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ABSTRACT: Spatially distributed snowpack models are increasingly being adopted by avalanche forecast-
ing agencies, but forecasters could benefit from simpler methods to interpret the complex model output. We 
introduce a statistical clustering technique that summarizes model output by predicting forecast regions with 
similar hazard characteristics. The method derives five metrics from simulated profiles to summarize different 
components of hazard: snow depth, new snow, wind-drifted snow, persistent weak layers, and wet snow. 
These metrics, along with spatial arrangement information, are combined into a distance metric that is fed into 
a fuzzy clustering algorithm to group small regions into larger spatially contiguous regions with distinct hazard 
characteristics. Our application of the method to western Canada during the 2023-24 winter produced regions 
that closely aligned with the regions in Avalanche Canada’s daily public forecasts. The method's flexibility in 
considering various snowpack properties and spatial patterns makes it an attractive option for decision support. 
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1. INTRODUCTION 

Numeric snowpack models have the potential to im-
prove avalanche forecasts by augmenting infor-
mation in data-sparse regions, providing continuous 
spatial coverage, and forecasting future conditions. 
However, incorporating these models into opera-
tional workflows requires presenting their complex 
output in simple and informative formats that can be 
processed quickly and easily (Morin et al., 2020). 

Recent advancements have significantly enhanced 
snowpack models for avalanche forecasting. High-
resolution numerical weather prediction (NWP) mod-
els offer relatively reliable meteorological inputs, 
post-processing tools can simplify outputs by com-
paring, averaging, and clustering snow profiles 
(Herla et al., 2021; Herla et al., 2022; Horton et al., 
2024), and post-processing or machine learning 
models improve the connection to stability and ava-
lanche hazard (Mayer et al., 2022; Pérez-Guillén et 
al., 2022). 

Statistical clustering methods provide an effective 
way to analyze complex datasets. Bouchayer (2017) 
first clustered modelled snow profiles based on verti-
cal profiles of specific surface area. Herla et al. 
(2021) expanded on this by incorporating multiple 
layer properties, such as grain type, hardness, and 
deposition date, into a distance metric for clustering. 
Horton et al. (2024) further developed this approach 
to account for spatial and temporal patterns, enabling 
the clustering of snow profiles into coherent forecast 

regions. However, these techniques are computa-
tionally intensive, as they process full snowpack stra-
tigraphies, which limits their operational use. 

To address this issue, this study builds on Horton et 
al. (2024) by deriving avalanche hazard metrics from 
snow profiles and clustering them into forecast re-
gions. By clustering these metrics instead of full pro-
files, the process becomes more computationally ef-
ficient and scalable for large operational domains. 

2. DATA 

2.1 Study area 

We applied the clustering method to 91 subregion 
polygons used by Avalanche Canada for public ava-
lanche forecasts in the 2023-24 winter (Fig. 1). Fore-
casters group these subregions daily into larger fore-
cast regions based on their assessment of regional-
scale hazard patterns. The subregions cover a di-
verse range of terrain and avalanche climates 
(Shandro and Haegeli, 2018). 

 

Figure 1: Avalanche Canada’s 91 forecast subre-
gions in western Canada for the 2023-24 winter. 
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2.2 Avalanche forecasts 

We analyzed Avalanche Canada's public forecasts 
from December 1, 2023, to April 30, 2024. Over this 
period the 91 subregions were grouped into 9 to 16 
forecast regions per day, with a median of 15 regions 
per day. We examined the arrangement of subre-
gions into forecast regions, the danger rating, and av-
alanche problem types at the treeline vegetation 
band. To simplify the analysis, we grouped the ava-
lanche problem types into analogous European Ava-
lanche Warning Services problems (Table 1). 

Table 1: Avalanche problem groups and hazard 
metrics. 

European prob-
lem 

North American 
problem(s) 

Hazard metric 

New snow Storm slab 

Dry loose 

Height of new snow in 
the past 72 hours 

Wind-drifted 
snow 

Wind slab Average wind speed 
over the past 24 h 
multiplied by the skier 
penetration depth 

Persistent weak 

layers 

Persistent slab 

Deep persistent 
slab 

Persistent weak layer 
depth multiplied by 
the probability of layer 
being unstable 

Wet snow Wet slab 

Wet loose 

Total liquid water con-
tent in the profile 

2.3 Snowpack model simulations 

We used snow profile simulations from Avalanche 
Canada’s operational snowpack modelling chain, 
which forces the Swiss SNOWPACK model with 
NWP forecast data from the Canadian High-Resolu-
tion Deterministic Prediction System (Horton et al., 
2023). The model chain selects three grid points from 
each subregion polygon with a stratified sampling ap-
proach to get representative weather conditions at 
treeline elevations. SNOWPACK simulations are up-
dated daily at these grid points using the latest NWP 
forecast, and then the averaging algorithm of Herla 
et al. (2022) produces a single snow profile for each 
subregion. Our analysis used average treeline pro-
files from each subregion, which were available for 
147 days over the study period. 

3. METHODS 

We apply a clustering method that groups the 91 sub-
region polygons into forecast regions based on their 
geographic arrangement and simulated hazard prop-
erties. Following the approach of Horton et al. (2024), 
this method computes a distance matrix that quanti-
fies the pairwise similarity between each subregion. 
The subregion distance (dist) is calculated as: 

𝑑𝑖𝑠𝑡 = 0.33 𝑑𝑖𝑠𝑡𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + 0.67 𝑑𝑖𝑠𝑡ℎ𝑎𝑧𝑎𝑟𝑑  

where dist is a weighted average of the spatial dis-
tance (distspatial) and the hazard distance (disthazard). 

Weights of 0.33 and 0.67 produced forecast regions 
that were mostly spatially contiguous for our study 
area (see Horton et al., 2024 for details about opti-
mizing spatial weights). A matrix of pairwise subre-
gion distances is then inputted into a fuzzy clustering 
algorithm. Fuzzy clustering methods use a predeter-
mined number of clusters (k) and then assign each 
data point a probability of belonging to each cluster. 

3.1 Spatial distance 

We designed the spatial distance (distspatial) to pro-
mote geographically contiguous forecast regions by 
reducing the distance between neighbouring subre-
gions and increasing the distance for separated 
ones. Using a binary neighbourhood-based ap-
proach, subregions sharing borders were assigned a 
distance of 0, while those without shared borders 
were assigned a distance of 1. Our initial explorations 
found that the binary approach created forecast re-
gions that follow the elongated shape of mountain 
ranges better than Euclidean distances. 

3.2 Hazard distance 

We designed the hazard distance (disthazard) to char-
acterize predominant patterns in the simulated snow 
profiles. Simple scalar metrics were chosen to quan-
tify the severity of each avalanche problem. Several 
potential metrics for each problem type were derived 
from the profiles. The best metric for each problem 
was selected using the Wilcoxon rank-sum test to 
compare days with and without corresponding ava-
lanche problems across the entire dataset (Table 1). 

New snow problems were quantified using the height 
of new snow in the past 72 hours. To create a nor-
malized metric between 0 and 1, we chose an upper 
limit of 30 cm and linearly mapped values from 0 to 
30 cm to the 0 to 1 range. 

Wind-drifted snow problems were quantified using 
the product of average wind speed over the past 24 
hours and the skier penetration depth. To normalize 
the metric, we set upper limits of 4 m/s for wind speed 
and 30 cm for skier penetration depth before the mul-
tiplication. 

Persistent weak layer problems were quantified us-
ing the product of weak layer depth and the probabil-
ity of instability. First, potential weak layers were 
identified using the quantitative module of avalanche 
hazard described by Herla et al. (2024). This method 
identifies unstable layers with the random forest 
model developed by Mayer et al. (2022). Then, un-
stable layers with persistent grain types were 
grouped by burial date. In cases with multiple poten-
tial weak layers, we used the median depth and prob-
ability. To normalize the metric, we set an upper limit 
of 100 cm for weak layer depth. 
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Wet snow problems were quantified with the total liq-
uid water content in the profile with an upper limit 
value of 1 kg/m2. 

We used a total snow depth metric alongside the four 
avalanche problem metrics to create regions that 
align with major snow climates, which is a favourable 
attribute for forecast regions. We normalized snow 
depth by setting the maximum snow depth across all 
profiles as the upper limit. 

We computed hazard distance by calculating Euclid-
ean distance matrices for each metric and then com-
puting their weighted mean with 25% weight on new 
snow, 25% on persistent weak layers, 8% on wind-
drifted snow, 8% on wet snow, and 34% weight on 
snow depth. These weights were informed by a linear 
regression model that predicted danger ratings 
across the entire dataset and then further tuned with 
trial and error to produce realistic shaped regions. 

3.3 Fuzzy analysis clustering 

We used the fuzzy analysis clustering method in-
cluded in the cluster package for R (Kaufman and 
Rousseeuw, 2009), testing k values from 5 to 20 to 
span the number of human-forecasted regions over 
the period. The method requires a fuzziness param-
eter that controls the degree of fuzziness in the clus-
ters, so for each k value, we tried fuzziness parame-
ters between 1.1 and 1.5 and then selected the solu-
tion that maintained the target number of clusters 
while maximizing fuzziness. 

We applied the clustering method over the entire 
season, selecting the optimal number of regions 
each day according to the method outlined by Horton 
et al. (2024). This method calculates three cluster 
validation metrics for each clustering solution and se-
lects the solution with the smallest value of k that 
meets a threshold for each metric. The final solution 
is the rounded average k value among the three met-
rics. Our threshold values were chosen to produce an 
average of 15 regions per day, which for this study 
were an average silhouette width of 0.36, a within-
between ratio of 0.48, and a Pearson gamma of 0.50. 

3.4 Cluster evaluation 

We first present a case study for a single day where 
we compare the public forecast regions, danger, and 
problems with the clustering results, hazard metrics, 
and representative profiles from each cluster. 

To compare the overall patterns between the cluster-
ing method and public forecasts, we counted how of-
ten each pair of subregions was grouped together 
over the season with each method. This created dis-
tance matrices, which we clustered using the fuzzy 
clustering method with k = 15 to determine the most 
common arrangements of forecast regions. 

4. RESULTS 

4.1 Case study on March 2, 2024 

To illustrate the capabilities of the clustering method 
we present the results for March 2, 2024 (Fig. 2). On 
this day heavy snowfall in southern regions led to el-
evated danger ratings and avalanche problems re-
lated to new snow. In northern regions, the danger 
ratings were relatively lower, and the primary prob-
lems were related to wind-drifted snow. Persistent 
weak layers were the primary problem in central re-
gions but also existed in most regions except for 
some coastal areas. 

 

Figure 2: Public forecasts on March 2, 2024 with fore-
cast regions coloured by treeline danger rating and 
labelled by primary avalanche problem type. 

The hazard metrics derived from snowpack simula-
tions show similar spatial patterns in avalanche prob-
lem distribution and severity (Fig. 3). Therefore, com-
bining these metrics into a single distance metric is 
expected to effectively characterize hazard patterns 
across the study area. 

The clustering results for different numbers of clus-
ters on March 2, 2024 demonstrate the method's abil-
ity to group regions at various resolutions (Fig. 4). 
The transparent subregions in these plots highlight 
areas where the fuzzy clustering algorithm was un-
certain about cluster membership, which were often 
near the boundaries of human forecast regions. The 
k = 15 clustering in Fig. 4 closely matches the public 
forecast regions in Fig. 2, with many boundaries 
aligning or nearly aligning with the public regions. 

The k = 5 result in Fig. 4 is the easiest to interpret 
and compare with the hazard metrics in Fig. 3. The 
three southern regions are dominated by new snow 
problems and are distinguished by a main coastal re-
gion (purple), an interior region (orange), and a more 
scattered region in areas with lower snow depths and 
snowfall (green). The central interior region (blue) is 
dominated by persistent weak layer problems, while 
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the northern areas (red) are where wind-drifted snow 
was the primary problem. 

 

Figure 3: Hazard metrics derived from snowpack 
simulations on March 2, 2024. Each metric is normal-
ized between 0 and 1 and displayed as a red 
heatmap. 

 

Figure 4: Clustering results for 5, 10, and 15 clusters 
on March 2, 2024. Subregion polygons are coloured 
by their primary cluster, with greater transparency 
when the probability of belonging to that cluster is 
low. The boundaries of the human-assessed forecast 
regions are outlined in black. 

We can further characterize each cluster by plotting 
their simulated snow profiles. Fig. 5 shows the me-
doid profile from each of the k = 5 clusters shown in 
Fig. 4. The medoid is the profile with the smallest total 
distance to all other profiles in the group. The medoid 
profiles show representative snowpack characteris-
tics for each cluster, such as thicker layers of precip-
itation particles in regions with new snow problems 
and surface hoar, facet, or depth hoar layers in re-
gions with persistent weak layer problems. 
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Figure 5: Representative (medoid) snow profiles for 
each of the k = 5 clusters on March 2, 2024. The title 
colours match the corresponding regions in Fig. 4. 

4.2 Seasonal trends 

Figure 6 shows the temporal progression of clusters 
for five days following March 2, 2024 and illustrates 
how region boundaries changed with evolving condi-
tions. The human-assessed forecast region bounda-
ries often align with either a cluster boundary or an 
area of cluster uncertainty. The boundaries of hu-
man-assessed regions changed on March 4 near the 
brown cluster, and on March 5 near the brown, blue, 
and purple clusters. The clustering results changed 
the boundaries more frequently and suggest the 
need for more regions than the human forecasts in 
some areas (e.g., the northeast regions with green, 
orange, and brown clusters) or fewer regions in oth-
ers (e.g., the northwest region with a blue cluster).  

The most common arrangement of regions from the 
clustering method generally matched human-as-
sessed regions, with only slight differences (Fig. 7). 
In the northwest, the human and model-derived re-
gions were fully aligned, while in the southwest both 
methods split the area into four regions, with slight 
variations in where the boundaries exist. Model clus-
tering tended to identify more regions than the hu-
mans in the northeast, and the regions had slightly 
different shapes in the southeast. 

 

Figure 6: Temporal progression of clustering results 
from March 2 to March 7, 2024. The boundaries of 
the human-assessed regions are outlined in black. 

 

Figure 7: The 15 most common arrangements of sub-
regions for the 2023-24 season according to the hu-
man-derived public forecasts and the model-derived 
clustering results. 
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5. DISCUSSION 

The clustering method effectively captured major 
hazard patterns across western Canada during the 
2023-24 winter. These results are consistent with our 
operational experience clustering snowpack model 
output at Avalanche Canada over the past three win-
ters. Clustering provides simplified maps and a small 
number of representative snow profiles, giving fore-
casters a quick overview of potential hazard patterns. 
Forecasters at Avalanche Canada find cluster maps 
intuitive and useful for viewing model output and in-
forming decisions about forecast region boundaries. 
The uncertainty from fuzzy clustering and the ability 
to adjust the number of regions are helpful features. 
However, due to challenges in validating snowpack 
model output, clustering is seen primarily as a data 
exploration tool rather than a fully automated solution 
for defining region boundaries. 

Spatial constraints are important for producing coher-
ent forecast regions, otherwise, distant regions with 
similar hazard characteristics could be grouped. 
Quantifying spatial relationships with the binary 
neighborhood approach was effective for subregion 
polygons, however, it could be interesting to quantify 
spatial patterns at smaller scales such as across as-
pects, elevations, or slopes. 

Parameter tuning has been important when applying 
these methods over different domains. For example, 
different spatial weights were needed for this study 
area compared to the smaller study area in Horton et 
al. (2024). Similarly, the ideal fuzziness parameter in 
the clustering algorithm needs to be tuned to work 
with the distribution of values in the distance matrix. 

The hazard metrics in this study were selected to cor-
respond with four European avalanche problems. 
These problem types are more closely aligned with 
the physical processes resolved by snowpack mod-
els compared to the North American problems that 
are based on risk management factors. Quantifying 
snowpack differences with hazard metrics rather 
than comparing full stratigraphies resulted in dra-
matic improvements in computational efficiency and 
allowed clustering over larger domains. Comparisons 
with the stratigraphy-based approach of Horton et al. 
(2024) found similar region groupings for this domain 
and season (not shown). The differences between 
the hazard metric method and the stratigraphy-based 
method were within the same range as those result-
ing from subtle parameter tuning. 

An additional constraint we propose for operational 
applications is a temporal distance that considers the 
previous day's regions, ensuring changes in region 
boundaries only happen in response to significant 
hazard variations. This approach guards against sen-
sitivity to minor fluctuations in snowpack model out-
put, as demonstrated by Horton et al. (2024). 

6. CONCLUSIONS 

Clustering simulated snow profiles is a promising 
method for presenting model output to forecasters. 
Our approach offers flexibility in considering diverse 
snowpack properties and spatial relationships. When 
combined with snow profile processing tools like av-
eraging and weak layer detection, it can produce a 
concise summary of snowpack patterns. Developing 
tools that enable forecasters to explore model output 
in these ways has the potential to enhance the value 
of snowpack models for operational avalanche fore-
casting in a range of contexts. 

Ongoing research into deriving hazard information 
from snowpack models (e.g., Mayer et al., 2022; Pé-
rez-Guillén et al., 2022; Herla et al., 2024) is opening 
up opportunities to streamline the computation and 
interpretation of model outputs. This study serves as 
a proof of concept and has led to plans for refining 
the hazard metrics to better represent avalanche 
problems and integrate the method into Avalanche 
Canada’s operational model. 
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