accuracy of the results. 

 
Fig 4: Section of an SMP profile showing manually 
depicted layer boundaries at a failure interface. 
 

The calculated SMP parameters based on 
Marshall and Johnson (submitted) are: rupture 
force (f), deflection at rupture (d), structural 
element length (L), force normal to tip (F), 
probability of contact (Pc), number of elements 
engaged (Ne), number of elements available (Na), 
mean force (Fm), total force at peak (F_T), 
stiffness (k), micro-scale elastic modulus (Emicro), 
micro-scale compressive strength (Smicro), 
measured number of ruptures (Nm) and total 
number of ruptures (N_T). Also, the texture index 
(TI) (Schneebeli et al., 1999), the slab layer mean 
density (rho) (Pielmeier, 2003), and the depth of 
the weak layer are calculated. 

 
Statistical analysis 

To find the best classifier for unstable and 
stable RB results from the SMP records, we use 
the classification tree method (Breiman et al., 
1984). A total of 16 parameters are calculated for 
each SMP profile at increments of 1 mm using a 
5 mm window. The mean value of these 16 
parameters is calculated for the manually defined 
weak layer, the upper slab layer, and the 
difference of both. Together with the weak layer 
depth, a total of 49 variables were tested for their 
ability to correctly classify the profile based on the 
RB score. A cross-validation analysis was 
performed by subdividing the data set into 10 
balanced independent subsets, on which the 
classifications were performed. This analysis 

indicated that a 2-node tree, using 2 variables, 
was statistically significant. We therefore focus 
below on the classification accuracy using 1 and 2 
explanatory variables. 
 
4.  RESULTS 
 
4.1 Classification 
 
From the 49 variables used in the univariate 
classification tree analysis, the ten best predictors 
of unstable and stable profiles are given in 
Table 2.  
 
Tab. 2: The ten best classifiers from univariate  
classification tree analysis. TA is the total 
accuracy, SA is the stable accuracy, UA is the 
unstable accuracy. At the split value of the SMP 
parameter the classification changes from stable 
to unstable or vice versa. A number one in the “≥” 
column means the split was greater or equal than 
the value to be stable, a zero means less than the 
split value is stable. 
SMP 
Parameter 

TA 
[%] 

SA 
[%] 

UA 
[%] 

Split value ≥

WL_Smicro 83.5 79.5 87.5 0.0755 N mm-2 1
SL_Pc 79.8 89.7 70.0 0.13 [prob.] 0
WL_Nm 77.2 73.1 81.3 14 [#] 1
WL_Na 77.2 73.1 81.3 33 [#] 1
WL_Emicro 77.2 92.3 62.5 1.44 N mm-2 1
WL_L 77.2 73.1 81.3 1.09 mm 0
WL_N_T 76.6 69.2 83.8 82 [#] 1
WL_f 75.3 65.4 85.0 0.10 N 1
WL_k 74.1 87.2 61.3 1.45 N mm-1 1
WL_depth 73.4 74.4 72.5 200 mm 1
 
The single best predictor is the weak layer micro-
scale compressive strength (WL_Smicro), with 
values greater or equal to 0.0755 N mm-2 
classified as stable, and less than 0.0755 N mm-2 
as unstable, with a total classification accuracy of 
83.5% (stable accuracy 79.5%, unstable accuracy 
87.5%).  
 
Figure 5 shows the distributions for WL_Smicro for 
all 262 SMP profiles (all SMP data qualities) and 
for WL_Smicro according to unstable and stable 
Rutschblock stability classes. 
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Fig. 5: Histograms of the WL_Smicro for all data 
(top), for the unstable RB class and for the stable 
RB class. The distributions of WL_Smicro for 
unstable and stable conditions are significantly 
different. 
 
From the multivariate classification tree analysis of 
the 49 variables, the second-best variable to 
predict unstable and stable profiles (with 
WL_Smicro as first variable) is the slab layer mean 
density (SL_rho). The second-best variables with 
the 12 highest total accuracies are given in 
Table 3. Also, the total accuracies in terms of the 
data quality classes are shown. 
 
Tab. 3: Total accuracies obtained from the 
multivariate tree analysis (with WL_Smicro as first 
variable). The total accuracy is shown for the 12 
best second variables, also as a function of SMP 
data quality. 
SMP 
Parameter 

Q1 
[%] 

Q2 
[%] 

Q3,Q4 
[%] 

Q1,Q2
[%] 

Q1,Q2,
Q3,Q4 

[%] 
SL_rho 85.44 89.33 75.86 88.00 85.50 
SL_TI 84.18 85.33 68.97 84.55 82.82 
SL_f 85.44 81.33 65.52 84.12 82.06 
WL_L 84.18 84.00 82.76 84.12 83.97 
WL_Na 83.54 82.67 82.76 83.26 83.21 
WL_S 84.81 80.00 79.31 83.26 82.82 
WL_Nm 81.01 81.33 82.76 81.12 81.30 
WL_N_T 81.65 80.00 82.76 81.12 81.30 
WL_Pc 82.28 76.00 72.41 80.26 79.39 
WL_Fm 77.85 84.00 72.41 79.83 79.01 
SL_Pc 84.81 69.33 68.97 79.83 78.63 
WL_depth 83.54 70.67 72.41 79.40 78.63 
 

From the classification tree analysis shown in 
Figure 6, the SMP failure interfaces are predicted 
to be stable if the WL_Smicro ≥ 0.0755 N mm-2 
and the SL_rho ≤ 320.6 kg m-3. 
 

 
 
Fig. 6: Classification tree for unstable/stable 
dataset (n=233, Q1 and Q2 data). The cross-
validation analysis indicated that the 2-node tree, 
using 2 variables is statistically significant. 
 
Figure 7 shows all data along with the split values 
gained from the classification tree analysis, as a 
function of data quality. The total classification 
accuracy for all data is 85.5%. 
 

 
 
Fig. 7: Plot values of WL_Smicro as a function of 
SL_rho for all SMP data quality classes. The grey 
shaded area is the two variable best classification 
for RB stability classes unstable. The different 
symbols indicate SMP data quality. 
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4.2 Sensitivity analysis 
 
Sensitivity to SMP data quality 
For the univariate classification, with WL_Smicro 
as best classifier (Table 2), the accuracies are 
calculated for three different SMP data quality 
classes. Table 4 shows lower accuracies for Q2 
data than for Q1 data, and even lower accuracies 
for Q3 and Q4 data. 
 
Tab. 4: The classification accuracies for 
WL_Smicro in terms of SMP data quality. TA is the 
total accuracy, SA is the stable accuracy, UA is 
the unstable accuracy, and n is the number of 
SMP profiles in the group. 
SMP data 
quality 

TA 
[%] 

SA 
[%] 

UA 
[%] 

n 

Q1 83.54 79.49 87.50 158 
Q2 74.67 78.79 71.43 75 

Q3 & Q4 68.97 72.73 66.67 29 
 
For the multivariate classification, with WL_Smicro 
and SL_rho as best classifiers (Table 3), the 
accuracies are less sensitive to data quality, as 
shown in Table 5.  
 
Tab. 5: The classification accuracies for combined  
WL_Smicro and SL_rho in terms of SMP data 
quality classes. TA is the total accuracy, SA is the 
stable accuracy and UA is the unstable accuracy. 
Classification 
accuracies 

Q1 
 

Q2 Q3, 
Q4 

Q1,
Q2 

Q1,Q2,
Q3,Q4 

TA [%] 85.44 89.33 75.86 88.00 85.50 
SA [%] 79.49 87.88 45.46 87.40 78.12 
UA [%] 91.25 90.48 94.44 88.50 91.38 
 
The multivariate classification is robust to Q2 data 
(29% of all data), where the signal error is a trend 
or an offset in absolute SMP force. Q1 and Q2 
data together yield a total accuracy of 88%. Q3 
and Q4 data significantly reduce the total 
classification accuracy by misclassifying more than 
half of the stable cases. However, the accuracies 
obtained using all data together are still 
acceptable and much higher than expected (total 
accuracy = 85.5%), indicating that this method 
may be applicable to large datasets not manually 
classified by quality, which may be too time 
consuming to do in some cases. 
 
 

Sensitivity to SMP noise removal methods 
The classification accuracies for WL_Smicro 
(Table 2) are calculated for three different SMP 
signal noise removal methods: a static filter, a 
dynamic filter and a combination of both. Table 6 
shows that the classification accuracies are not 
sensitive to the selected filter. 
 
Tab. 6: The classification accuracies for 
WL_Smicro from univariate analysis in terms of 
SMP noise removal methods for Q1 data. 
SMP filter 
type 

TA 
[%] 

SA 
[%] 

UA 
[%] 

n 

static 83.54 79.49 87.50 158 
dynamic 84.81 78.49 90.00 158 
static & 
dynamic 

 
83.54 

 
79.49 

 
87.50 

 
158 

 
 
5.  DISCUSSION 

 
Future work involves the application of the 

classification model to a larger dataset and the 
analysis of the spatial variability of the SMP 
measurements in relation to Rutschblock score 
and release type. The results of the adjacent 
compression tests and extended column tests will 
be included in the analysis. A systematic 
catalogue of data quality classes for SMP users 
will be developed and an algorithm to detect errors 
in the SMP force micro-variance will be tested. 
Furthermore, the sensitivity study will be extended 
to older versions of the SMP theory.  

Since the results for micro-scale strength 
are robust to the suggested SMP signal noise filter 
methods, we suggest that SMP users apply the 
simplest method, a static filter with a rupture force 
threshold value of 0.023 N, and focus on the 
strength parameter for stability applications. 
 Figure 7 shows the total, unstable and 
stable accuracies for all WL_Smicro split values 
calculated from an unweighted classification tree. 
Future work also entails the analysis and 
discussion of a cost function where false stable 
predictions can perhaps be optimized at an 
acceptable cost of false alarms. 
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Fig. 7: Total accuracy together with unstable and 
stable accuracies for WL_Smicro threshold values. 
By increasing the accuracy for unstable 
predictions (green curve), the accuracy of the 
stable predictions decreases (red curve), which 
means a loss of credibility. In how far can unstable 
predictions be optimized? 
 
6.  CONCLUSION 

 
Applying an improved SMP signal 

interpretation theory to a combined dataset of 
snow profiles, SMP measurements and 
Rutschblock tests, significant indicators of 
snowpack instabilities are derived from SMP 
measurements. The weak layer micro-scale 
compressive strength is the single most significant 
parameter. Combined with the second-best 
parameter from multivariate analysis - the slab 
layer mean density - the total classification 
accuracy is 88% where 11.5% of the profiles are 
classified false unstable (false alarms) and 12.6% 
are classified false stable (misses). The presented 
classification model is an improvement to previous 
studies. 

The sensitivity studies for SMP data 
quality showed that the classification model is 
robust to trends and offsets in the SMP mean 
force (i.e., Q2 SMP data). This is by far the most 
frequent signal error encountered (29% of all data, 
Table 1). But, the classification is somewhat 
sensitive to a dampened or disturbed SMP force 
micro variance (Q3 and Q4 data,11% of all data). 
Furthermore, the best classifier, weak layer micro-

scale compressive strength, is robust to the choice 
of SMP signal noise removal methods.  

It is shown that SMP data quality control is 
critical when interpreting SMP data. It becomes 
even more important when snowpack stability 
datasets with SMP measurements are compared. 
A simple and robust SMP signal noise removal 
method is suggested. The results of the study 
provide a basis for the automated detection of 
potentially weak interfaces in snowpacks from 
SMP measurements. 
 
7. ACKNOWLEDGEMENTS 
 

The study was carried out during a 
research exchange visit at the Center for Snow 
and Avalanche Studies, Silverton, CO and was 
partially funded by the Swiss National Science 
Foundation research fellowship stipend no. 
IZK020-122784/1. We thank C. Landry and 
C. McAlpin for hosting the visit. Further we would 
like to acknowledge F. Techel, M. Oberhammer, 
K. Winkler and S. Bellaire for field assistance as 
well as A. Moser, A. Beeli and M. Ulmer for 
technical support. C. Landry and J. Schweizer 
gave valuable feedback on the manuscript. 
 
8. REFERENCES  
 
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, 

C.J., 1984. Classification and Regression 
Trees. CRC Press, Boca Raton, USA, 368 
pp. 

 
Colbeck, S.C., Akitaya, E., Armstrong, R., Gubler, 

H., Lafeuille, J., Lied, K., McClung, D., 
Morris, E., 1990. The International 
Classification for Seasonal Snow on the 
Ground. International Association of 
Scientific Hydrology. International 
Commission on Snow and Ice, 
Wallingford, Oxfordshire, 23 pp. 

 
Föhn, P.M.B., 1987. The Rutschblock as a 

practical tool for slope stability evaluation. 
In: B. Salm and H. Gubler (Editors), 
Symposium at Davos 1986 - Avalanche 
Formation, Movement and Effects, IAHS 
Publ., 162. International Association of 
Hydrological Sciences, Wallingford, 
Oxfordshire, U.K., pp. 223-228. 

International Snow Science Workshop

Whistler 2008 435



 
Johnson, J.B., Schneebeli, M., 1999. 

Characterizing the micro structural and 
micro mechanical properties of snow. Cold 
Reg. Sci. Technol., 30, 91-100. 

 
Kronholm, K., 2004. Spatial variability of snow 

mechanical properties with regard to 
avalanche formation. Ph.D. thesis, 
University of Zürich, Zürich, 158 pp. 

 
Marshall, H.P., Johnson, J.B., submitted. Accurate 

inversion of high resolution snow 
penetrometer signals for microstructural 
and micromechanical properties. J. of 
Geophysical Resarch - Earth Surface. 

 
Marshall, H.P., 2006. Snowpack spatial variability: 

towards understanding its effect on remote 
sensing measurements and snow slope 
stability. Ph.D. thesis, University of 
Colorado at Boulder, 264 pp. 

 
Pielmeier, C., Schweizer, J., 2007. Snowpack 

stability information derived from the 
SnowMicroPen signal. Cold Regions 
Science and Technology 47: 102-107. 

 
Pielmeier, C., Marshall, H.P, Schweizer, J., 2006. 

Improvements in the application of the 
SnowMicroPen to derive stability 
information for avalanche forecasting. 
Proceedings of the Int. Snow Science 
Workshop 2006, Telluride CO, USA. 187-
192.  

 
Pielmeier, C., 2003. Textural and mechanical 

variability of mountain snowpacks. PhD 
thesis, University of Berne, 127 pp. 

 
Schneebeli, M., Pielmeier, C., Johnson, J.B., 

1999. Measuring snow microstructure and 
hardness using a high resolution 
penetrometer. Cold Reg. Sci. Technol., 
30, 101-114. 

 
Schneebeli, M., Johnson, J.B., 1998. A constant-

speed penetrometer for high-resolution 
snow stratigraphy. Ann. Glaciol., 18, 193-
198. 

 

Schweizer, J., McCammon, I.A., Jamieson J.B., 
2008. Snowpack observations and 
fracture concepts for skier-triggering of 
dry-snow slab avalanches. Cold Reg. Sci. 
Technol., 51, 112-121. 

 
Schweizer, J., Jamieson, B., Fierz, C., 2007. A 

threshold sum approach to stability 
evaluation of manual snow profiles. Cold 
Reg. Sci. Technol. 47 (1-2), 54-63. 

 
Schweizer, J., Jamieson J.B., 2003. Snowpack 

properties for snow profile analysis. Cold 
Reg. Sci. Technol., 37, 233-241. 

 
Schweizer, J., 2002. The Rutschblock test- 

Procedure and application in Switzerland. 
The Avalanche Review, 20(5), 1, 14-15. 

 
Schweizer, J., Lütschg, M., 2001. Characteristics 

of human-triggered avalanches. Cold Reg. 
Sci. Technol., 33, 147-162. 

 
Sturm, M., Johnson, J., Holmgren, J., 2004. 

Variations in the mechanical properties of 
arctic and subarctic snow at local (1-m) to 
regional (100-km) scales. Proceedings of 
the International Symposium on Snow 
Monitoring and Avalanches (ISSMA-
2004), Manali, India, pp. 233-238. 

 
Winkler, K., Schweizer, J., 2008. Comparison of 

different snow stability tests including the 
Extended Column Test. Proceedings of 
the Int. Snow Science Workshop, Whistler 
BC, CAN (this issue). 

International Snow Science Workshop

Whistler 2008 436


	8126.pdf



