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ABSTRACT: Public avalanche forecasters in Canada increasingly rely on snowpack models to aug-
ment manual observations for avalanche hazard assessments, but several studies have recently 
demonstrated that precipitation inputs are one of the key sources of uncertainty in snowpack simula-
tions. To address this challenge, this study evaluates the impact of precipitation data from four different 
sources—the Canadian High-Resolution Deterministic Prediction System (HRDPS), an operational ad-
justment to HRDPS by Avalanche Canada (AvCan), the operational HRDPS-Canadian Precipitation 
Analysis System (CaPA), and a new experimental version of CaPA (CaPA-Exp)—on snowpack simu-
lations at 28 weather stations across western Canada over three winter seasons (2020-2022). For each 
station, we compare the snowpack structure of a reference simulation constrained by daily observed 
snowpack height with simulations driven by the four different precipitation data sources. To make these 
comparisons, we compute relative differences in snowpack height, differences in the prevalence of key 
grain types, and differences in the number of simulated weak layers to describe the snowpack structure. 
Linear mixed effects regression models are then used to explore the effect of precipitation data source, 
season, season period, and region on these performance measures. Our results show that simulations 
with all four precipitation data sources overestimate HS when compared to the reference simulations, 
but the CaPA-Exp analysis product is generally closest to the reference. However, regional differences 
exist, and CaPA-Exp is not always the best choice. The results of this study can help Canadian ava-
lanche forecasters better understand the strengths and weaknesses of different precipitation products 
for snowpack simulations. 
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1. INTRODUCTION 

In recent years, avalanche forecasters have tran-
sitioned from relying exclusively on field observa-
tions for their avalanche hazard assessments to 
increasingly incorporating snowpack simulations 
into forecasting practices. These simulations are 
produced by numerical models that simulate the 
physical characteristics of the seasonal snow-
pack throughout the winter based on input data 
from meteorological observations or numerical 
weather prediction (NWP) models (Herla et al., 
2022; Morin et al., 2020). Globally, the most com-
monly used snowpack models include the Swiss 
SNOWPACK (Lehning et al., 1999), and the 
French Crocus (Brun et al., 1989; Vionnet et al., 
2012), but SnowGrid (Olefs et al., 2013) is also 
utilized in specific regions of Austria (Morin et al., 
2020). Since avalanche conditions can vary sub-
stantially across space and time (Schweizer et al., 
2008), these models can help forecasters under-
stand regional snowpack conditions and assess 
avalanche hazard in locations and/or times with 
limited information (Herla et al., 2022; Morin et al., 
2020).  

Snowpack simulations inherently include uncer-
tainties from a variety of sources including the ac-
curacy and reliability of meteorological inputs, the 
spatial representativeness of the input data, as 
well as the numerical representation of physical 
processes in the models (i.e., model parameteri-
zations) (Morin et al., 2020). Various recent stud-
ies have identified precipitation input as a major 
source of uncertainty in snowpack modelling and 
examined its impact. Horton and Haegeli (2022), 
for example, compared snow depths predicted by 
the weather–snowpack model chain of Avalanche 
Canada with data from automated and manual 
observations to assess the impact of precipitation 
inputs on model accuracy. The study found sub-
stantial differences in how the model performed 
in different mountain ranges with snow depth be-
ing overpredicted in the Coast range and under-
predicted in many parts of the interior Rocky 
Mountains. An examination of the snowpack sim-
ulations in the different ranges showed that the 
impacts errors were more severe in the Rocky 
Mountains where faceting is more sensitive to 
snow depth. Raleigh et al. (2015) explored how 
forcing errors impact snow variable simulations 
and concluded that models are most sensitive to 
bias errors. Furthermore, Ritcher et al. (2020) 
found that the simulated stability of weak layers in 
simulations is highly sensitive to precipitation er-
rors. 
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Possible solutions for addressing the issue of pre-
cipitation input errors include incorporating more 
accurate precipitation products, which is what we 
will explore in this paper, or using an ensemble 
approach to derive a more broadly supported pre-
cipitation estimate and explicitly quantify the as-
sociated uncertainty. 

Environment and Climate Change Canada 
(ECCC) currently has several operational deter-
ministic precipitation products suitable for snow-
pack modelling. They include the High-Resolution 
Deterministic Prediction System (HRDPS), the 
operational NWP model run by the Canadian Me-
teorological Centre on a 2.5 km horizontal grid 
(Milbrandt et al., 2016), and the HRDSP-Cana-
dian Precipitation Analysis System (CaPA), which 
combines the HRDPS precipitation output with 
observations from weather stations, weather ra-
dars and satellites to create the best possible es-
timate of the precipitation field (Mahfouf et al., 
2007; Fortin et al., 2018). While CaPA has been 
validated and optimized for the flat regions of the 
Canadian Prairies (e.g., Boluwade et al., 2018; 
Lespinas et al., 2015; Zhao, 2013), it has known 
weaknesses in mountainous regions due to low 
number of available relevant stations and various 
algorithmic challenges (Carrera et al., 2010; 
Fortin et al., 2018; Schirmer and Jamieson, 2015; 
Madore et al., 2023). These shortcomings make 
it difficult to use CaPA for driving snowpack sim-
ulations for operational avalanche forecasting in 
western Canada.  

To address the challenges, Horton and Haegeli 
(2022) created a method to scale the HRDPS pre-
cipitation values based on differences of modeled 
and observed weekly changes in the height of the 
snowpack (HS), and Madore et al., (2023) devel-
oped a new experimental version of CaPA that 
takes advantage of additional automated obser-
vation networks relevant for avalanche forecast-
ing in western Canada.  

Together, this results in four related but distinct 
precipitation fields: 1) the original HRDPS, 2) the 
operational adjustments to the HRDPS values im-
plemented in Avalanche Canada’s operational 
snowpack model chain (AvCan), 3) the opera-
tional version of CaPA, and 4) the experimental 
version of CaPA (CaPA-Exp). While there is a 
considerable body of research evaluating the 
quality of HRDPS and CaPA predictions including 
some avalanche-motivated studies focusing on 
HS (see earlier references), but to our knowledge, 
there has not been any validation studies that ex-
amine the other two precipitation products 
(CaPA-Exp and AvCan) and provide a more com-
prehensive perspective on the impact of the dif-
ferent precipitation fields on the structure of the 
simulated snowpack that is so important for ava-
lanche forecasting. 

The objective of this study is to complement the 
existing research by developing an approach for 
examining the impacts of the four precipitation 
products on HS and the structure of the simulated 
snowpack. The results of our study help to create 
a better awareness of the strengths and weak-
nesses of the different precipitation products on 
regional-scale snowpack simulations in western 
Canada. 

2. METHODS 

Widespread, continuous direct snow profile ob-
servations would be the ideal dataset for examin-
ing how well snowpack simulations driven by 
different precipitation products reflect reality. 
However, since such datasets do not exist in 
western Canada, we approached our research 
question by computing reference simulations at a 
network of stations with hourly observations of 
HS. By forcing the height of the simulated snow-
pack to match the observed, we produce our best 
possible guess of the snowpack structure based 
on the actual precipitation at a given location. The 
simulations using the different precipitation prod-
ucts can then be compared against these refer-
ence simulations. While the use of a simulated 
reference might seem suboptimal initially, it actu-
ally helps to completely isolate the effect of the 
precipitation product and eliminate any other 
sources that result in differences between simu-
lated and observed snowpacks. 

2.1 Study location and data sources 

Our study area encompassed the mountainous 
regions of southwestern Canada, characterized 
by the maritime Coast Mountains, the continental 
Rocky Mountains, and the transitional Columbia 
Mountains (Fig. 1). Each of these mountain 
ranges has distinct geographical features, storm 
patterns, and snow and avalanche climates 
(Shandro & Haegeli, 2018). Our study period in-
cluded three winter seasons (2019/20 to 
2021/22), each starting on September 1 and end-
ing on May 15.  

Our dataset for the reference simulations con-
sisted of observed hourly HS observations from 
28 suitable British Columbia (26) and Alberta (2) 
automated snow weather stations (Fig. 1). Our in-
clusion criteria required the stations to be within 
600 vertical m of the local treeline elevation (Hor-
ton and Haegeli, 2022), less than 400 vertical m 
away from the closest HRDPS grid point, have at 
least 250 days of observation per winter, and data 
gaps needed to be shorter than 40 days. If we 
ended up with multiple stations within a single Av-
alanche Canada forecast subregion (Buhler et al., 
2023), we only included the highest one to avoid 
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redundancy and ensure a more even representa-
tion across the study area.  

 

Figure 1: Map of southwestern Canada showing study area with study sites grouped by analysis regions 
as indicated by colored dots. Background polygons show avalanche forecast regions grouped by main 
mountain ranges (Coast range: yellow; Columbia Mountains: green; Rocky Mountains: orange). 

Avalanche Canada provided the HRDPS and 
AvCan datasets from their data archive. The op-
erational adjustment of the HRDPS precipitation 
values in the operational snowpack model chain 
developed by Horton and Haegeli (2022) scales 
the HRDPS values based on differences of mod-
eled and observed weekly changes in HS. If dif-
ferences at a site exceed 10%, the local hourly 
precipitation amounts from the HRDPS for the 
last week are scaled to produce the observed 
change in HS.  

CaPA and CaPA-Exp data was provided by Alex-
andre Langlois’ research team at the University of 
Sherbrooke. While CaPA only uses ECCC’s own 
proprietary network of weather sites, the CaPA-
Exp precipitation values are further corrected by 
incorporating weather observations from addi-
tional third-party networks relevant for avalanche 
forecasting in western Canada including Ka-
nanaskis Country (n = 5), Parks Canada (n = 17), 
British Columbia Ministry of Transportation and 
Infrastructure (n = 110), and Glacier National 
Park (n = 5). 

2.2 Snowpack simulations 

We used SNOWPACK version 3.4.5 (Lehning et 
al., 1999) to simulate the evolution of the sea-
sonal snowpack at the 28 station locations in two 
different ways: precipitation product-specific and 
reference simulations. Whereas air temperature, 
relative humidity, wind speed, and incoming 
shortwave and longwave radiation were sourced 
from HRDPS for all simulations, the precipitation 
data was simulation specific. CaPA and CaPA-
Exp precipitation data was resampled from 24-
hour to hourly values using the same relative tim-
ings as the HRPDS hourly data. Uniform flat-field 
settings were applied at all study station loca-
tions. Lapse rate corrections were applied to ad-
just precipitation, air temperature, and relative 
humidity values from the model grid point eleva-
tion to match the elevation of the corresponding 
weather station using the downscaling methods 
described by Thornton et al. (1997). Seasonal 
simulations started on Sept 1, when the ground 
was assumed to be snow free and ran until May 
1 of the following year. To maintain stability in 
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snow height during simulation, wind transport and 
erosion were deliberately disabled. 

Reference simulations were generated using 
lapse-rate corrected hourly precipitation values 
(PSUM) from the HRDPS, but to ensure con-
sistency with the observed height of the snow-
pack at the station, the SNOWPACK parameter 
ENFORCE_MEASURED_ 
SNOW_HEIGHTS was set to TRUE, forcing 
SNOWPACK to match the measured HS and rep-
resent the amount and properties of new snow 
accumulation more accurately. 

2.3 Data analysis 

To examine differences in snowpack height and 
structure of the simulations with different precipi-
tation products, we calculated several perfor-
mance indicators in relation to the reference 
simulation: 

• The relative difference in HS, 

• Differences in the proportion of key grain 
types within the snowpack: rounded grains 
(RG); faceted crystals and depth hour (FC & 
DH); melt-freeze crusts and ice formations 
(MFcr & IF), 

• Differences in unstable layer counts for spe-
cific grain types: non-persistent layers (PP, 
DF & RG); persistent layers (FC, DH & SH). 

To make the results from deep and shallow snow-
pack areas more comparable, we chose to com-
pute relative differences in HS compared to 
absolute differences, which we used in all other 
comparisons. 

Each performance indicator was computed for all 
simulation types and seasons for a select subset 
of dates (1 and 15 of each month from Oct. 1 to 
May 1). Thinning the dataset this way substan-
tially reduced the issue of autocorrelations, de-
creased redundancies, and made the analysis of 
the extensive dataset more efficient. 

Once the performance indicators were calcu-
lated, we used linear mixed effects regression 
models to isolate and examine the biases of the 
different sources of precipitation data on the 
snowpack simulations. The regression approach 
allowed us to isolate the effect of the source of 
precipitation data from other potential factors af-
fecting the quality of the simulations, and the ran-
dom effects enabled us to properly account for 
the hierarchical structure of our dataset.  

We conducted our entire analysis in R (version 
4.2.3; R Core Team, 2024) and used the lmer 
function of the lme4 package (Bates et al., 2015) 
to estimate the linear mixed effects models for 

each performance indicator. We started the anal-
ysis for each performance indicator by regressing 
the difference to the reference simulation against 
the following categorical predictor variables: sea-
son, season period, analysis region, and source 
of precipitation data. Season included the cate-
gorical values 2020, 2021, and 2022, and the lev-
els of the season period predictor were ‘Early 
season’ (Oct. 1 to Dec. 15), ‘Main season’ (Dec. 
16 to Mar. 15), and ‘Late season’ (Mar. 16 to May 
1). To account for regional differences in our anal-
ysis, we divided the 28 stations included in our 
study into nine distinct analysis regions (Fig. 1) 
based on spatial distribution and operational ex-
perience. Please note that the regions ‘North 
Rockies’ and ‘Central Rockies’ only include one 
station each (Pine Pass and Sunshine Village re-
spectively). The final predictor variable included 
in the regression analyses was the source of the 
precipitation data which included the levels 
‘HRDPS’, ‘AvCan’, ‘CaPA’, and ‘CaPA-Exp’. To 
understand the performance of the different 
sources of precipitation data in more detail, we 
also included its interaction effects with all other 
predictor variables when we estimated the re-
gression parameters for the first time. Date and 
station were included as random effects to ac-
count for the repeated measures and address po-
tential correlations within groups. 

Since the values of the relative difference in HS 
is bound at the lower end by -100% (means there 
is no snow in the simulation at all while the refer-
ence simulation has a snowpack), we added 1 
and log-transformed the values to produce a 
more normally distributed dependent variable for 
the regression analysis. All other performance in-
dicators exhibited normal distributions centered 
around zero and were included in the regression 
analysis without any pre-processing.  

To evaluate the contributions of the fixed effects, 
we calculated Type II Wald chi-squared tests us-
ing the Anova function of the car package (Fox & 
Weisberg, 2019). Only significant variables and 
interactions (p-values < 0.05) were kept in each 
iteration of the model development. For evaluat-
ing the performance of the final model, we used 
the check_model function from the performance 
package (Lüdecke et al., 2021) and visually 
checked for issues. Furthermore, we employed 
the compare_performance function from the 
same package to calculate the conditional and 
marginal R² values for the final models. 

To visualize the results of our regression anal-
yses, we used functions from the effects (Fox, 
2003) and sjPlot (Lüdecke, 2023) packages to 
produce effects plots. These plots illustrate the ef-
fect of a particular predictor variable on the de-
pendent variable averaged across all other 
predictor variables. 
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3. RESULTS 

After starting our regression analysis for the rela-
tive difference in HS with all possible predictor 
variables and their interactions with the source of 
the precipitation data, our final model only in-
cluded season period, source of precipitation 
data, region and the interaction between region 
and source of precipitation data (Table 1). While 
the main effect of region was not significant itself, 
we retained it in the model due to the significant 
associated interaction effect. Season and all 
other interactions did not emerge as significant 
contributors. 

Across the entire dataset, HS was overestimated 
in the simulations by +11% relative to the refer-
ence simulations (i.e., observed HS) as indicated 
by the significantly positive intercept (p-
value < 0.001). However, several additional pat-
terns emerged. 

Table 1: Type II Wald Chi-Squared test statistics 
for significant variables and interactions (IA) in the 
final regression model for relative differences in 
HS (Df: degrees of freedom). 

Variable Test statistic Df p-value 

Season period 28.8 2 < 0.001 

Source of precip. data 24.8 3 < 0.001 

Region 9.2 8 0.328 

Interaction of Region-Source 
of precipitation data 

73.1 24 < 0.001 

The parameter estimates for season period show 
that HS is generally overpredicted in the main and 
late season by an average of +15% and +16% 
relative to the reference simulation (Fig. 2, left 
panel). The overprediction is significantly higher 
(+24%) in the early season when the snowpack is 
shallower, and the same absolute differences in 
HS result in larger relative differences. The fact 

that none of the confidence intervals cross the 
zero line shows that the average bias relative to 
the reference simulation is statistically significant 
in all season periods. The insignificance of the in-
teraction effect between season period and 
sources of precipitation data indicates that this 
seasonal pattern applies to all four simulations, 
and there are no substantial differences between 
them.  

The significance of the main effect for source of 
precipitation data shows that there are statisti-
cally significant differences in how the simulations 
with the four different data sources perform 
(Fig. 2, central panel). When everything else is 
controlled for, HRDPS overpredicted HS by +17% 
relative to the reference simulations, AvCan over-
predicted by +20%, CaPA by +21%, and CaPA-
Exp by +14%. Therefore, CaPA-Exp is closest to 
the reference simulations, but the overprediction 
bias is still significant as shown by the confidence 
interval that does not cross the zero line. 

The right panel of Fig. 2 illustrates the combined 
effect of source of precipitation data, analysis re-
gion and their interaction effect. Looking at the 
general regional pattern, we can observe that in 
the Coast Mountains, the predictions of HS from 
all sources are closest to the reference simula-
tions in the North Coast region, and the overpre-
diction increases as we go to the South Coast 
region and increases even further in the South 
Coast Inland region, where it is the highest in the 
entire dataset (ranges from +40% for HRDPS to 
+57% for CaPA).  

The North Rockies region is the only region where 
we see a substantial underprediction of HS 
(ranges from -32% for AvCan to -52% for CaPA-
Exp). However, it is important to note that this 
analysis region only includes a single study site 
(Pine Pass), which is also reflected in the large 
confidence intervals. 
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Figure 2: Effects plots for the main effect of season period (left panel), main effect of source of precipi-
tation data (center panel), and the combined main and interaction effects for source of precipitation data 
and analysis region (right panel) for relative difference in HS in relation to the reference simulations, 
which are represented by the horizontal dashed line at zero. Positive values indicate the simulations 
overpredict HS, whereas negative values represent underpredictions. Vertical lines represent the 95% 
confidence interval of the point estimates. Confidence intervals that do not cross the zero line indicate 
statistically significant biases and the chance that the simulations produce the same HS estimates as 
the reference simulation are less than 5%. The numbers in brackets in the region labels on the x-axis 
in the right panel represent the number of study sites included in each analysis region. 

Simulations of HS are generally very close to the 
reference simulation in the northern parts of the 
Columbia Mountains (North Cariboos and North 
Columbias), but we have consistent over predic-
tions of HS by all simulations in the South Colum-
bia and Kootenay-Boundary analysis regions. 
And finally, in the central Rocky Mountains re-
gion, the simulations with all four precipitation 
sources result in HS estimates around the refer-
ence simulation. However, this analysis region 
also only includes a single study site (Sunshine 
Village), and the presented estimates should be 
interpreted with caution.  

Overall, the pattern that CaPA-Exp produces 
lower HS estimates closest to the reference sim-
ulation holds for most analysis regions, but there 
are some notable exceptions. In the South Coast 
Inland region, HRDPS provides the best estimate 
for HS while CaPA-Exp still represents an im-
provement over CaPA. At the single study site in 
the North Rockies, the lower HS values produced 
by the CaPA-Exp exasperate the general under-
prediction of HS in this region. Another interesting 
outlier is the North Cariboo region, where HRDPS 
and AvCan produce HS values very close to the 
reference simulation, while CaPA and CaPA-Exp 
produce snowpacks that are too deep. At Sun-

shine Village, the only station in the Central Rock-
ies region, the difference between CaPA and 
CaPA-Exp is larger than in other regions, and 
CaPA-Exp produces the prediction furthest away 
from the reference simulation. At this study site, 
HRDPS provides the HS estimate closest to the 
reference simulation.  

It is worth noting that the confidence intervals in 
the right panel of Fig. 2 are relatively wide and 
many of them cross the zero line. This means that 
in most cases, we cannot infer from our analysis 
with 95% confidence that the deviations from the 
reference simulation apply to simulations with the 
different precipitation data sources in general. 
The only analysis region where the 95% confi-
dence intervals consistently do not cross the zero 
line is the South Coast Inland region. However, 
the magnitudes of the observed deviations are 
substantial in many analysis regions, and the con-
fidence intervals are heavily dependent on our 
sampling approach, which was rather conserva-
tive (i.e., included few samples). Hence, we rec-
ommend focusing on the point estimates and 
interpreting the confidence intervals with caution. 

While the described patterns are interesting and 
the overall variance captured by our model is 53% 
(conditional R2), it is important to note that only 
14% is captured by the included fixed effects 
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(marginal R2). This means that most of the cap-
tured variance is associated with the random ef-
fects of study site and to a much lesser degree 
date. This means that there are considerable var-
iations within the analysis regions presented in 
Fig. 2, and the observed regional patterns should 
not be applied to individual stations without fur-
ther analysis. However, since our focus is on re-
gional scale avalanche forecasting, we stayed 
with the regional analysis. 

The results of our regression analyses for snow-
pack structure (proportion of grain types and the 
number of unstable weak layers) closely follow 
the patterns of the HS deviations. In general, sim-
ulations that overpredict HS also have higher pro-
portions of rounded grains and higher numbers of 
unstable non-persistent weak layers relative to 
the reference simulation. Alternatively, simula-
tions that underpredict HS are generally associ-
ated with higher proportions of depth hoar or 
faceted crystals. A more detailed presentation of 
the results for the snowpack structure perfor-
mance indicators is beyond the scope of this 
ISSW paper, but interested readers are referred 
to Krawetz (in prep.) for more information. 

4. DISCUSSION 

Our analysis of simulated HS in western Canada 
generally aligns with those of the most recent 
studies evaluating the performance of different 
precipitation products in the context of avalanche 
forecasting. Horton and Haegeli (2022) con-
cluded that HRDPS overestimates HS in the 
Coast and Columbia Mountains, and underesti-
mates HS in the Rockies which is generally con-
sistent with our results. Our results show slight 
underestimations in the South Columbias, and 
estimations close to the reference in the North 
Coast and North Columbias. However, the results 
of our study do not align with the findings of Hor-
ton and Haegeli (2022) for the estimation of HS 
using the AvCan product. For the Coast Moun-
tains, the study reported a large reduction in pre-
cipitation, whereas we found a small increase in 
snowpack height for AvCan. In the North Colum-
bias, their study indicated a small reduction in 
precipitation, whereas our results showed a small 
increase. Additionally, for Kananaskis in the Cen-
tral Rockies, their study noted a large increase in 
precipitation, but our findings revealed a small de-
crease in underestimation in the North Rockies 
and a small increase in underestimation in the 
Central Rockies. The main reason for these dif-
ferences is the evolution of the adjustments in the 
AvCan product. Whereas Horton and Haegeli 
(2022) used fixed bias corrections, the version of 
AvCan used in this study employed conditional 
weekly corrections. Furthermore, the HS valida-
tion datasets used by Horton and Haegeli (2022) 

also included practitioner observations reported 
in the InfoEx, the daily information exchange 
among Canadian avalanche safety programs.  

Madore et al. (2023) concluded that CaPA and 
CaPA-Exp generally perform better than HRDPS, 
which only partially aligns with the findings of our 
study for HS. While CaPA-Exp performed the 
best overall, CaPA performed the worst overall, 
although very close to AvCan. However, despite 
the improvements, CaPA-Exp still overestimates 
HS. The findings from this study also show re-
gional differences in the performance of CaPA 
and CaPA-Exp, but these patterns should be in-
terpreted with caution due to the relatively low 
marginal R2. 

Finally, Schirmer and Jamieson (2015) used win-
ter precipitation data from CaPA and two NWP 
models, HRDPS and GEM15 through snow depth 
comparison of snow depth sensors and auto-
mated snow weather stations across western 
Canada. The study concluded that winter precip-
itation amounts were systematically underesti-
mated by NWP models, which is not consistent 
with the systematic overestimation of HS found in 
this study. While the authors acknowledge that 
their results were inconsistent with other studies 
in this field at that time, the use of different and 
older versions of weather models are likely addi-
tional reasons for the observed differences with 
the present study. 

While our analysis revealed some interesting re-
gional patterns, the relatively large differences 
between the conditional and marginal R2 highlight 
that much of the variance included in the data is 
associated with the random effect for study sites. 
Readers should therefore interpret the regional 
patterns with caution.  

5. CONCLUSION 

We employed a linear mixed effects regression 
analysis approach to simultaneously examine the 
biases of four different precipitation products on 
simulated HS at 28 study sites in western Canada 
where hourly HS observations are available. The 
simulations with all four precipitation data sources 
overestimate HS when compared to the refer-
ence simulations (i.e., observed HS), but CaPA-
Exp is generally closest to the reference. How-
ever, regional differences exist, and CaPA-Exp is 
not always the best choice.  

The results of this study can help Canadian ava-
lanche forecasters better understand the 
strengths and weaknesses of different precipita-
tion products for snowpack simulations. To pro-
vide deeper insight, future studies should 
examine the effects at smaller spatial scales in 
more detail. 
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