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ABSTRACT: Snow avalanches are a major natural hazard in mountainous areas, posing a significant risk to
lives and infrastructure. Knowing the location, frequency, and magnitude of past snow avalanche occurrences
is vital to mitigate these risks. Avalanche mapping is therefore critical in risk mitigation. Previous research has
explored various techniques to automate snow avalanche mapping from remote sensing sources, including
satellite synthetic aperture radar (SAR), optical airborne, and satellite imagery. However, employing historical
optical data sources for full snow avalanche delineation has received less attention. These datasets, created in
the analog era, could shed light on the patterns of past avalanche activity. The winter of 1999 in the European
Alps is notable for its significant avalanche activity with extreme avalanche runouts. It is well documented
through aerial images covering over 12,000 square kilometers in the Swiss Alps and neighboring Austria.
Our study leverages deep learning techniques to map the release, path, and deposition areas of visible snow
avalanches in these historical images. Building upon previous work in deep learning for automated mapping
with optical SPOT 6/7 satellite imagery, we have applied an avalanche segmentation model to historical data.
The model is based on a convolutional neural network and relies on digital elevation data and orthorectified
optical imagery to produce a pixel-level binary snow avalanche segmentation mask. This task requires the
adaption of the methods, originally developed and trained on multi-spectral satellite data, for application on
grey-scale data, a problem referred to as a domain gap. We do this by augmenting the historical training set
with contemporary samples. The contemporary data is transformed to match the target data domain using a
Generative Adversarial Network and coupled with the historical data to train the model. We also offer insights
into the estimated uncertainty associated with labels and predictions, serving as a resource for future dataset
users. Our research shows how cutting-edge mapping techniques can be adapted to historical imagery.
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1. INTRODUCTION

Snow avalanches (hereafter referred to as
avalanches) are recognized as one of the most
imposing natural hazards in mountainous envi-
ronments. They pose significant risks to roads,
houses, and other infrastructure in alpine regions.
Understanding where and under what conditions
they occur is crucial in mitigating the potential
damage they may cause. In particular for hazard
mapping and the design of permanent mitigation
measures, it is important to understand the extent
and impact pressures of past events. Mapping
avalanches’ spatial and temporal distribution is
therefore of high importance. Among large histor-
ical events that have shaped the development of
avalanche planning in the European Alps is the
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extreme winter of 1999. Extraordinary amounts
of snowfall lead to very high avalanche activity
affecting large areas of Switzerland, neighboring
France, and Austria. Especially characteristic
of this event were the large avalanche runouts
which blocked transportation lines and damaged
buildings. The most destructive avalanches were
documented through field observations, visually
identifying the avalanches from their starting
points to the deposits and mapping the outlines.
Approximately 1200 destructive avalanches were
identified. Aerial photography with the Wild RC30
surveying camera, at a 1:30’000 image scale, was
used to capture the areas most affected by these
avalanches (EISLF, 2000). However, a complete
inventory of the avalanches from these images
was never produced. This key information could
prove invaluable as a reference for future planning.
Remote sensing makes otherwise unreachable
areas attainable. It avoids sending a field observer
into risky terrain and allows large-scale data acqui-
sition. Tested measurement systems for large-scale
mapping include optical, multi-spectral, or radar
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instruments mounted on satellites, airplanes, and
unmanned aerial vehicles (UAVs) (e.g., Eckerstorfer
et al., 2016; Frauenfelder et al., 2012). Avalanches
are mapped pixel by pixel from post-processed and
georeferenced raster data. This detailed detection
and mapping process remains time-consuming and
challenging, requiring many hours of manual work
from experts. Automating this process in various
types of remote sensing data has been attempted
with classical machine learning approaches (Bühler
et al., 2009; Lato et al., 2012; Korzeniowska et al.,
2017) and more recently using deep learning
approaches. Deep learning-based approaches
have shown remarkable success in tasks similar
to avalanche mapping, such as identifying land
cover types, estimating snow cover, and mapping
forests (Zhao et al., 2023; Montginoux et al., 2023;
Nguyen et al., 2022). Despite this, its application
in avalanche mapping remains relatively new. A
key challenge is the limited availability of large,
high-fidelity, and accurate datasets. The technique
relies on large amounts of data for neural networks
to implicitly learn correct classifications. So far,
most work in applying deep learning to avalanche
mapping has focused on the use of Synthetic
Aperture Radar (SAR) (Waldeland et al., 2018; Eck-
erstorfer et al., 2019; Bianchi et al., 2021). These
methods showcase the feasibility of automated
avalanche segmentation, but applications on SAR
data do not necessarily translate well to optical
imagery. For deep learning approaches using
optical imagery we can refer to Hafner et al. (2022).
Here they use 1.5 m spatial resolution SPOT 6/7
- Satellite pour l’Observation de la Terre - satellite
images coupled with elevation data for large-scale
avalanche mapping. They relied on a large set
of manually mapped avalanches (Hafner et al.,
2021) for supervised training and model validation.
Finally, they compare the model predictions to man-
ual mapping performed by five experts and show
that in terms of F1-score, the model predictions are
comparable to agreement between experts. Often
the limiting factor in training deep learning models
is the amount of available labeled data. Recent
advances in generative model frameworks have
made it possible to produce more data from existing
datasets. Among these generative models, there is
a class of framework called Generative Adversarial
Network (GAN) (Goodfellow et al., 2014). These
models consist of two neural networks that are
trained simultaneously through adversarial learn-
ing. Synthetic data produced through unpaired
image-to-image translation has proven successful
in training deep learning models (Radford et al.,
2015; Karras et al., 2019).

We use the model proposed by Hafner et al. (2022)
to map avalanches in aerial imagery from the ex-
treme avalanche winter of 1999. The direct appli-

cation is however not feasible, as the SPOT satel-
lite imagery and the 1999 aerial imagery are too
dissimilar (domain gap problem). Consequently,
the model requires training with manually annotated
avalanches from corresponding 1999 images. We
increase the amount of available training data by
employing a Cycle Generative Adversarial Network
(CycleGAN) (Zhu et al., 2017) to make the SPOT
imagery look like the 1999 imagery. We evaluate re-
sults, compare them to previous work, examine the
reproducibility of the manually mapped avalanches
from 1999, and discuss the potential and limitations
of using a CycleGAN to artificially enlarge the train-
ing data.

2. DATA AND METHODOLOGY

2.1 Data

2.1.1 Avalanche period
The avalanche winter of 1999 resulted from 30 days
of heavy precipitation, strong northwesterly winds,
and cold air temperatures between the 27th of Jan-
uary and the 25th of February. New snow accumu-
lation reached 500 cm in some areas, more than
the expected amount in a whole season. The snow
arrived in three distinct waves, each followed by in-
creased and widespread avalanche activity. For the
first time since its introduction in 1993, the highest
European avalanche danger level, ’very high’, was
used for an extended time period (6 days; for details
see EISLF, 2000).

2.1.2 Aerial Images
To document these events, aerial flights were con-
ducted by the Swiss Federal Office of Topography
(swisstopo), on 25.02, 27.02, and 01.03.1999 be-
tween 10:30 and 15:30. All images were captured
with a Wild RC30 Aerial Film Camera on black and
white emulsion (Geosystems, 2000). Photographs
of 23 cm×23 cm were produced with an 80% over-
lap in the direction of flight at a 1:30’000 scale. swis-
stopo later digitized these images with a high-quality
aerial image scanner at a scan resolution of 14 µm
(1814 dpi; for details see swisstopo, 2024). The digi-
tized dataset was oriented with automated matching
between the images (Tie Points) and toward a digital
reference (Ground Control Points). These matches
were filtered and used in a Bundle Block Adjustment
to produce the global solution. The absolute accu-
racy of the orthorectified 8-bit mosaic with 0.5 m
spatial resolution reaches approximately 1 m and
the relative accuracy is in the sub-pixel range (for
details see Heisig and Simmen, 2021).

2.1.3 Digital Terrain Model
The location of an avalanche and its path are depen-
dent and constrained by the terrain. Therefore we
use a digital terrain model (DTM) as additional in-
put data. We use the snow-free 2019 swissALTI3D
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2 m resolution DTM (swisstopo, 2019). It offers a
0.5 m vertical accuracy in areas below 2000 m el-
evation (Light Detection and Ranging (LiDAR) mea-
surements), and a 1 to 3 m vertical accuracy in ar-
eas above this elevation (LiDAR or photogramme-
try).

2.1.4 Manual Annotations
We use manually mapped avalanches (labels) to
train the machine learning model and to assess its
performance. For manual mapping we follow the an-
notation procedure described in Hafner et al. (2021).
The mapping is performed by an expert from the
Institute for Snow and Avalanche Research (SLF),
who has extensive experience with using GIS soft-
ware to map avalanches in optical orthorectified im-
agery. In total, we map 3597 avalanches in an area
of about 2300 km2. The mapped avalanches cover
300 km2, roughly 13%, of the area captured by
aerial imagery. Furthermore, we analyze the repro-
ducibility of the annotations on the 1999 dataset by
asking 5 participants to map all visible avalanches
in 44.8 km2 around the village of Kunkels, GR,
Switzerland. We compare the pairwise F1-score be-
tween annotators and calculate the mean F1-score
to evaluate the general agreement. We evaluate the
agreement between the model and the manual map-
pers by comparing model results to the manually
identified avalanches.

2.1.5 Synthetic data
In this section, we aim to leverage the dataset
from Hafner et al. (2021) for avalanche detection
in SPOT imagery to help us train a model for de-
tecting avalanches in the 1999 images. We’ll re-
fer to the SPOT data as the source data and the
1999 imagery as the target data. Our goal is to
develop a network or generator that can map the
source data to closely resemble the target data, en-
abling us to use the SPOT labels for training an
avalanche detector on the 1999 imagery. This task
is made more challenging due to the differences
between both modalities: the source data has a
1.5-meter resolution with four channels (RGB-NIR),
while the target data has a higher 0.5-meter reso-
lution but only a single grayscale channel. To ad-
dress this, we upsample the lower-resolution SPOT
2018 data by a factor of 3 using bilinear interpola-
tion. To bridge the gap between these two modal-
ities, we will use CycleGAN, a type of GAN de-
signed for unpaired image translation when match-
ing image pairs are not available for learning the
transformation between the two domains. Cycle-
GAN consists of two generators and two discrimina-
tors. One generator (G ) transforms images from the
source domain (SPOT 2018 data) to the target do-
main (1999 imagery), while the other generator (F )
performs the reverse, converting images from the

Figure 1: Example of input data from the three different data
sources. Each image shows the same 1 km2 patch with the
overlayed mapped avalanches. The top image stems from the
1999 dataset, the middle is from the SPOT 2018, and the bottom
shows the same SPOT 2018 data after transformation with our
CycleGAN.

target domain back to the source domain. Corre-
spondingly, there are two discriminators: one (DT )
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that distinguishes between real target domain im-
ages and those generated by G , and another (DS )
that differentiates between real source domain im-
ages and those generated by F . The cyclic loss in
CycleGAN, at a high level, ensures consistency by
requiring that after G transforms a source image to
the target domain, F can accurately reconstruct the
original source image. This loss, calculated by com-
paring the original and reconstructed images, helps
maintain the data’s core characteristics during trans-
formation. The same process is applied in reverse to
ensure consistency when converting from the target
domain back to the source domain. We create ap-
proximately 4800 km2 worth of synthetic data cover-
ing the Canton of Valais in Switzerland. This adds
4643 manually mapped avalanches to our dataset.

2.2 Model and methodology

For learning avalanche segmentation, we use a
model specifically designed for this task by Hafner
et al. (2022). This convolutional neural network
(CNN) is a modified version of the DeepLabV3+ ar-
chitecture developed by (Chen et al., 2018), with
one of the key modifications being the inclusion of
deformable convolutional kernels (for details see
Hafner et al., 2022). Our dataset is separated
into exclusive training, validation, and test sets in
three different configurations, where the 80-10-10
proportionality between the datasets is maintained.
Training, validation, and testing are performed on
all three configurations to eliminate regional biases.
We report average numbers for each component.
The main evaluation of our model performance is
conducted on the test dataset spanning approxi-
mately 300 km2. The area incorporates different
terrains and types and sizes of avalanches. To turn
the model outputs into binary predictions we choose
a threshold value of 0.5. Only the training data is
augmented with synthetic data, whereas validation
and testing are only performed on real 1999 im-
ages. The model is trained on single-channel op-
tical images together with the DTM, which are con-
catenated along the channel dimension. The data is
standardized, and samples are selected from ”rep-
resentative points” within known avalanche areas,
with a minimum distance between these points to
prevent excessive data redundancy. Additionally,
we included an equal number of negative samples
from areas without avalanches to balance the train-
ing data. We minimize the binary cross-entropy
(BCE) loss function, measuring the dissimilarity be-
tween the predictions and the true labels, to train
our model. Weights are updated using an Adam
optimizer with a learning rate of 1e−4 and a multi-
step learning rate scheduler. The model is fed sam-
ples in batches of 6, and gradients are accumulated
over 8 steps before backpropagation to virtually in-
crease the batch size to 48. Additionally, we bilin-

Experiment F1-score Precision Recall
Synthetic 2018 0.303 0.394 0.361
Aerial 1999 0.406 0.525 0.388
Combined 0.451 0.570 0.430

Table 1: Averaged test results for the three experiments. The first
row represents training on synthetic data only. The second row
results from training without synthetic data. The third row is the
combination of the two datasets in training.

early downsample the input images by a factor of
two, effectively creating patches with a 1 m resolu-
tion. This allows for a larger geographical context
per patch while limiting the computational and GPU
memory costs. We assess our model’s performance
on the test set using precision, recall, and F1-score
for the avalanche class. These metrics are based
on categorizing pixel-wise predictions into true pos-
itives, TP, true negatives, TN, false positives, FP,
and false negatives, FN, (for details see Story and
Congalton, 1986). Their definitions are given in
equations (1)–(3).

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1-score = 2 ×
precision × recall
precision + recall

(3)

3. RESULTS

3.1 Test predictions

Our model achieves an average F1-score of 0.451,
with a precision of 0.570 and a recall of 0.430 (see
Tab. 1). The lower recall value indicates a large
number of missed avalanche pixels. We qualitatively
identify most false negatives in the avalanche re-
lease area (see Fig. 2). These areas are often hard
to distinguish visually because of the weak textures
in the images. The snow in these parts is mostly
smooth. False positives on the other hand mainly
occur at high elevations, in patches around summits
and cliffs.

3.2 Ablations

To evaluate the effect of including the synthetic data
in the training process we run experiments where
we train on synthetic data only and without any syn-
thetic data, and compare the performance to the
combined dataset. These comparisons are run af-
ter hyper-parameter tuning which determines what
training parameters provide the best results on the
validation dataset. As for the predictions, we run
three parallel experiments with different training, val-
idation, and test dataset combinations to reduce
bias. The numbers presented here are the aver-
age scores on the test set and are summarized in
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Figure 2: A selection of model predictions on test set. The first column shows the input images. The second column shows the avalanche
tracks, with ”estimated” avalanches in orange and ”created” avalanches in red (for definition see Hafner et al. (2021)). The third column
shows raw model outputs. The prediction certainties range from 0 (black), no avalanche, to 1 (white), avalanche. The fourth column
shows the predictions thresholded at 0.5.

Tab. 1. Training on synthetic data produces the low-
est scores overall. Precision and recall values are
similar, suggesting no pronounced bias towards er-
rors of commission or omission. Switching to the
1999 data for training we see a large performance
increase. Here, as for the combined experiment,
precision is significantly higher than the recall, sug-
gesting significant errors of omission. Combining
the two produces the best scores, but the difference
is smaller than between the two other experiments.

3.3 Manual mapping study

To assess the consistency among different label-
ers, we compared their avalanche annotations us-
ing pairwise F1-scores. The results reveal signif-
icant variability, with F1-scores ranging from 0.29
to 0.58, and an average of 0.42. This indicates
that mapping avalanches in our dataset is challeng-
ing, with moderate to low agreement among partic-
ipants. Visually, it is evident that while most partic-
ipants consistently identify and map avalanches in
the same regions (Fig. 3), there is considerable dis-

agreement regarding the precise boundaries. The
highest agreement is observed in the lower sec-
tions of the identified avalanches, whereas the most
significant discrepancies occur at the highest eleva-
tions. When comparing the model and the manual
labelers by treating the model predictions as a 6th
mapper the pairwise F1-scores fall between 0.288
and 0.504, with a mean of 0.406. The calculated
agreement is similar but slightly lower than the aver-
age between participants. The precision (min 0.184,
max 0.629, mean 0.389) and recall (min 0.339, max
0.696, mean 0.531) suggest that the model tends
to over-predict avalanches and produces false posi-
tives. By visually comparing the predictions, we see
that the model typically maps the deposition areas
well, whereas the release areas are missed. Addi-
tionally, the model maps some smaller avalanches
in areas where no participant has mapped any.

4. DISCUSSION

Our study demonstrates that the machine learn-
ing algorithm can learn to recognize and segment
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Figure 3: Heat map illustrating agreement on the manual mapping study-area. The darker the hue, the greater the agreement between
the five participants (relative area per agreement class in parenthesis).

avalanches in the historical aerial images from
1999. Additionally, we demonstrate that enlarging
the training data with synthetic images improves
performance. While the model does not perfectly
replicate the training mappings, it achieves a level
of agreement with human mappers that is compa-
rable to the agreement observed among the map-
pers themselves. We observe that the model mostly
makes mistakes by omitting avalanche release ar-
eas. These parts of the avalanches present fewer
visual and textural features. Additionally, many
avalanches have been snowed on, which would
more effectively cover the smoother features of the
release areas compared to deposition areas. This
is likely the reason why the model performs better
on avalanche deposits where the textures are much
more visible. Because the input data are single-
band images, the model can only learn from dif-
ferences in pixel values making textures vital. The
model also tends to predict avalanches in areas
where there are none. This occurs primarily in ter-
rain with the right slope angle, suggesting that the
model has learned how to interpret the terrain. Be-
cause the release area may look texturally ambigu-
ous it is expected that the model has a harder time

learning to segment this properly. The ambiguity
and lack of clear textural cues in many release ar-
eas appears to confuse the model, resulting in a
higher likelihood of false positives. The input data
used to train the model for avalanche segmentation
presents several challenges that directly impact the
model’s performance and learning capabilities. One
significant factor are the heavy snowfalls that pre-
ceded the image acquisition, making it difficult to
clearly identify certain avalanches in the data. This
is supported by the lower number of ”well-visible”
avalanches in the 1999 dataset (for details see
Hafner et al., 2021), compared to the avalanches
mapped in the SPOT 2018 data (6% in 1999 ver-
sus 33% in 2018), likely due to snow coverage.
The reduced visibility of these avalanches limits the
availability of clear labels, which affects the model’s
ability to generalize well, especially in identifying
less apparent avalanche features. This issue might
be exacerbated by the training data suffering from
lower radiometric resolution and is limited to single-
spectral imagery. The lack of spectral richness re-
stricts the amount of information the model can ex-
tract, making it harder to distinguish between dif-
ferent types of terrain and snow conditions. Higher
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spectral diversity and resolution could potentially of-
fer more detailed cues that are critical for segmen-
tation tasks like this one. Another interesting ob-
servation is that the model appears to learn useful
features from the DTM. This is despite the use of
data that was collected two decades later and dur-
ing the summer months, meaning the DTM repre-
sents summer elevations rather than the winter ter-
rain when avalanches occur. The temporal discrep-
ancy does not seem to pose a significant problem
for model learning because the exact elevations are
not critical. Instead, the model seems to leverage
the general topographical structure, which remains
relatively consistent over time, to better infer poten-
tial avalanche zones. In the manual mapping study
we show how even among manual mappers there
is large disagreement. Similar studies compar-
ing manual mappings also find significant disagree-
ment (Hafner et al., 2021, 2023), though our values
suggest that the 1999 dataset is particularly prone to
disagreement. This further supports the thesis that
the avalanches in the 1999 dataset are particularly
hard to detect. For example, certain poorly visible
avalanches are completely omitted by most partici-
pants. Still, most mappers agree on the presence of
an avalanche, with most mapped avalanches being
mapped by all participants. Yet the strong disagree-
ment concerns the exact outlines. The disagree-
ment is particularly strong in the release area and
tends to decrease in the deposition. As discussed
above, this likely results from deposits being better
visible. This finding is different from the study con-
ducted on manual mappings in SPOT data (Hafner
et al., 2021), where the largest differences seemed
to stem from lighting conditions. Comparing model
predictions to agreement between manual mappers,
we see that the model’s variability in accuracy mim-
ics agreement between manual mappers. A lot of
the uncertainty in avalanche mapping stems from
lack of strong agreement between experts, and by
consequence a standard way to map avalanches.
These uncertainties are propagated into the model
because we use manually mapped labels for train-
ing. This issue highlights the core challenge of com-
pletely automated avalanche mapping. Our abla-
tion study reveals that while the use of synthetic
data had a positive effect on model predictions, its
impact was somewhat limited. One key limitation
stems from the lack of optimized CycleGAN train-
ing, as our methodology does not ensure that the
synthetic data is specifically tailored for the intended
task. The quality of the synthetic data was primar-
ily evaluated visually and through the observed im-
provement in model validation performance. How-
ever, training CycleGAN models can be challeng-
ing, as it requires strategies to align the learned
transformations with segmentation improvements.
One approach we could have implemented is us-

ing avalanche labels during training as a consis-
tency check. Additionally, backpropagating the seg-
mentation model’s loss to guide the CycleGAN train-
ing process would have been another potential en-
hancement. Lastly, there is more annotated SPOT
2018 data available. Transforming this data would
likely result in moderate improvement, although we
believe the bottle neck lies with optimization. Due
to the inherent uncertainties in the labels and model
predictions, we recommend manual corrections to
ensure the quality of the avalanche segmentation
map before making the data available to practition-
ers.

5. CONCLUSION AND OUTLOOK

We adapted an existing algorithm to map
avalanches in panchromatic aerial images from
the avalanche winter of 1999. Because deep
learning methods need large annotated training
datasets, we used synthetically generated sam-
ples in combination with 1999 samples to train
our model. The study revealed that the use of
synthetic data increased model performance. Our
experiments show that the approach reaches good
performance with an F1-score in the range of
agreement between manual mappers. The model
has higher accuracy for avalanche deposits but
lower reliability in release areas. This is reflected in
the results of the manual mapping study. The lack
of strong agreement between experts fuelled by
the absence of a standard way to map avalanches,
causes uncertainty in the model since training
relies on manual labels. Further research into this
topic could explore using annotations from several
experts, and the combination of these to teach
the model to focus on features experts agree on.
Furthermore, we see potential in further exploring
synthetic data to find the best configuration for
training our model. We consider efficient and
effective strategies to transform existing data into
new domains, like the one we proposed, as essen-
tial for automatically retrieving information in less
explored, less annotated datasets. In conclusion,
our study is an important step towards automatic
avalanche mapping from historical aerial imagery.
We believe the expansion of training sets with
synthetic imagery will make automation feasible
for further data where the lack of annotations cur-
rently impedes automation. Our manual mapping
study underscores the complexities of avalanche
segmentation and adds another puzzle piece in this
critical area. The insights gained from this work
have the potential to significantly improve our under-
standing and management of avalanche hazards,
paving the way for safer mountain environments.
=======================================
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