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ABSTRACT: Infrasound monitoring is an established technology for detecting and locating snow av-
alanches using array processing techniques.  Infrasound arrays are collections of three (or more) 
closely-spaced (10-20 m) sensors deployed in network configurations typically used for operational av-
alanche monitoring systems.  Multiple arrays are collectively used to both identify avalanche signals 
and map their progression over time.  Properly tuned networks of arrays, such as those operating in 
Little Cottonwood Canyon (Utah, USA), can be used to reliably identify avalanches with destructive 
indices as low as D2 and occurring at distances greater than 1 km from the sensors.  Arrays are used 
to identify signals as avalanches and also minimize false positive detections from other signals like 
munitions, vehicles, aircraft, and earthquakes.  An infrasound network dataset from Little Cottonwood 
Canyon spans three years of continuous records, starting in 2021-2023, and contains more than a 
thousand avalanche signals. 

A priority moving forward is to robustly identify avalanches using data from a single infrasound sensor.  
We are using the rich dataset from Little Cottonwood Canyon, and tens of thousands of avalanche 
signal windows, to train automated classifiers using speech recognition methodologies.  Our efforts are 
to identify the smallest possible feature variable space to reliably identify an avalanche signal and dis-
card non-interesting signals or noise.  We show that the use of machine learning techniques to classify 
avalanches may permit more rapid (real-time) identification of avalanches without the need to integrate 
multiple channels of data.   Although a single sensor is not capable of avalanche source localization it 
can be valuable for low-cost installations and mobile avalanche alert detection systems.   
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1. INTRODUCTION 
Snow avalanches produce infrasound (sound en-
ergy below 1 Hz), which can propagate long dis-
tance and be used as a remote sensing tool (e.g., 
Bedard et al., 1988).  Low bandwidth infrasound 
data recorded at ~100 Hz can then be used to de-
tect gravity driven mass wasting, including snow 
avalanches and these detections can be relayed 
to civil authorities using cell or radio telemetry 
(e.g., Marchetti et al., 2015; Marchetti & Johnson, 
2023).  Infrasound monitoring in Little Cotton-
wood Canyon (LCC), Utah has been operational 
since 2006 (Vyas et al., 2009), but recent im-
provements in hardware, telemetry and signal 
processing techniques have improved its func-
tionality as a monitoring tool.  Boise State Univer-
sity works to develop signal detection algorithms 
together with Boise-based industry partner Snow-
bound Solutions (e.g., Johnson et al., 2018; John-
son et al., 2021; Johnson et al., 2023).  Snow-
bound has developed a web interface tool that 
rapidly posts avalanche detections as alerts 
(https://snowboundsolutions.com).   

 
Figure 1 – Map of LCC in Utah and named slide paths 
near to the LCC infrasound network (red triangles). 
Black dashed line indicates the heavily trafficked high-
way U-210, which leads to Alta and Snowbird Ski re-
sorts.  Inset maps show detail of array element loca-
tions (grid spacing is 10 m).   
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Detection of events with low rates of false posi-
tives is a primary goal of operational infrasound 
avalanche monitoring systems at LCC and else-
where (e.g., Mayer et al., 2020).  Toward this end 
machine learning (ML) event classification using 
single-sensor waveform attributes (i.e., features) 
should be able to improve the robustness of ava-
lanche signal detection and also – potentially – 
allow single sensor infrasound recordings to be 
used to reliably detect infrasound.  Deep learning 
ML techniques have previously been applied to 
(non-avalanche) infrasound data for global and 
regional detection objectives [e.g., Bishop et al., 
2022].  In that promising study the classes were 
broadly grouped as transient, noise, moving 
sources, and persistent sources.  Here we use 
somewhat more flexible supervised classification 
to distinguish between noise, explosions, and av-
alanches using locally recorded infrasound data. 

Our avalanche detection system in LCC currently 
makes use of signal identification from a network 
of two arrays, with three elements each.  An ar-
ray, referred to as an infrasound station, has three 
or more spatially distributed infrasonic micro-
phones with inter-sensor spacing of about 15-20 
m.  A network of stations integrates two or more 
arrays separated by relatively large distances, 
which in the case of LCC is more than 500 m.  The 
network topology is optimized for sound source 
triangulation using back azimuth information from 
at least two arrays.  In LCC the network of three 
stations is located along the U-210 highway cor-
ridor (Figure 1).  This study makes use of station 
LCC2’s data to build a training dataset of ava-
lanche, and explosion signals following detection 
methods outlined in Johnson et al. (2023).  The 
model is then applied to LCC3 test data to vali-
date ML capabilities for single-sensor detections. 

2. METHODOLOGY 
An avalanche infrasound classifier begins with a 
training dataset used to build a model for signal 
identification.  In section 2.1 and 2.2 we briefly 
summarize a technique to identify signal using ar-
ray processing [Johnson et al., 2024] and then 
assign it a label as either explosion or avalanche.  
Signal feature extraction is then implemented us-
ing established audio feature libraries and used 
to test various ML models as described in section 
2.3.  Finally in section 2.4, the best model is then 
tested with independent data for which class la-
bels are known.     

2.1 Signal Identification Using Arrays 
Snow avalanche signals are identifiable using 
cross correlation analysis of infrasound data rec-
orded on spatially separated microphones.  
Waveforms in LCC are recorded with a 100 Hz 
sample rate and with GPS precision timing.  Com-
parison of signals on three different sensor pairs 
(for three channels of data) are quantified as 
cross-correlation functions applied to finite over-
lapping time windows (5 or 10 s) with 1 s time 
steps.  These cross-correlation functions can be 
displayed graphically as heat maps with hot col-
ors indicating high correlation (Figure 2).  Such 
correlograms can then be visually inspected to 
identify snow avalanches based upon extended 
duration (>20 s) signals and (often) shifting peak 
cross correlation lag times that indicate a moving 
source whose infrasound back azimuth changes 
over time [e.g., Marchetti & Johnson, 2023]. 

For any time window the signal consistency may 
be calculated as the sum of lag times Δ𝑡 for all 
three sensor pairs.  Consistent cross correlation 
lags mean that 𝐶 = |Δ𝑡!" + Δ𝑡#! + Δ𝑡"#| ⟶ 0.  

Signal quality is also quantified as the average of 
the peak normalized cross correlation (r) for all 
three sensor pairs, e.g., 𝑟 = (r!" + r#! + r"#) 3⁄ . 

 
Figure 2- (>2 Hz) signal from three infrasound chan-
nels and cross-correlation correlograms for an event 
recorded on LCC2 in 2023. Cross-correlation matrices 
(bottom) show comparisons of infrasound data from 
the three distinct pairs for overlapping 5 s windows.  
Y-axes indicate time delays (or lags) of sensor com-
parisons. (reproduced from Johnson et al., 2023)   
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Deterministic classifications can be accomplished 
using 𝐶(𝑡) and 𝑟(𝑡).  For a full day’s worth of data 
each data window for a three-element array has 
its own consistency and average maximum 
cross-correlation coefficient.  These may be plot-
ted as a two-dimensional histogram whose bar 
heights correspond to the number of data points 
in each bin (figure 3).   
Figure 3 (left) – 24-hour signal-versus-noise classifi-
cation using array processing parameters for 10 s 
overlapping windows with 1 s time steps. (top) 2D his-
togram showing the distribution of time windows as a 
function of consistency and normalized cross correla-
tion coefficients. (bottom) four classes assigned on 
the basis of consistency and maximum cross correla-
tion features.  High signal quality events are further 
analyzed to build training dataset of explosions and 
avalanches.   

2.2 Labeling and Signal Feature Extraction  
We arbitrarily define classes for the processed ar-
ray data as signal (red or orange in Figure 2) if 
consistency is less than or equal to 5 samples 
(𝐶 ≤0.05 s) and if average cross-correlation is 
also greater than 𝑟 ≥	0.2.  High quality signal cor-
responds to 𝐶 ≤ 0.05 s and  𝑟 ≥ 0.8.  Those time 
windows representing 13% of all data from 
LCC2023 on April 4, 2023 are subsequently used 
to train the model for either explosion or ava-
lanche designation.  Noise is another class label 
identified by poor consistency (𝐶 ≥ 0.25 s) as well 
as low correlation (𝑟 ≤ 0.5).  Ambiguous signals 

(blue in Figure 2; class=0) and low-correlation 
consistent ‘signal’ (red in Figure 2; class=1) are 
not used in our model training.  Instead, we limit 
our classification in this study to those time win-
dows with either high quality signal (explosion or 
avalanche) and definite noise.  Candidate explo-
sion and avalanche signals are initially picked au-
tomatically by calculating peak cross correlations 
over both short (10 s) and longer (30 s) time win-
dows.  Correlation duration is an effective crite-
rion for differentiating snow avalanches, which 
are extended duration in time, from explosions, 
which are manifested as short (~1 s) transient in-
frasound pulses.

 

 
Figure 4 – 24-hour record showing training dataset candidate classifications for high quality signal (class #2 in 
Figure 3).  (a) correlation analyses plotted as a function of time of day and time lag (y-axis) using 10 s windows 
and 1 s time steps.  (b) long-duration classifications correspond to 30 second running average of maximum 
cross-correlation values from panel a.  (c) short-duration classifications show 10 s maximum value cross correla-
tions.  Blue and red arrows indicate peak values of r>0.7 and are displayed in Figures 5 and 6. 
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Figure 5 – 120-s time windows for automatically-picked long-duration detections (from Figure 5) using the LCC2 
array.  Waveforms are shown from channel 1 of LLC2 (left) as well as channel 1 of LCC3 (right), which was not 
used to find events.  Events manually identified as definite avalanches, according to waveform envelope are indi-
cated by ‘ava’. 

 

2.3 Feature Extraction:  

Windowed events are identified as explosion sig-
nal (class = 4) or avalanche signal (class = 5) 
based upon whether they are short-duration or 
long-duration and consistent with highly corre-
lated signal.  This processing identifies candidate 
events well, but additional manual validation is 
still needed to identify signals.   

For instance, out of the 23 candidate avalanche 
signals shown in Figure 6, only 16 were identified 
as definite avalanche based upon visual inspec-
tion.  These waveforms are from channel 1 and 
from the two different arrays separated by ~500 
m.  Signals reveal signal similarities, in terms of 
waveform envelope, but they have differing am-
plitudes and signal-to-noise quality.  Of the 46 
candidate explosion waveforms in Figure 6, 14 
are discarded based following visual inspection 
and non-identification of short impulsive transi-
ents. 

 
Figure 6 (right) – 40-s time windows for automatically 
picked short-duration detections (from Figure 4) using 
array processing applied to LCC2.  Waveforms are 
shown from channel 1 of LLC2 (left) and channel 1 of 
LCC3 (right).  Those events visually labeled as explo-
sions are indicated by ‘exp’.  
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The training dataset for one day thus consists of 
32 explosions and 16 avalanches.  Because each 
data point is a 10 s window (and avalanches are 
generally 30 to 60 s in duration) we are able to 
train our model with 21 overlapping time windows 
such that there are 336 avalanche data points.  
Similarly, we use 7 overlapping time windows to 
train the explosion class such that there are 224 
data points corresponding to 32 identified explo-
sions. These events are in addition to the 11,271 
data windows labeled as noise from Figure 3.  

Each time window of 10 seconds (or 1000 sam-
ples) is then quantified in terms of a 54-dimension 
feature space.  We borrow from feature space 
metrics used in audio voice identification ML in 
identifying the most relevant features.  We make 
use of MATLAB’s audioFeatureExtractor recog-
nizing that infrasound is simply sound signals of 
low frequency and presumably can be similarly 
characterized using a similar number of samples 
(10 s = 1000 samples).  A thousand samples is 
similar to the data length used in audio recogni-
tion.  The feature space explored in this study 
consists of those variables shown in Table 1. 

 

Feature name #values MRMR rank 

mfcc (cepstral frequencies) 1-13 12 (#3), 5 (#8) 

mfcc derivative  14-26 14 (#2), 20 (#7) 

gtcc (gammatone frequencies) 27-39 30 (#1),39,35,33,37 

spectralCentroid 40  

spectralCrest 41  

spectralDecrease 42  

spectralEntropy 43  

spectralFlatness 44  

spectralFlux 45  

spectralKurtosis 46  

spectralRolloffPoint 47  

spectralSkewness 48  

spectralSlope 49  

spectralSpread 50  

pitch 51 51 (#9) 

harmonicRatio 52  

zerocrossrate 53  

shortTimeEnergy 54  

Features shown in Table 1 are defined in 
MATLAB’s documentation at https://www.math-
works.com/help/audio/ref/audiofeatureextrac-
tor.html. These features, alternatively known as 
predictors, are used to train the ML models along 
with class designations, known as responses.  In 
this work response is limited to noise, explosions, 
and avalanches. 

2.4 Avalanche Classification:  
MATLAB’s classificationLearner is used to deter-
mine the best classifier model along with feature 
optimization.  Accuracy was initially estimated us-
ing all 54 features and for models including Fine 
Tree, Linear Discriminant, Naïve Bayes, Linear 
Support Vector Machine, Nearest Neighbor, and 
Narrow Neural Network models.  Validation gave 
accuracies between 97.1% for Naïve Bayes and 
99.8% for Nearest Neighbor.  These ‘worst’ and 
‘best’ confusion matrices are shown in Figure 7. 

 

 
Figure 7 – Example confusion matrices for two differ-
ent models using all 54 features.  The fine KNN model 
offers the best predictors of class.  In these matrices 
class 3 corresponds to ‘noise’, class 4 is explosions, 
and class 5 corresponds to avalanche windows. 
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The KNN model appears best and is further analyzed 
to see how accuracy changes by limiting the feature 
space.  Feature importance scores are estimated us-
ing the MRMR algorithm in the classificationLearner 
application, which allows ranking of relevant predic-
tors.  The top ten features are indicated in Table 1.  
Using only these features the resulting confusion ma-
trix (with an accuracy of 99.6%) is shown in Figure 8.  
True positive rates (TPRs) are 99.4% for avalanches 
and 85.3% for explosions while False Discovery 
Rates (FDRs) are 5.4% and 2.9% for explosions and 
avalanches respectively. 
 
Figure 8 (right) – Confusion matrix for fine KNN model 
using only the ten most important features indicated in 
Table 1.  Here class 3 is ‘noise’, class 4 is explosions, 
and class 5 corresponds to avalanche windows. 

  
. 

 
Figure 9 – 24-hour record showing classification detections using array LCC2 ch1 (training dataset; black) and 
LCC3 ch1 (test dataset; blue) identifying avalanche class events.  Each line is one hour of data.  Avalanche clas-
sifications have been convolved with a 30-s running mean for visualization purposes.  Numeric values corre-
spond to waveforms numbering shown in Figure 5.  
 

3. RESULTS 
While it is reassuring that simple KNN models us-
ing only ten features can be used to fit the training 
data well, a true test of the model must be applied 
to labeled data that were not part of the training 
process.  Because the model was developed us-
ing data collected exclusively at LCC2 we are 
able to validate model efficacy using data rec-
orded on any of the channels of the LCC3 array.  
Utilizing the ten most important features for all 
86,391 time windows (i.e., ~1 day with 10 s 

windows, and 1 s steps) we attempt to classify all 
events as noise, explosions, or avalanches.   

For visualization purposes explosion detections 
and avalanche detections are plotted in two sep-
arate graphs (see Figures 9 and 10) along with 
classifications results using the same model and 
the original training data.  The ML classification 
appears to do a commendable job at finding both 
explosions and avalanches in the LCC3 wave-
form data that were ‘heard’ at station LCC2.  This 
demonstrates the general capability of identifying 
avalanches and explosions using a single 
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isolated sensor.  It is noteworthy that avalanches 
detected at LCC2 were also well recorded at 
LCC3 using only waveform features.  Black num-
bered ‘events’, which were considered ambigu-
ous as avalanche signals, are also picked using 
the ML model while some additional events (e.g., 
at 3:04 and 21:10), that were not found in the de-
terministic modeling appear to be actual ava-
lanches upon visual inspection.  This last obser-
vation is particularly exciting because it suggests 
optimistically that audio feature extraction using 

single channel infrasound data might be able to 
identify otherwise obscured avalanches.   

Explosion detection results (Figure 10) are also 
promising.  The classifier appears to identify al-
most all the explosions that were classified as ex-
plosions on LCC2.  Only events 15, 17, 30, and 
38 were not detected on LCC3.  It remains to be 
seen if those events were not picked because 
they were diminished in signal-to-noise due to 
ambient noise or distance-to-source differences.

 

 
Figure 10 – 24-hour record showing classification detections using array LCC2 ch1 (training dataset; black) and 
LCC3 ch1 (test dataset; red) identifying explosion class events.  Explosion classifications have been convolved 
with a 10-s running mean for visualization. Numbered values correspond to waveforms shown in Figure 6.  
 
 

4. CONCLUSION AND NEXT STEPS 
It is unsurprising that infrasonic records can be 
classified using audio features, which are used 
extensively and successfully in the voice recogni-
tion community.  It is also exciting that a basic ML 
KNN classifier appears to do such a good job of 
finding avalanches and explosion signals using a 
relatively small amount of training data.  Moving 
forward additional testing is necessary.  First, we 
plan to apply the detection algorithm to the full av-
alanche season in 2023, which includes many 
hundreds of confirmed snow avalanches.  We 
also wish to expand the signal class designations 
to include other types of infrasound signal such 
as vehicular traffic (e.g., cars, trucks, planes, and 
helicopters) because we suspect that some of the 
classified explosions are erroneous.   

 

We also intend to expand the training dataset by 
including additional time windows and more sen-
sor data.  The LCC network consists of 9 contin-
uous data feeds and all 9 channels can and 
should be used for training purposes.  Finally, all 
results presented here correspond to data from a 
single day.  Moving forward we plan to use data 
from an entire season.  By increasing the number 
of channels of data and making use of the full 
2023 season we estimate we can build a future 
model using more than 10,000 avalanche and ex-
plosion signal data points in the training data.  Ap-
plying an improved model to infrasonic data col-
lected outside of LCC will be a final confirmation 
of its utility.  The ultimate goal of using a single 
channel of infrasound to identify avalanches is 
possible although arrays will still have their place 
for those seeking to determine back azimuth. 
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