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ABSTRACT: The Community Snow Observations (CSO) project crowd-sources snow depth information
from backcountry recreationists and professionals in mountain environments. These individuals frequently
traverse steep areas of complex terrain that are under-sampled by existing snow data networks such as the
SNOTEL network in the USA. The CSO project then assimilates these data into high-resolution models of
snowpack distribution and evolution in these areas, and returns model results to project participants in near-
real time. Our modeling work has shown that assimilating crowd-sourced snow depth information improves
our models beyond what can be achieved assimilating SNOTEL data alone. Here, we review aspects of model
performance and review recent project developments, which include the use of forecast weather data and the
production of new mobile apps for the visualization and exploration of the model results.
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1. INTRODUCTION

Storage of water as seasonal snowpack is a sub-
stantial and important component of the hydrologic
cycle. The peak snow-water-equivalent (SWE) of
the western United States (Mote et al., 2018) has
been estimated at 150 km3 and that of North Amer-
ica (Wrzesien et al., 2018) at nearly 1700 km3. An
understanding of the distribution and evolution of
this snowpack is important for many reasons, in-
cluding water resources planning, hazard mitigation,
ecosystem services and function, economic benefit,
and hydrosphere and cryosphere modeling, among
others.

We can measure or estimate the distribution of
snow properties using several different techniques.
In the United States, in-situ measurements come
from Snow Telemetry (Schaefer and Johnson, 1992)
(SNOTEL), Soil Climate and Analysis (SCAN), and
Snow Course Data (SCD) networks operated by the
Natural Resources Conservation Service (NRCS),
state snow-survey programs, state Departments of
Transportation, and other sources. In-situ observa-
tions are typically at low spatial-resolution and they
under-sample high-elevation regions of complex ter-
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rain due to the need for vehicular access for instal-
lation and maintenance of equipment.

Snow information is also sourced from remote-
sensing campaigns, and can come from airborne
LIDAR (light detection and ranging) (Painter et al.,
2016), UAV (Unpiloted Aerial Vehicle) LIDAR (Ja-
cobs et al., 2020), satellite LIDAR (Abdalati et al.,
2010), visible-range imagery (Painter et al., 2009),
and radar (Gusmeroli et al., 2014), among other
methods. The spatial resolution of these data
projects can be very high, on the order of 1 m
for airborne LIDAR. The spatial coverage depends
upon the platform. Airborne measurements are
local-to-regional, while satellite platforms can offer
near global coverage. A disadvantage of remotely
sensed measurements is their high cost and com-
paratively low temporal resolution. For example, the
Ice, Cloud, and Elevation Satellite (ICESat-2) (Neu-
mann et al., 2019) mission repeats ground tracks
every 91 days.

Modeling (Essery et al., 2013) of snowpack pro-
cesses is an important third source of snow infor-
mation that is able to ‘fill the gaps’ in space and time
that exist in remotely-sensed and in-situ datasets.
They also have considerable operational (real-time
predictions) (Franz et al., 2008) value to a wide
range of stakeholders, including avalanche forecast-
ers and water managers. Models can be run at a
wide range of spatial and temporal resolutions and
can be statistically or physically based. An exam-
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ple of the latter, energy balance models use either
weather station data or gridded reanalysis or mod-
eled fields to drive estimations of energy fluxes and
surface hydrology.

Community involvement in designing and carry-
ing out science campaigns is a powerful additional
tool, largely due to the issues of scale and capacity.
Fixed-station networks are often limited and cannot
sample everywhere all of the time (Crall et al., 2015;
Roy et al., 2012). Volunteer community scientists
can add to these datasets by collecting data at times
and places not covered by fixed-station networks.
The idea of crowdsourcing environmental data from
community scientists is far from new. The Coopera-
tive Observer Program (COOP) (Leeper et al., 2015)
of the National Weather Service (USA) was started
in 1891 and presently has in excess of 11,000 ob-
servers contributing measurements. In the narrower
context of seasonal snow and ice, there have been
previous efforts (Dickerson-Lange et al., 2016) to
document snow cover with smart phones and stud-
ies (Carey et al., 2016) of how high-elevation moun-
taineers and alpinists can inform science based on
their observations from the field.

Community science brings with it a unique set
of opportunities and challenges. One advantage is
that there is evidence (Garbarino and Mason, 2016;
Bonney et al., 2016; Mitchell et al., 2017) that com-
munity science democratizes access to science and
encourages scientific literacy in the greater public.
Additionally, the measurements can be compara-
tively low cost and potentially increase spatial cov-
erage. They come from volunteers who possess
the resources and skills (or obtain them with mini-
mal training) to travel to the field, collect the data,
and transmit it to the project team. Regarding chal-
lenges, by its very nature, community science can
be decentralized and unstructured. A project team
can offer suggestions about sampling strategy, but
ultimately must rely on decisions made by the partic-
ipants. Another challenge has to do with data qual-
ity control. Protocols can be developed and tutorials
provided but, in the end, measurements are com-
ing from a diverse body of contributors with differing
levels of experience.

In 2017, the Community Snow Observations
(CSO; communitysnowobs.org) (Hill et al., 2018)
project was launched, with the goal of developing
a global network of citizen scientists who would
collect and submit measurements of snow depth.
While anyone can participate, the project has pri-
oritized participation by backcountry recreationists
(skiers, snowmobilers, snowshoers, etc.) and snow
professionals (ski patrollers, avalanche forecasters,
etc.) since these users visit high-elevation regions
of complex terrain. The primary goal of the CSO
project has been to demonstrate that citizen sci-
entist participation in the collection of snow infor-

mation can improve models of snowpack evolution
and distribution in these complex locations (Crum-
ley et al., 2020). Largeron et al. (2020) provide a
recent and comprehensive look at data assimilation
in snowpack modeling which focuses on measure-
ments by research scientists. In 2021, the CSO
project launched the website mountainsnow.org

(Section 4) in order publicly share model results and
other snow information with project participants and
the general public. This website is part of the two-
way communication and collaboration between par-
ticipants and team scientists.

In this paper we first review the structure of and
participation in the CSO project. We look at where,
when, and how frequently users contribute data. We
next demonstrate the utility of the data, in terms of
improving snowpack model performance, and we
give examples of model products that can be re-
turned to participants, to further engage participa-
tion and provide a wider understanding of snowpack
distribution. Finally, we compare CSO data to a wide
variety of NASA and NOAA snow products to show
how citizen science data can be used to validate na-
tional and global snow datasets.

2. MATERIALS AND METHODS

The CSO project requires five primary components
to function. These include (1) a program to recruit
and retain community scientists, (2) instrumentation
for measuring snow depth in the field, (3) instrumen-
tation for logging and submitting measurements, (4)
web services for gathering and displaying partici-
pant data online, for public exploration and down-
load, and (5) a modeling environment for assimilat-
ing community scientist measurements into snow-
pack estimates and comparing measurements and
model results to other model products and remote
sensing measurements.

2.1. Partipant Recruitment

We recruit three general categories of participants.
First, the majority of CSO participants are winter
recreationists, including backcountry skiers, snow-
boarders, snowshoers, and snowmobilers. These
participants participate in CSO as part of their recre-
ational day out in the backcountry. We reach these
participants through a broad mix of outreach efforts.
Our second major category of project participants
includes snow professionals such as avalanche
forecasters and ski patrollers. These users end up
logging snow depth information as part of their own
work. We reach these participants partly through
publishing articles about the project in trade mag-
azines (Hill, 2019; Hill and Redpath, 2020). Finally,
our project receives many submissions from outdoor
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education programs that run winter classes. To re-
tain participants, our project team creates and dis-
seminates snow products (images, animations, etc.)
that are related to the snow conditions at the loca-
tions where participants collect and submit data. We
also provide educational materials about snow sci-
ence and snow data sources, with the goal of edu-
cating participants and building their interest in how
snow is distributed and evolves.

2.2. Field Snow Measurements

To minimize cost and complexity, the CSO project
focuses only on snow depth (Hs), rather than more
complex and time-consuming variables such as
snow-water-equivalent (SWE) or albedo. The pri-
mary tool for CSO participants is an avalanche
probe. An avalanche probe is a key piece of safety
equipment carried by backcountry snow enthusiasts
and professionals. While they vary from manufac-
turer to manufacturer, most probes are 3 m long and
have 1 cm markings. They are compact, easy to de-
ploy, and easy to use. Participants who live in areas
where avalanche hazards do not exist (gentle ter-
rain) can easily use a meterstick, or a tape measure
affixed to a basket-less ski or trekking pole. Key el-
ements to a good measurement include finding an
area of undisturbed snow and making multiple mea-
surements over an area of a few square meters in
order to obtain a reliable average depth for that area.

2.3. Logging and Submitting Measurements

CSO requires geo-located and time-stamped snow
depth measurements. In order to maximize partic-
ipation from the broadest possible audience, CSO
has both mobile and desktop platforms for submit-
ting these measurements. Mobile apps are the best
choice for most users since only a smart phone
is required. Other users, such as avalanche fore-
casters, go out into the field to collect much more
complicated datasets, including vertical profiles of
the snowpack structure. These users commonly log
data in a field notebook, so a desktop application is
best for allowing them to submit data later from their
home or office.

Currently, CSO sources most of its data from
two platforms. The mobile app (Android and iOS)
is the Snow Scope App from Propagation Labs
(https://www.propagationlabs.com/). This app was
customized, with input from the CSO team, to al-
low a ‘one tap’ entry of Hs from the landing page
of the app. Even if a user is out of cell service,
use of the app at the location of a measurement
records the time and location, and this informa-
tion (along with Hs) will be uploaded once back in
cell service. The desktop application is Snow Pilot

(https://snowpilot.org/) which is a widely used pro-
gram used primarily by avalanche forecasters and
other snow-safety professionals. While Snow Pilot
allows (as does Snow Scope) the logging of com-
plete pit profiles, only Hs values are used by the
CSO program at this time.

2.4. Project Data Infrastructure

The CSO project has developed a data infrastruc-
ture for ingesting, managing, and serving Hs mea-
surements submitted by community scientists using
either of the supported platforms. This infrastructure
is hosted on a commercial cloud provider (Amazon
Web Services; AWS) and leverages specific cloud
services, including AWS Relational Database Ser-
vice (RDS) and AWS Lambda serverless compute.
CSO data harvesters query Hs data from platform-
provider APIs (Application Programming Interface),
filter them for first-order quality thresholds, and in-
tegrate them in a common form in a relational
database. A CSO API provides public access to
CSO data to third parties and also to the CSO web
map application. This web map application allows
the user to filter, visualize, and download the data.

2.5. Snowpack Modeling Framework

The CSO project uses an unstructured, rapidly-
deployable approach that is data-driven based on
where participants travel and measure snow; we
welcome an ‘anytime, anyplace’ approach to data
collection by participants. The full details are pro-
vided by Crumley et al. (2020) and only summarized
here. We use Micromet (Liston and Elder, 2006b)
and SnowModel (Liston and Elder, 2006a), to dis-
tribute weather forcing to a high-resolution model
grid and evolve the snowpack, respectively. To
rapidly launch new model domains, we have devel-
oped freely available scripts and digital notebooks
(e.g., Jupyter) that (1) fully automate the acquisition
of weather, terrain, and land cover data for a pre-
scribed area and time period, (2) obtain SNOTEL
and SCAN weather and snowpack data for the pur-
poses of calibration, (3) automatically calibrate the
model, and (4) run the model operationally to pro-
vide estimates of today’s snowpack.

As an initial step in the operational modeling, all
Hs measurements are converted (Hill et al., 2019)
to SWE estimates using regression methods. The
next step in the modeling process is to assimilate
in the data collected from community scientists us-
ing SnowAssim (Liston and Hiemstra, 2008). The
community scientist SWE estimate is compared to
the model SWE estimate and a correction ‘surface’
is created that adjusts precipitation inputs and / or
melt rates in order to guide the model simulations
back to the citizen scientist measurements. Where
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available, direct SWE measurements from SNOTEL
stations are also assimilated. With our data-driven
approach, the CSO project can rapidly implement
model simulations in areas where project participa-
tion is high and where calibration data exist (usually
SNOTEL). Typical spatial resolutions are 30 - 100 m
and snow properties are saved at a daily time step.

3. RESULTS

Here we look back at the history of the project to
quantify participation, and to briefly look at how
participation affects our ability to accurately model
snow distribution. We additionally look at how
the data from our participants compare with other
sources of snow information.

3.1. Participation Statistics

The growth in the cumulative number of submis-
sions and unique participants is shown in Fig. 1.
While CSO is a global program, the majority of our
submissions come from the Northern Hemisphere.
This explains the seasonal nature of the rate of
observations. The rate of submissions during the
2019-2020 snow season was less due to the Covid-
19 restrictions that curtailed access to many pub-
lic lands used by winter recreationists (national for-
est, national park, etc.). Since the project inception,
the mean number of submissions per user is 8, and
there are 665 users who have made more than 10
measurements, 150 who have made more than 50
measurements, and 61 who have made more than
100.

Figure 1: Cumulative observations and participants for the CSO
project.

3.2. Inclusion of CSO Data in Snowpack Modeling

The CSO concept was initially tested in a pilot study
at Thompson Pass, southcentral Alaska (USA). Fol-
lowing model calibration (using the Upper Tsaina

River SNOTEL station), assimilation runs were con-
ducted with a variety of ‘subsetting’ methods for the
community scientist submissions. A sample result is
shown in Fig. 2. In this figure the ‘No Assim’ result is
the calibrated model run, with no community input.
It is clear that the model significantly overestimates
the snowpack, with a bias of 7 cm and a root-mean-
square-error (RMSE) of 10 cm. Biases like these
are commen when using gridded reanalysis (CFSv2
in this case) data for model forcing. The ‘Best Assim’
result shows the assimilation run with the combina-
tion of CSO observations that was found to yield the
lowest errors. In this case, the bias is 0 cm and the
RMSE is 1 cm. This demonstrates the exciting po-
tential that community participation has, in terms of
overcoming model forcing deficiencies and improv-
ing knowledge of snow distribution and evolution.

Figure 2: Comparison of observed and modeled snow water
equivalent (SWE) at the Upper Tsaina River SNOTEL site for wa-
ter year 2017.

3.3. Comparison to SNODAS

The Snow Data Assimilation System (SNODAS)
(Carroll et al., 2001) provides daily gridded (1 km) in-
formation on snow variables over the conterminous
United States (CONUS) beginning in 2003. The
SNODAS modeling system assimilates in a wide va-
riety of information including SNOTEL, snow course
data, CoCoRaHS data, and others. Figure 3 (top)
shows heat maps of SNODAS Hs estimates com-
pared to CSO data. In each case, a ‘nearest neigh-
bor’ approach was used to extract the SNODAS
value corresponding to the measurement location.

The density functions of the errors between the
SNODAS estimates and the measurements of Hs
are also shown in Fig. 3 (bottom). Error is de-
fined as SNODAS estimate minus the measure-
ment. There is a significant negative bias, indicat-
ing that the SNODAS model is under-predicting the
snow in the high mountain areas visited by CSO par-
ticipants. This tendency for SNODAS to underesti-
mate the snow in high elevations has been noted be-
fore (Sirén et al., 2018). The large CSO dataset may
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therefore be of value to regional-to-national scale
assimilative modeling efforts.

Figure 3: Heat map (top) of SNODAS Hs estimate compared
to CSO Hs measurement. Errors (bottom) between SNODAS
estimates and CSO Hs measurements.

3.4. Comparison to MODIS

A variety of snow products are provided by the
Moderate Resolution Imaging Spectroradiometer
(MODIS) (Hall et al., 1995) and VIIRS (Key et al.,
2013) missions. As one example, the MOD10A1
product (Version 6) is a 500 m, daily product. One
of the variables provided by the MOD10A1 product
is the Normalized Difference Snow Index (NDSI).
While there is regional variability, an NDSI value of
40 (%) is an accepted global standard (Riggs et al.,
2015) for indicating snow-covered-area (SCA).

CSO data points are typically from high-elevation,
complex-terrain environments and provide a unique
comparison with the MOD10A1 product. CSO ob-
servers are typically only out in the field when there
is snow. Additionally, CSO observers tend to be
in regions of considerable snow depth. The mean
depth of the CSO database is 135 cm. The loca-
tion and time of CSO submissions should therefore
be reliable indicators of snow-covered areas. As
a check of this, the NDSI values were extracted
at CSO submission locations (CONUS only) for
two seasons (4000 measurements) using a near-

est neighbor approach. Of the 4000 measurements,
1298 returned valid NDSI values and over 2600
were flagged as cloud-covered. A histogram of the
valid values (Fig. 4 top) is very consistent with the
idea of NDSI > 40 indicating SCA. Only 79 (6%) of
the valid measurements have an NDSI less than this
threshold value. There are 24 (2%) valid measure-
ments that have NDSI = 0.

Figure 4: Histogram (top) of NDSI values at CSO observation
locations / times. Heatmap (bottom) of MODIS NDSI value com-
pared to CSO Hs value.

A heatmap between NDSI and Hs (Fig. ?? bot-
tom) provides a deeper look into the data and we
see that most of the points with low NDSI have non-
zero Hs. One possibility could be that a user was
entering a no-depth measurement (which is valid, if
infrequently reported, data) but mis-typed and en-
tered a non-zero depth. In this case, MODIS cor-
rectly reports NDSI = 0 and the CSO point is in er-
ror and could be flagged as an outlier. A second
possibility could be a geolocation error. In this case,
the CSO user is correctly reporting non-zero Hs, but
it gets incorrectly reported in a location with no Hs
(and NDSI = 0 from MODIS) and the point could
be flagged as an outlier. A third possibility is related
to sub-grid scale variability. A pixel with an NDSI
value of 0 is supposed to indicate a snow-free land
surface over the 500 m grid cell. There are several
processes, including wind redistribution and differ-
ential melting that can lead to ‘mixed pixel’ condi-

Proceedings, International Snow Science Workshop, Bend, Oregon, 2023

691



tions where both snow and bare ground exist. If a
pixel is mostly bare (say near the snow line), then
it seems possible to have a valid non-zero Hs mea-
surement accompany a NSDI = 0 value.

When we examined the 24 data points with
NDSI = 0, we found that they were all in high moun-
tain locations during snow season. These facts re-
duce the likelihood that the first two explanations
above are responsible for the low NDSI. To better
understand the low NDSI values, future CSO mea-
surements spanning whole MODIS pixels should be
made. An organized effort like this will help deter-
mine the degree to which MODIS data could be
used to identify outlier CSO points, or the degree
to which CSO data might help refine the MODIS re-
sults.

4. OPERATIONAL SNOW PRODUCTS

A key feature of the CSO program is that it is
a ‘two-way’ collaboration between program partici-
pants and the program scientists. Participants share
their data with us, but also their ideas on what sorts
of snow information most interests them. And, the
CSO project team, in turn, provides this snow in-
formation, in real time. To make this happen, we
launched the Mountain Snow website (https://
mountainsnow.org) a few years into the project.
At this site, users can explore and interact with Hs
and SWE data from the CSO project, Hs and SWE
data from SNODAS, satellite imagery, and MODIS
snow-cover data. Together, these products pro-
vide a holistic view of snow, how it is distributed,
and how it is changing. To give just one example,
viewers can access snow information for any given
day of the water year, but they can also choose to
view a 72-hour ‘delta’ or change in the snowpack.
This layer provides valuable information about re-
cent large snowfall events, which may lead to in-
creased avalanche hazards. Figure 5 provides both
an overview of all of our modeling efforts and also
a zoomed in view of one of our domains on a typi-
cal day. In addition to providing results visually, all
of our data are freely available (as cloud-optimized
geoTIFF files) on Google Cloud Storage for down-
load and use by any interested party. To access the
data simply go to https://console.cloud.goog

le.com/storage/browser/cso_test_upload.
One recent development has to do with the timing

of the model runs. The operational modeling uses
reanalysis data (CFSv2) from the Climate Forecast
System, on a six-hour time step. Within the Google
Earth Engine framework, there is a two day latency.
What this means (Fig. 6) is that on a given day (day
n) you can access data up to and including the day
before yesterday (n-2). But, running the model also
takes a day. So, on day n, the ‘latest’ results that can
be viewed at Mountain Snow are the results from

Figure 5: Overview map (top) of current operational modeling
domains in the USA. Red boxes show domains and pink dots
show locations of CSO observations. Zoomed in view (bottom)
of Tahoe modeling domain showing 50 m modeled snowpack,
and underlying Sentinel imagery on April 15, 2023.

day n-3. This left a three day gap at Mountain Snow.
Starting in spring 2023, however, we closed this gap
by blending reanalysis data with forecast data. This
is illusted by the blue and pink symbols in Fig. 6. On
hour 18 of day n-2, we acquire 72 hours of forecast
data to allow for computations through ‘tomorrow’
(day n+1). The net result of this is that when you
visit Mountain Snow, you will see gridded snow dis-
tribution results that run up to and including ‘today,’
thereby providing a truly real-time source of snow
information.

5. CONCLUDING REMARKS

The Community Snow Observations project has
successfully demonstrated that opportunistic,
crowd-sourced snow depth data can significantly
improve models of snow distribution and evolution
in data-sparse mountainous terrain. The project
receives data from a very wide range of users
that include recreational users such as skiers,
snowboarders and snowshoers; snow professionals
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Figure 6: Conceptual figure of model timing for operational runs.

such as avalanche forecasters and ski patrollers;
and individuals involved in educational and environ-
mental programs. We continually grow our pool of
participants through numerous outreach efforts and
we train our participants through easy-to-follow and
intuitive video and written tutorials. Finally, we have
developed our project to be geographically respon-
sive to participation. Through fully automated setup
and calibration procedures, we are able to deploy
new model implementations quickly and efficiently.

The project benefits in that it receives high-value
data that are not available by other means, and par-
ticipants benefit through learning more about their
local snowpack and through seeing visual and video
products that are the direct result of their measure-
ments. Having the word ‘community’ in the name
of the project is intentional. Beyond the scientific
goals of the CSO project, we hope to realize two
additional goals. First we hope to inspire individu-
als to learn more about their local snow and water
resources. Second, we hope to inspire the recog-
nition that a community of community scientists can
advance scientific understanding in ways that dis-
connected individuals cannot.
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