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ABSTRACT: In recent years, the integration of physical snowpack models coupled with machine-learning
techniques has become more prevalent in public avalanche forecasting. When combined with spatial inter-
polation methods, these approaches enable fully data- and model-driven predictions of snowpack stability or
avalanche danger at any given location. This prompts the question: Are such highly detailed spatial model pre-
dictions sufficiently accurate for operational use? To explore this, we assess the performance of interpolated,
model-based predictions of snowpack stability and avalanche danger, comparing them to human-generated
public avalanche forecasts during the 2023/2024 winter season in Switzerland. To do so, we compare human
forecasts and model predictions for locations in avalanche terrain (considering coordinates, aspect, elevation)
where skiers triggered avalanches (244 events) or which were skied but where no avalanche was triggered
(non-events, 3173 data points from GPX tracks). While this data reflects human behavior to some extent, we
consider the event ratio as a proxy for the probability of avalanche release due to human load. We observed
that with increasing model-predicted danger level or decreasing model-predicted snowpack stability, the event
ratio increased. Comparing model predictions with human-made forecasts showed that the predictive per-
formance of two operationally used models was similar to the performance of human avalanche forecasts:
both predicted a strong increase in the probability of human-triggered avalanches. In summary, our results
indicate that models capture regional patterns of snowpack (in)stability or avalanche danger well, and that
these model chains should therefore be systematically integrated in the forecasting process.
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1. INTRODUCTION

In recent years, the use of physical snowpack mod-
els combined with machine-learning techniques has
increased in public avalanche forecasting. These
model combinations predict snowpack properties,
snow instability, avalanche problems, or avalanche
danger (e.g., Mayer et al., 2022, 2023; Reuter et al.,
2022; Pérez-Guillén et al., 2022). While forecast-
ing chains have been used for many years, as for
instance SAFRAN-Crocus-MEPRA in France (Du-
rand et al., 1999), through the coupling of numerical
weather predictions models with physically-based
snowpack models, it is now possible to run sim-
ulations at much higher spatial and temporal res-
olutions than those at which forecasters typically
operate. Moreover, by using geo-statistical inter-
polation methods, it is possible to obtain predic-
tions for arbitrary points in space and time. Given
the currently rapidly evolving suite of models and
related applications, and the promising feedback
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following live-testing in forecast settings (e.g., van
Herwijnen et al., 2023; Horton et al., 2024; Win-
kler et al., 2024), the question is warranted: are
(high-resolution) model predictions ”good enough”
to complement or even replace those produced by
professional forecasters? Before we can answer
this question, however, we must first define a bench-
mark which such model-driven forecasts must reach
to be considered ”good enough”? We define this
benchmark through the use of traditional, primarily
human-made public avalanche forecasts. We deem
model-driven forecasts to be adequate when they
independently reach a similar quality in predicting
avalanche danger or snowpack stability as those
produced by an expert team.

Public avalanche danger scales are based on the
notion that both the probability of avalanche release
- described by triggering level and number of poten-
tial triggering locations - and the size of avalanches
increase with increasing avalanche danger (levels)
(e.g., EAWS, 2021; avalanche.org, 2024). Given
the challenges in validating avalanche forecasts in
general, we focus on evaluating the expected in-
crease in the likelihood of avalanches with increas-
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ing danger level or decreasing snowpack stabil-
ity. To compare models and human forecasts on
objective data, we utilize data representing events
(human-triggered avalanches) and a proxy for non-
events (GPX tracks obtained while backcountry
touring) from the 2023/2024 avalanche forecasting
season in Switzerland. We therefore aim at an-
swering two questions: (1) Is the expected increase
in the number of locations susceptible to human-
triggering of avalanches predicted by spatially inter-
polated model predictions? and (2) Do fully data-
and model-driven predictions achieve performances
comparable to human-made avalanche forecasts?

2. DATA

2.1. Model predictions

In Switzerland, a network of automated weather sta-
tions (AWS) provides half-hourly or hourly measure-
ments of meteorological conditions (i.e., tempera-
ture, wind speed and direction, humidity, radiation)
and snow depth (SLF, 2024). Most of these stations
are located at the elevation of potential avalanche
release areas. Using this data as input, the physics-
based snow-cover model SNOWPACK (e.g., Lehn-
ing et al., 1999) simulates the snow cover evolution
at 3-hour intervals for flat terrain and for four virtual
slopes (North, East, South, West) with a slope an-
gle of 38° at the locations of some 147 automated
weather stations, providing nowcast simulations. In
forecast-mode, snow cover simulations are initial-
ized using the most recent nowcast simulations.
Forecast simulations are driven using the COSMO-
1 numerical weather prediction model (NWP) with
1 km resolution as input (COSMO = Consortium
for Small-scale Modeling, website) providing snow
cover simulations up to 27 hours ahead with a tem-
poral resolution of three hours.

Recently, several machine-learning models have
been developed, which use SNOWPACK simula-
tions and meteorological data as input for differing
target outputs. Here, we introduce the danger-level
and instability models used in this study. These
models provided real-time predictions during the
forecasting season 2023/2024 in Switzerland.

The danger-level model was trained with a large
data set of quality-checked danger levels spanning
more than 20 years (Pérez-Guillén et al., 2022). A
random-forest classifier (Breiman, 2001) uses 30
features, describing both meteorological conditions
(24-hour averaged values) and snow-cover proper-
ties simulated with the SNOWPACK model. The
classifier predicts the probabilities (Pr) for four of
the five avalanche danger levels (1 (low) to 4 (high);
danger level 5 (very high) is too rare to predict) .

The instability model assesses snow-cover sim-
ulations provided by the SNOWPACK model with

regard to potential instability related to human-
triggering of avalanches (Mayer et al., 2022). A
random-forest model uses six variables describing
the potential weak layer and the overlying slab to
predict the probability that a snow layer is poten-
tially unstable. The output probability ranges from
0 (a layer was classified as stable by all the trees) to
1 (classified as unstable by all trees). All simulated
layers are assessed using this procedure. In the
setup used for forecasting, the layer with the high-
est probability of instability (Prinstab) is determined
for each simulated snow profile and considered as
decisive to characterize this profile, as suggested
by Mayer et al. (2022).

For the purpose of this analysis, we relied ex-
clusively on model predictions in forecast-mode as
calculated in real-time during the forecasting sea-
son and available at 15.00 local time (LT), the time
when forecasters meet to discuss and produce the
forecast for the following day. From the forecast-
predictions, we extracted the prediction valid for the
following day at 12.00 LT. We used the predictions
of the instability model and the danger-level model
for the four slope aspects. For the instability model,
we used Prinstab as described before, for the danger-
level model, we used the probability that the dan-
ger level was 3 (considerable) or higher (the sum of
PrD=3 and PrD=4), referred to as PrD≥3. We opted
for PrD≥3 rather than the predicted danger level, as
this permitted analyzing the model in a similar way
to the instability model, at the cost of a slight loss in
discrimination power for avalanche conditions rep-
resenting danger levels 1 (low) and 2 (moderate).

As we relied on real-time model predictions, in
some cases data were missing. Moreover, due to
a re-engineering of the data-model pipeline, predic-
tions for the danger-level model in forecast-mode
were only available from February 2024 onwards.

2.2. Avalanche forecast

We extracted the forecast danger level (D) and as-
sociated sub-level qualifier (s, combined Ds) sum-
marizing the severity of avalanche conditions re-
lated to dry-snow avalanches together with the in-
dicated elevation threshold and aspect range from
the avalanche forecast published by WSL Institute
for Snow and Avalanches SLF (SLF) at 17.00 local
time (LT), and valid until 17.00 LT the following day.
For danger level 1 (low), no sub-level is available.

The sub-levels have been in use since 2017 (in-
ternally) and since Dec 2022 they have been pub-
lished in the Swiss forecast (Lucas et al., 2023).
Using sub-levels allows closer tracking of expected
conditions compared to danger levels. On aver-
age, a higher forecast sub-level is generally related
to more locations susceptible to avalanche release
and to more avalanches of larger size (Techel et al.,
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Figure 1: GPX points and human-triggered avalanches (back-
country touring).

2022).

2.3. Verification data: events and non-events

For this analysis, we used human-triggered
avalanches – representing events, and points of
GPX tracks in avalanche terrain – considered as
non-events from the forecasting season 2023/2024
in Switzerland.

The GPX tracks were collected on
www.skitourenguru.ch (website), where users
can upload GPX tracks and have them rated
with regard to avalanche risk (Schmudlach and
Eisenhut, 2024). 928 different tracks, including
time stamps, were uploaded during the winter
of 2023/2024. Since we consider it unlikely that
tracks were uploaded if people were involved in
avalanches, we treat these tracks as proxies for
non-events. Following post-processing of the GPX
tracks – described in detail in Winkler et al. (2021)
and Degraeuwe et al. (2024), this data set contains
in total about 850’000 points. Following largely
the criteria used by Degraeuwe et al. (2024), we
extracted points if they were at a distance from
controlled ski runs of ≥ 200 m, if they were at an
elevation ≥ 1600 m and in potential avalanche
terrain, defined by the maximum slope angle within
70 m distance (for details: Schmudlach, 2022,
p. 10) being ≥ 30°. Lastly, in order to avoid
auto-correlation, consecutive points from the same
track had to be ≥ 200 m apart. The resulting data
set comprised 3173 points in avalanche terrain
representing backcountry touring activities.

From SLF’s operational avalanche data-base, we
extracted human-triggered dry avalanches, which
were size 2 or larger, or in which at least one person
was caught. As for the GPX tracks, we removed
avalanches close to controlled ski runs. This re-
sulted in 244 human-triggered avalanches.

3. METHODS

3.1. Spatial interpolation

We used regression kriging (Hengl et al., 2007) to
spatially interpolate the point predictions from the
location of the AWS to the locations of events and
non-events. In addition, we set Pr = 0 for lo-
cations, for which observers provided an aspect-
specific threshold of the snow line as this is the el-
evation below which avalanche release is not possi-
ble.

Some events or non-events were recorded on
North-East, South-East, South-West or North-West
aspects. To obtain interpolations for these points,
we calculated the respective mean of the Pr-values,
i.e., for North-East we calculated the mean of the
North and East predictions.

3.2. Benchmark: the Swiss avalanche forecast

We used the forecasts as published in the Swiss
avalanche bulletin (Section 2.2) as our benchmark
for comparison. To do so, we checked whether a
point (event or non-event) was within the elevation
and aspect range as indicated in the bulletin. If this
was the case, we assigned the forecast Ds to this
point. If this was not the case, we applied the 1-
level rule, subtracting one level from Ds published
in the forecast. The 1-level rule is a rule-of-thumb,
which has proven reliable to estimate the severity
of avalanche conditions outside the indicated as-
pect and elevation range (SLF, 2023; Winkler et al.,
2021). This adjusted danger rating is referred to as
D∗s . For the purpose of this analysis, we set D∗s = 1
for cases, when the adjusted D∗s < 1.

3.3. Analysis

We first determined whether the spatially-
interpolated model output showed an increase
in the probability of avalanche occurrence with
increasing model-predicted probability. To do so,
we binned the model-predicted probabilities (Pr)
in bins of width 0.1. For each bin, we counted the
number of non-events (nEv), in our case GPX track
points, and events (Ev). Using these, we calculated
the event ratio R

Rm,i =
N(Ev)m,i

N(Ev)m,i + N(nEv)m,i
, (1)

where N(Ev)m,i (N(nEv)m,i) is the number of events
(non-events) in each bin i, and for each model m.

To allow a comparison with our benchmark fore-
cast, the combination of danger level and sub-level
(Ds) interpreted using the 1-level rule (D∗s , Section
2.2), we created bins of equal size. We thus ensured
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that the comparisons between human-made fore-
casts and model predictions reflected the underlying
patterns without being distorted by differences in the
size of the respective groups. To obtain bins con-
taining an equal number of data points for human-
made forecasts and for model predictions, we first
ordered the model-predicted probabilities from low-
est to highest. To assign them to bins that were of
equal size as the corresponding D∗s -subsets, we de-
rived the respective Pr-thresholds for each bin. For
example, in the subset containing the predictions
for the instability model, the sub-level proportions
for the three lowest sub-levels were D∗s = 1 (low):
40.9%, D∗s = 2−: 18.0%, and D∗s = 2=: 17.8%.
Applying these percentiles to the ordered probabili-
ties of the instability model resulted in thresholds for
these three classes of Prinstab = [0, 0.266] → bin 1,
Prinstab = (0.266, 0.459] → bin 2, and Prinstab =

(0.459, 0.710] → bin 3. Consequently, after splitting
the model predictions using these thresholds, the
bins contained the same proportion of data points as
D∗s = 1 (low) , D∗s = 2-, and D∗s = 2=. For higher sub-
levels, we proceeded in the same way. In a second
step, applying the same thresholds, we calculated
the number N of nEv and Ev falling into each bin.
Similar to before, we then calculated the event ratio
Rm,i.

For visualisation purposes, we derived a relative
ratio RR, by normalizing individual Rm,i-values using
the overall base rate event ratio Rm, defined as

Rm =
N(Ev)m

N(Ev)m + N(nEv)m
(2)

This allows to calculate the normalized relative ratio
as

RRm,i =
Rm,i

Rm
. (3)

Finally, we compared R-values for human forecasts
and model predictions using a Chi-Square test. In
addition, we derived the median of the factors F de-
scribing the increase in R for two consecutive bins
(i.e., from bin 1 to bin 2, or from 1 (low) to 2-). In
other words, we evaluated how well sub-levels (D∗s)
and model predictions discriminate on average be-
tween neighbouring bins/sub-levels.

4. RESULTS

Before comparing model predictions and human
forecasts, we first analyzed whether models predict
the expected increase in potential triggering loca-
tions.

Backcountry touring activity (non-events), as ob-
served using GPX tracks, was highest when the
danger-level model predicted low probabilities for
D ≥ 3 (considerable) (PrD≥3) and was lowest
when PrD≥3 ≈ 1 (Figure 2a). Patterns for the
instability model were similar, though much less

pronounced. The distribution of events (human-
triggered avalanches) showed opposite patterns
with fewer events at low Pr-values, and increas-
ingly more events with increasing Pr (Figure 2b).
This increase was much stronger for the instabil-
ity model compared to the danger-level model. For
both models, probabilities were significantly higher
when events occurred compared to non-events (p <
0.001, Wilcoxon rank-sum test). For example, the
median PrD≥3 was 0.14 for non-events indicating
that the danger-level model would have predicted ei-
ther a danger level 1 (low) or 2 (moderate), while
for events, the median PrD≥3 was 0.58, suggest-
ing a tendency to danger level 3 (considerable) or
even 4 (high). Large differences in the distributions
were also observed for the instability model, with
Prinstab = 0.77 for events and Prinstab = 0.36 for non-
events.

The opposing trends seen for non-events and
events indicate that the model-predicted probabili-
ties captured the expected increasing frequency of
(potential) triggering locations. This was confirmed
when calculating the event ratio R (Eq. 1). As can be
seen in Figure 2c, R increased strongly. Comparing
the ratios between the respective highest (Pr = 1)
and lowest (Pr = 0) bins shows that the ratio was
34 (danger-level model) and 24 (instability model)
times higher. Note, however, that this increase is
calculated by dividing with the R-value in the lowest
bin, and is thus highly sensitive to small variations in
the number of events. As the lowest bins are char-
acterized by low numbers of events, a single event
more or less will impact the calculated increase in R.
Therefore, these numbers are, at best, indicative.

Mayer et al. (2022) suggested thresholds to clas-
sify predictions by the instability model into predic-
tions indicating stability (Prinstab < 0.5), potential
instability (Prinstab ≥ 0.77), and potential instability
but with a high false-alarm rate (Pr-values in be-
tween). Applying these thresholds, the event ra-
tio R for human-triggered avalanches was 5.1 times
higher when the model indicated potential instability
compared to the model predicting stable conditions,
and 2.4 times higher compared to the in-between
class.

To compare model predictions with the avalanche
bulletin, we assigned rank-ordered model-predicted
probabilities to bins containing equal proportions of
data points as recorded for the respective sub-level
distributions (see Section 3.3). As can be seen in
Figure 3, backcountry touring activity was highest
when conditions were favorable and decreased with
increasing forecast or model-predicted avalanche
danger or instability (Figure 3a, b). For example,
when conditions were forecast or predicted to be the
most favorable – corresponding to D∗s = 1 (low) or to
bin 1 for the models – about 40% of the GPX points
were recorded. In contrast, when avalanche danger

Proceedings, International Snow Science Workshop, Tromsø, Norway, 2024

34



0.14 0.36
0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Pr

P
ro

po
rt

io
n

model
danger level (1642 non−events)
instability (3173 non−events)

(a) Non−events

0.58 0.77
0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Pr

P
ro

po
rt

io
n

model
danger level (176 events)
instability (244 events)

(b) Events

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0
Pr

E
ve

nt
 r

at
io

 R

model
danger level
instability

(c) Event ratio R

Figure 2: Distribution of model-predicted probabilities Pr, for ten bins of width 0.1 for (a) non-events (GPX track points) and (b) events
(human-triggered avalanches). Shown are the proportion of data points in each bin. For each model, median Pr-values are shown for
non-events and events (value and vertical line). In (c), the event ratio R is shown.

Table 1: Median factor F describing the increase in the event ratio
R between consecutive bins in Figure 3e and f.

model/subset prediction F (median)
danger level model 1.82

bulletin 1.56
instability model 1.58

bulletin 1.75

was high – D∗s ≥ 3+ corresponding to bin 7 – activ-
ity was strongly reduced (≤ 1%). The distribution of
non-events was similar for models and human fore-
casts.

Turning to the distribution of human-triggered
avalanches during backcountry touring activities
shows that the number of events increased strongly
for the human forecast from D∗s = 1 (low) to D∗s = 3=,
but dropped drastically at D∗s ≥ 3+ (Figure 3d). In
contrast, the models showed the largest number of
events in bins 3 to 6, which would correspond to
D∗s = 2= to D∗s = 3= (Figure 3c). Similar to the
human forecast, the number of events is low(est) in
the highest bin.

Having information on locations, where
avalanches were triggered, and locations which
were skied but where (most likely) no avalanche
was triggered, allowed us to compare the relative
increase in the likelihood of human-triggering of
avalanches given a human forecast or a model pre-
diction (Figure 3e, f). Overall, models and bulletin
showed increasing relative ratios RR. The median
increase in R between consecutive bins was ap-
proximately similar for models and human forecast
(Table 1), as also confirmed by a Chi-Square test
(p > 0.05).

5. DISCUSSION

We analyzed the performance of two spatially-
interpolated models predicting the probability of

avalanche occurrence for human-triggering and
showed that increasing model-predicted probabili-
ties correlated positively and strongly with the event
ratio R (events to events plus non-events), which we
consider a proxy for the likelihood of avalanche trig-
gering by humans (Figure 2c). These results are
in line with Soland (in prep.), who explored spa-
tial predictions of the instability model in nowcast-
mode using a multi-year data set of GPX tracks and
human-triggered avalanches. For instance, Soland
obtained similar median values for the instability
model (non-events [2 years]: Prinstab ≈ 0.35, events
[4 years]: Prinstab ≈ 0.75).

Using a smaller number of classes as the three
stability classes proposed by Mayer et al. (2022)
for the instability model may ease interpretation of
model output, but resulted in a loss of discrimina-
tory power between conditions predicted as stable
and potentially unstable.

5.1. Limitations

For the purpose of this analysis, we assumed that
the 1-level rule is a good approximation to apply
the human-made avalanche forecast to locations
outside the aspects and elevations indicated in the
public avalanche forecast. Even though this rule-
of-thumb has been used for many years to apply
the bulletin to avalanche terrain during the plan-
ning phase of ski tours, there are likely better ap-
proaches, which reflect the more gradual – rather
than step-wise – increase of avalanche danger with
elevation and aspect (Winkler et al., 2021; De-
graeuwe et al., 2024). At the same time, for the
comparison of model predictions with human fore-
casts, we assigned rank-ordered, model-predicted
probabilities to bins equal in size to the proportion
of sub-levels. While this facilitated the comparison,
it possibly split model predictions in an unfavorable
way, potentially reducing discrimination capabilities
of model predictions.
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Figure 3: Comparing model predictions (left column) and avalanche forecast (right column). The distribution of non-events is shown at
the top, the distribution of events in the middle row. The lowest row shows the relative ratio, normalized using the base-rate proportion
of events. Note that the y-axis is log-transformed in (c). The analysis shows results for two models. To allow a meaningful comparison,
the avalanche forecast contains the same data subset as available for the respective models. Danger-level model: 176 events, 1642
non-events, instability model: 244 events, 3173 non-events.

Backcountry touring activity decreases with in-
creasing avalanche danger (level) (e.g., Techel
et al., 2015). At the same time, less avalanche ter-
rain is accessed on a tour at higher danger levels
(Winkler et al., 2021). Thus, the data on events
and non-events reflect adjustments in human be-
haviour due to forecast or encountered avalanche
conditions. In contrast to human forecasts, model
predictions remained unknown to forecast users.

5.2. Human vs machine

Keeping in mind the limitations related to the data
and methodology, the results suggest that human-
made forecasts and model predictions discriminate
similarly (well) between conditions considered to be
generally stable (i.e., D = 1 (low) or bin 1) and
those considered the most susceptible to human-
triggering of avalanches (i.e., D ≥ 3= or bin 6).
Note, however, that forecasters had access to model
predictions during forecast production and we as-
sume that some of the information provided by the
models already impacted the avalanche forecast. In
contrast, no such information leakage existed the
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other way round. This means that we compared
purely data-driven, spatially-interpolated model pre-
dictions to human-made forecasts including model
predictions interpreted using the 1-level rule. More-
over, while models only used meteorological mea-
surements to correct for potential forecast errors,
forecasters integrated avalanche observations and
other field observations to assess current avalanche
conditions. In summary, currently, the team of two or
three human forecasters utilizing all available data
and jointly producing the avalanche bulletin at SLF
seems to perform about as good as predictions ob-
tained from a model pipeline with no access to ad-
ditional verification data.

5.3. Integrating model predictions in forecast process?

It is evident – from this study, but also from sev-
eral other recent studies (e.g., Herla et al., 2023,
2024; Techel et al., 2022; Pérez-Guillén et al., 2024;
Trachsel et al., 2024), that now is the time to in-
tegrate forecasting models closer and in a more
systematic way into the avalanche forecasting pro-
cess. We suggest that fully data- and model-driven
forecasting pipelines become an integral part of
avalanche forecasting, as they provide relevant in-
put for decision-making or valuable ”second opin-
ions” (e.g., Purves et al., 2003; Maissen et al., 2024;
Winkler et al., 2024).

In the future, as model performance continues
to improve and eventually surpasses that of hu-
man forecasters, the shift to increasingly auto-
mated avalanche forecasting may become a pos-
sibility. However, to ensure that predictions are
closely aligned with actual conditions, additional
data sources must be integrated into model predic-
tion pipelines - as for example, information from real-
time avalanche detection systems (Trachsel et al.,
2024).

While models performed well on average, there is
a need to ensure they can handle unexpected situ-
ations, for which they had no training data. There-
fore, mechanisms must be developed to detect and
mitigate gross model errors during out-of-the-box
events missed by a model.

Given recent developments, we believe that
avalanche forecasts will be produced at greater spa-
tial and temporal resolutions in the coming years.
However, the resolution of such forecasts must
correspond to the resolution that can be reason-
ably achieved given the available data and mod-
els. For example, in this study, we interpolated to
very specific locations. However, we emphasize that
spatially-interpolated model predictions only provide
regional patterns (Techel et al., submitted).

Lastly, there is an ongoing discussion about the
limited transparency of complex machine-learning
models, such as random forest models, which are

often considered ’black-box’ models. Obviously, it
is necessary to have at least a rough understand-
ing regarding the relevant features in these models,
and their impact on predictions. However, recently
Pérez-Guillén et al. (2024) successfully applied an
algorithmic approach called SHapley Additive ex-
Planations (SHAP) (Lundberg and Lee, 2017) mak-
ing the danger-level models’ decision-making pro-
cess more transparent, not just globally but also for
individual predictions.

6. CONCLUSIONS

We have shown that two spatially-interpolated mod-
els predicting avalanche danger and snowpack in-
stability are capable to predict the expected increas-
ing likelihood of human triggering of avalanches.
Moreover, these model predictions increasingly
reach the performance of human forecasts. Thus,
model pipelines – as the ones discussed in this
study, should become an integral data source in the
avalanche forecasting process.

This conference proceedings paper is a sum-
mary of a more comprehensive analysis of human-
triggered and natural avalanches, using three mod-
els, and comparing model performance in nowcast-
and forecast-mode (Techel et al., submitted). In
this more extensive analysis, we show that purely
model-driven predictions discriminate almost as well
between generally stable and rather unstable condi-
tions as do human forecasts.
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