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ABSTRACT: One of the main challenges in avalanche forecasting is the complexity of the snowpack and its
interactions with the environment. Traditional methods rely on expert knowledge to analyze snow and weather
data, field observations and weather predictions, which is time-consuming and partly subjective. In contrast,
data-driven models can analyze large amounts of data faster and may identify patterns that are difficult for
humans to detect. Such models are based on statistical or machine learning algorithms that learn from
past data to make predictions about new situations. Data-driven models are increasingly used in avalanche
forecasting, as they can provide more objective and timely predictions, assisting forecasters in decision-
making. Here, we present three recently developed models used in operational avalanche forecasting in
Switzerland. The data-driven models use machine-learning algorithms with meteorological and simulated
snow stratigraphy data as input to predict (1) the avalanche danger level, (2) snowpack instability and natural
avalanche probability, and (3) wet-snow avalanche probability. The models were trained on historical data and
typically have an accuracy of about 75%. During the last three winter seasons, we tested these models in
operational avalanche forecasting for the Swiss Alps at SLF. Models 1 and 2 were consulted daily, while model
3 only in potential wet-snow avalanche situations. Preliminary results suggest that the models performed
equally well in nowcast mode, when driven with measured data, as in forecast mode, when driven with data
from numerical weather prediction models. Overall, the positive feedback we received from the forecasters
shows that data-driven models can successfully be integrated into operational forecasting systems.
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1. INTRODUCTION

Snow avalanches range among the most promi-
nent natural hazards threatening people and in-
frastructure in snow-covered mountains. With the
ever-growing number of people and goods cross-
ing mountainous regions, guaranteeing public safety
and mobility is becoming increasingly important.
Avalanche safety services therefore regularly as-
sess the avalanche danger and implement appro-
priate mitigation measures. However, the ability to
forecast avalanches in space and time is limited
by current experience-based forecasting practices.
Indeed, increasingly large data volumes covering
a wide range of data qualities and spatio-temporal
scales, such as hourly meteorological measure-
ments, highly resolved meteorological forecasts,
daily field observations, or weekly snow profiles, are
mostly manually analyzed to assess snow instability
in time and space (McClung and Schaerer, 2006).
A major challenge is the lack of timely data, partic-
ularly during periods of increased avalanche dan-
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ger, as traditional observations are then not possi-
ble. Improving the spatio-temporal resolution of pre-
dictions is only possible with numerical models.

Snow cover models were developed to derive
snow instability from simulated stratigraphy (verti-
cal layering) at single points, allowing for a more
objective approach than time-consuming manual
profiles to avalanche forecasting. Crocus (Brun
et al., 1992) and SNOWPACK (Bartelt and Lehn-
ing, 2002) are the most advanced snow cover mod-
els. To obtain spatial snow instability information,
snow cover models typically run on a network of
AWS, or in semi-distributed or gridded approaches
(Morin et al., 2020). However, the absence of thor-
oughly validated methods to assess snow cover in-
stability from simulated stratigraphy hindered the in-
tegration of snow cover models into operational fore-
casting (Morin et al., 2020). Statistical methods
were also developed as alternatives for assessing
snow instability. These mostly focused on using ma-
chine learning method to estimate avalanche activ-
ity (e.g. Purves et al., 2003; Hendrikx et al., 2014) or
the avalanche danger (Schweizer and Föhn, 1996;
Schirmer et al., 2009). Nevertheless, very few of
these models were used operationally due to a lack
of input data, transferability to other regions, or snow
stratigraphy/instability input. Fortunately, new meth-
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ods and models were recently developed to ex-
ploit snow cover models (e.g. Mayer et al., 2022;
Viallon-Galinier et al., 2023), bringing us closer to
the practical implementation of objective methods
for avalanche forecasting.

Increases in computation power and data com-
bined with modern machine learning techniques
now offer exciting new possibilities for operational
avalanche forecasting. Recently, random forest (RF)
classifiers were developed to predict the danger
level for dry-snow conditions (Pérez-Guillén et al.,
2022), wet-snow avalanche activity (Hendrick et al.,
2023), and snow instability (Mayer et al., 2022).
These RF classifiers show very promising results
(Techel et al., 2022), and were tested during the
last three winter seasons in real-time for operational
avalanche forecasting in Switzerland. Avalanche
forecasters responded with very positive feedback
to the results, underscoring the operational potential
of these classifiers. Here, we provide an overview of
the models and show examples of the visualizations
used in operational forecasting.

2. MODELS

Over the last few years, we developed three differ-
ent classifiers to predict (1) the avalanche danger
level, (2) snow instability from simulated stratigra-
phy, (3) wet-snow avalanche probability. The back-
bone for these models consists of meteorological
data from a network of automatic weather stations
(AWS) and from snow cover simulations obtained
with the model SNOWPACK (Bartelt and Lehning,
2002; Lehning et al., 2002). Here, we briefly de-
scribe each model and provide references where
the reader can find more detailed information.

2.1. Avalanche danger level

Assessing the avalanche danger level has tradi-
tionally been an experience-based decision-making
process where human experts, avalanche forecast-
ers examine diverse data and draw conclusions
based on their expertise – with obvious potential
for bias. By applying machine learning techniques
to the output from physical snow cover models and
quality-checked regional danger ratings, we devel-
oped a fully data-driven approach to evaluate the
regional avalanche danger level for dry-snow condi-
tions in the Swiss Alps (Pérez-Guillén et al., 2022).
Using a large data set of more than 20 years of
human danger level predictions, AWS data and
SNOWPACK simulations, we trained a random for-
est (RF) classifier to predict the avalanche danger
level. The accuracy of the model, i.e. the percent-
age of correct danger level predictions, was around
75%, similar to the agreement rate between re-
gional forecasts and local assessments based on

field observations (Techel and Schweizer, 2017).
The model consistently performed well across the
Swiss Alps, encompassing diverse climatic regions,
although some regional variations were observed.

2.2. Snow instability

Snow stratigraphy and snow instability data are cru-
cial components to assess avalanche danger. Man-
ual snow observations, including snow profiles and
stability tests, are therefore commonly used. How-
ever, such data are sparse in time and space, and
snow cover models can provide valuable alternative
data. While instability indices describing the me-
chanical processes of dry-snow avalanche release
have been implemented into snow cover models
(e.g. Bellaire et al., 2018; Reuter and Bellaire, 2018;
Richter et al., 2018), there exists no readily appli-
cable method that combines these metrics to reli-
ably predict snow instability. We therefore trained an
RF classifier to assess snow instability from SNOW-
PACK output (Mayer et al., 2022). We did so by
manually comparing snow profiles observed in the
Swiss Alps with their simulated counterparts. We
then used the observed stability test result and an
estimate of the local avalanche danger level to con-
struct a binary target variable (stable vs. unstable).
The snow instability classifier then aggregates six
snow stratigraphy features to determine the proba-
bility of instability for each layer in the snowpack. Al-
though the subset of training data only consisted of
about 150 profiles labeled as either unstable or sta-
ble, the model classified profiles from an indepen-
dent validation data set with an accuracy of 88%.
Model predictions were also in line with observed
avalanche activity in the region of Davos for five win-
ter seasons.

2.3. Wet-snow avalanche probability

Wet-snow avalanches are triggered by the infiltra-
tion of liquid water into the snowpack. Release
mechanisms are generally not well understood,
making process-based prediction difficult. A sim-
ple proxy of water infiltration is therefore often used
for forecasting, namely the mean liquid water con-
tent (LWC) of the snowpack (e.g. Bellaire et al.,
2016; Wever et al., 2016; Mitterer et al., 2013).
While indices based on LWC thresholds are gen-
erally effective in detecting the onset of wet-snow
avalanche cycles, as these coincide with rapid in-
creases in LWC, such indices are not well-suited to
predict the end of avalanche periods. We there-
fore developed an RF classifier to predict the local
wet-snow avalanche activity at the locations of au-
tomated weather stations (Hendrick et al., 2023).
Model input consisted of measured meteorologi-
cal data and SNOWPACK variables computed for
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Figure 1: Model chain used to test the machine learning models
in operational avalanche forecasting.

38-degree slopes facing the 4 cardinal directions.
Based on concurrent avalanche observations, we
defined a binary target variable to discriminate days
with wet-snow avalanche activity from days without
any activity in a stringent manner. Overall, model
performance was good, with a precision of about
75%, and beyond the stringent definition of wet-
snow avalanche days, model predictions also corre-
lated with wet-snow avalanche activity over the en-
tire Swiss Alps. While model development and val-
idation were done in nowcast mode, we also stud-
ied model performance in 24-hour forecast mode
by using input variables computed from a numeri-
cal weather prediction model, showing similar per-
formance.

3. OPERATIONAL IMPLEMENTATION

Since the winter season 2020-2021, the Swiss
avalanche forecasting service at SLF started using
the models described above in operational context.
The operational model chain used for real-time test-
ing of the RF models consists of the following steps
(Figure 1):

1. Measurements are transmitted from automated
weather stations to a server at SLF once an
hour.

2. Based on these data, every 3 hours, snow
cover simulations are performed with SNOW-
PACK for the locations of the IMIS stations and
for four virtual slope aspects (N, E, S, W).

3. The input features required for the models are
then extracted from the SNOWPACK output
and the respective predictions are calculated.

In addition, the models were also tested in a fore-
cast mode for the coming 24 hours. With the most
recent nowcast SNOWPACK run, the forecast simu-
lations are driven with the numerical weather pre-
diction model COSMO-1 (developed by the Con-
sortium for Small-scale Modeling; https://www.

cosmo-model.org/, last access: 31 May 2022) op-
erated by the Swiss Federal Office of Meteorology

Figure 2: (a) Output of the snow instability model on 10 March
2023 for north-facing virtual slopes showing the probability of in-
stability (colors) and the depth of the weak layer (size of the dot).
The dots show the predictions at the location of the AWS, where
the size of the dot scales with the depth of the weakest layer in
the profile (see legend). The probability of instability is classi-
fied as either stable [0,0.5), intermediate [0.5,0.77) or unstable
[0.77,1]. The colors on the map show linear interpolated results
on a 1 km grid. (b) Output of the snow instability model for south-
facing virtual slopes. (c) Avalanche forecast for 10 March 2023.

and Climatology (MeteoSwiss), downscaled to the
locations of the AWS (Figure 2). Model predictions
are visualized in two ways:

1. Maps showing the individual predictions at the
locations of the AWS for each simulated slope
aspect and simple interpolations between AWS
(Figure 2).

2. Time series (not shown) or plots with elevation
summarizing aspect-specific predictions (Fig-
ure 3).

An example of a visualization on a map showing
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the predictions of the snow instability model for 10
March 2023 is shown in Figure 2. These maps com-
bine information on the degree of instability (using
three categories) as well as the depth of the weak-
est layer, which is a rough proxy for the potential
avalanche size. On this day, 20 to 40 cm of new
snow had fallen in the northern and western Swiss
Alps. The model predicted that the snowpack was
mostly unstable in these regions, and the instability
was more pronounced on north-facing slopes (Fig-
ure 2a) than on south-facing slopes (Figure 2b). The
predictions were in good agreement with the fore-
casted avalanche danger level (Figure 2c).

An example of a visualization summarizing the
predictions of the wet-snow avalanche activity
model with elevation for 1 May 2023 is shown in
Figure 3. These plots show the distribution of the
predicted wet-snow avalanche probabilities binned
with elevation, to highlight large-scale trends across
the entire Swiss Alps. On this day, many wet-
snow avalanches released throughout the Swiss
Alps. The wet-snow avalanche activity model pre-
dicted the highest wet-snow avalanche probability
on north-facing slopes between 1800 and 2400 m
a.s.l. (Figure 3a), whereas the probabilities were
lower for south-facing slopes (Figure 3b). This was
in good agreement with avalanche observations
from that day, which showed relatively wide-spread
wet-snow avalanche activity throughout the Swiss
Alps (Figure 3c). As many south-facing starting
zones had already avalanched earlier in the spring
season, most avalanches on this day released from
north-facing slopes, as predicted by the model.

4. PRACTICAL EXPERIENCE

The RF classifiers presented above were primarily
developed within different research projects at SLF.
Typically, the integration of scientific findings into op-
erational forecasting tends to be a rather slow pro-
cess. In this case, however, the projects were car-
ried out in close collaboration with avalanche fore-
casters, enabling us to rapidly evaluate and inte-

Model Performance Added value
Danger
level

About as good
as our own as-
sessment

Identifying spa-
tial patterns

Snow in-
stability

As good or better
than our own as-
sessment

Identifying spa-
tial patterns and
temporal evolu-
tion

Wet-
snow

As good or better
than our own as-
sessment

The start of wet-
snow avalanche
cycles

Table 1: Overview of perceived performance and added value of
each model.

Figure 3: (a) Predictions of the wet-snow avalanche model for
north-facing virtual slopes on 1 May 2023. The boxplots show
the distribution of the interpolated predictions by elevation binned
in 200 m intervals. The dashed red line is the best-discriminating
threshold between avalanche-days and non-avalanche days in
forecast mode according to Hendrick et al. (2023). The shaded
grey area represents the elevation range where AWS are avail-
able. The dark blue points are the predictions at AWS. (b) Pre-
dictions of the wet-snow avalanche model for south-facing virtual
slopes. (c) Avalanche observations on 1 May 2023. Colors in-
dicate the type of avalanche, and the size of the circles corre-
sponds to the avalanche activity index. The number above the
circle shows the elevation of the starting zones (e.g., 21 = 2100
m a.s.l.).

grate these models into the operational avalanche
warning service. The machine learning models
have now undergone testing for three winter sea-
sons, and in the following we summarize the percep-
tions of avalanche forecasters regarding their perfor-
mance and highlight their main advantages.
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Within the avalanche warning service, the models
are regarded as a valuable and unbiased second
opinion in the decision-making process. They are
generally considered to be on par with, if not supe-
rior to, the assessments made by forecasters (Table
1). The primary benefit of these models, along with
the visual representation of their output, lies in the
ability to identify spatio-temporal patterns, that are
usually difficult to assess. This is particularly helpful
when conditions are rapidly changing and evolving.

5. CONCLUSIONS

Machine learning methods are ideally suited to
tackle the non-linear, multi-variable complexity in-
volved in avalanche forecasting. A crucial aspect
here is data quality, as collecting and maintaining
high-quality data is paramount for effectively training
and validating machine learning models. Such mod-
els can efficiently analyze and process large vol-
umes of data, including snowpack measurements,
meteorological measurements, and forecasts. Addi-
tionally, machine learning models have the poten-
tial to learn from new data, enhancing the accu-
racy of avalanche forecasts over time. In this con-
text, we recently developed and implemented three
random forest classifiers to predict the avalanche
danger level for dry-snow conditions, dry-snow in-
stability and wet-snow avalanche probability. The
models were rapidly integrated into avalanche fore-
casting, in part due to their ability to offer ob-
jective assessments based on data-driven analy-
sis. The models are a valuable addition to tradi-
tional forecasting methods by providing novel infor-
mation on spatio-temporal patterns that are other-
wise difficult to assess. In the future, fully data-
driven model chains combining (1) improved phys-
ical snow cover models, (2) gridded meteorological
input data at fine spatial resolutions and (3) new ma-
chine learning methods, will play an increasingly vi-
tal role in avalanche forecasting. Beyond collecting
high-quality ground truth data for training and vali-
dation, the main challenges will lie in effectively ag-
gregating the outputs of the growing number of mod-
els, and developing intuitive visualizations that effec-
tively communicate the model output to forecasters
and decision-makers.
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van Herwijnen, A., and Schweizer, J.: Automated prediction
of wet-snow avalanche activity in the Swiss Alps, Journal of
Glaciology, pp. 1–14, doi:10.1017/jog.2023.24, 2023.

Hendrikx, J., Murphy, M., and Onslow, T.: Classification trees
as a tool for operational avalanche forecasting on the Seward
Highway, Alaska, Cold Regions Science and Technology, 97,
113–120, doi:10.1016/j.coldregions.2013.08.009, 2014.

Lehning, M., Bartelt, P., Brown, R., Fierz, C., and Satyawali,
P.: A physical SNOWPACK model for the Swiss avalanche
warning; Part II. Snow microstructure, Cold Regions Science
and Technology, 35, 147–167, doi:10.1016/S0165-232X(02)
00073-3, 2002.

Mayer, S., van Herwijnen, A., Techel, F., and Schweizer, J.: A
random forest model to assess snow instability from simulated
snow stratigraphy, The Cryosphere, 16, 4593–4615, doi:10.
5194/tc-16-4593-2022, 2022.

McClung, D. and Schaerer, P.: The Avalanche Handbook, The
Mountaineers Books, Seattle WA, U.S.A., 3rd edn., 2006.

Mitterer, C., Techel, F., Fierz, C., and Schweizer, J.: An opera-
tional supporting tool for assessing wet-snow avalanche dan-
ger, in: Proceedings ISSW 2013. International Snow Science
Workshop, Grenoble, France, 7-11 October 2013, edited by
Naaim-Bouvet, F., Durand, Y., and Lambert, R., pp. 334–338,
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