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ABSTRACT: Avalanche forecasters and snow scientists use physically based snow stratigraphy 
models to fill spatial and temporal gaps in field-based snow profile observations. These models gener-
ate stratigraphy predictions using meteorological input from automated weather stations (AWS) or nu-
merical weather prediction (NWP) models. The choice of input data is often determined by data availa-
bility or convenience instead of giving full consideration to the most appropriate source for a particular 
application. For example, while AWS may provide weather observations that better represent a partic-
ular site, they have large up-front costs and require specialized personnel to service and maintain. The 
goal of this study is to quantify the accuracy of snow stratigraphy produced by the SNOWPACK model 
driven by different input data, with a particular focus on cost-benefit analysis for operational avalanche 
forecasting. We generate modeled snow profiles at a field site in the Bridger Range of southwestern 
Montana, USA, using a) observations from an AWS at the field site and b) NWP output from the NOAA 
High-Resolution Rapid Refresh (HRRR) model. Validation data consist of a season-long time series of 
10 manual snow profiles. We use dynamic time-warping (DTW) to quantify the overall and grain-type 
categorized similarities between modeled and in-situ observed profiles that are collocated in time and 
in space. Based on the similarity results, we present a cost-benefit analysis that considers the cost of 
installing and maintaining an AWS alongside the improved representation of snow depth, grain size, 
and weak layer types. 
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1. INTRODUCTION 

Avalanche forecasters and snow scientists use 
physically based snow stratigraphy models, in-
cluding SNOWPACK (Bartelt and Lehning, 2002) 
and Crocus (Vionnet et al., 2012) to fill spatial and 
temporal gaps in field-based snow profile obser-
vations. These models generate stratigraphy pre-
dictions using meteorological input data, includ-
ing air temperature, humidity, wind, net radiation, 
and precipitation. Although initial demonstrations 
of snow models used input data from automated 
weather stations (AWS) to predict one-dimen-
sional stratigraphy at individual points (Lehning et 
al., 1999), spatially distributed, interpolated pre-
dictions soon followed by employing three-dimen-
sional models (e.g., ALPINE3D; Lehning et al., 
2006) and networks of AWS or output from nu-
merical weather prediction (NWP) models as in-
put data (Bellaire et al., 2011; Bellaire and Ja-
mieson, 2013). These strategies are especially 
effective for modeling snow on regional scales 
where AWS and in situ observations are sparse 
or unavailable, and have been employed over 

many regions (Morin et al., 2020), including the 
Canadian Rocky Mountains (Horton and Haegeli, 
2022), the French Alps (Vionnet et al., 2019), and 
the Swiss Alps (Richter et al., 2021; Pérez-Guillén 
et al., 2022). However, NWP output may not pro-
vide a good representation of true weather condi-
tions at a particular area of interest, especially in 
mountainous terrain. The spatial resolution of 
NWP models (often on the order of a few kilome-
ters) may be too coarse to resolve fine-scale ter-
rain features that are important for localized oro-
graphic precipitation events (Goger et al., 2016; 
Lehner and Rotach, 2018). Unrepresentative 
data derived from NWP models will result in un-
representative modeled stratigraphy. 

Various commercial and non-profit operations 
that may wish to incorporate snow models into 
their avalanche forecasting workflows typically 
have limited human and material resources. In-
stallation of an AWS at an area of interest would 
provide high-quality input data for a snow stratig-
raphy model but presents a significant up-front 
cost. On the other hand, NWP output from many 
weather models is freely available but accessing 
and preparing NWP output for stratigraphy model 
input data is not always straightforward. Regard-
less of the input data, configuring and running a 
stratigraphy model is a specialized skill that may 
require an operation to hire new personnel. Addi-
tionally, the benefits derived from these costs are 
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not always easily determined. Forecast opera-
tions in different regions may place more or less 
value on a model’s ability to reproduce different 
characteristics of the snowpack. For example, 
new snow totals may be the most important pa-
rameter for a maritime operation, while accurate 
representation of deeper persistent weak layers 
may be most important for a continental opera-
tion. A model that produces reasonable snow 
depths but fails to accurately represent snowpack 
structure may provide value for some forecasting 
operations but could seem relatively useless for 
others. Quantitative interpretation of model re-
sults with respect to different snow characteristics 
can help forecasters assess the potential utility of 
incorporating such models into operational fore-
casting workflows. 

In this paper we present a case study to examine 
the stratigraphic accuracy of the SNOWPACK 
model based on input data from AWS observa-
tions and NWP output. We use dynamic time 
warping (DTW) to assess the overall and layer-
specific similarities between the modeled profiles 
and in situ profiles at our study site (Herla et al., 
2021). Finally, we contextualize our results for 
small- to medium-scale operational avalanche 
forecasting using a cost-benefit analysis. 

2. METHODS 

2.1 Study Site 

Data were collected at the study site as part of the 
field experiment detailed in Miller et al. (2022). 
The study site (45.834 N, −110.935 E) is a shel-
tered meadow at 2240 m above sea level sur-
rounded by steep, sub-alpine mountain terrain 
within the Bridger Range of southwest Montana, 
USA (Figure 1). The Bridger Range has an inter-
mountain snow and avalanche climate (Mock and 
Birkeland, 2000), with average December 
through March temperatures of −3.5 to −7 ◦C and 
average annual snowfall of approximately 7.5 m 
measured at nearby Bridger Bowl Ski Area. The 
site has been host to a number of avalanche-re-
lated studies over the past 20 years (Deems, 
2002; Landry et al., 2004; Lundy et al., 2001; Van 
Peursem et al., 2016).  

 

 
Figure 1: Study site overview in the Bridger 
Range of southwest Montana, USA. 

2.2 Field data collection 

We installed an AWS at the field site (hereafter 
called HGWX) on January 7, 2021, that measured 
air temperature, relative humidity, wind speed 
and direction, four-component radiation, and 
snow depth at hourly intervals through April 25, 
2021 (Figure 2). Snow was already on the ground 
on the installation date, so we took a full snowpit 
profile in order to initialize SNOWPACK. During 
data collection, the internal heater for the upward-
facing pyranometer failed, which resulted in some 
erroneous measurements of incoming shortwave 
radiation when the sensor was coated with ice. 
We replaced these bad data using measured out-
going shortwave radiation (the downward-facing 
pyranometer did not suffer from icing issues) and 
a parameterized albedo based on the elapsed 
time since the last snow event. 

Figure 2: Photograph of study site with HGWX 
AWS and in situ snow profile collection from April 
11, 2021. 

In addition to the snow profile on the installation 
date, we collected nine snow profiles over the 
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course of the study period immediately adjacent 
to HGWX. For each snow profile we recorded 
grain type, grain size, and hand hardness for 
each layer, and conducted density and tempera-
ture profiles over the full depth of the pits. We use 
these nine snow profile observations to validate 
model results. 

2.3 Numerical weather prediction data 

We used the High Resolution Rapid Refresh 
(HRRR) v4 atmospheric model (Dowell et al., 
2022) to provide NWP input data for SNOW-
PACK. The HRRR model is run every hour and 
generates a 60+ hour forecast on a 3-km grid over 
the contiguous United States. For this study we 
use only HRRR analysis data, i.e., data from the 
f00 file generated every hour (see Dowell et al., 
2022, for more information about file structure). 
We selected the four closest points on the 3-km 
HRRR grid to our study site (Figure 1) and down-
loaded the necessary variables to run SNOW-
PACK at each of the points. A comparison of 
HGWX and HRRR variables revealed that mod-
eled snow depth and snow water equivalent 
(SWE) were poor representations of true snow 
conditions at the field site. Instead, we use an ac-
cumulated precipitation variable from HRRR that 
represents the water content of both liquid and 
solid precipitation to drive SNOWPACK. 

2.4 SNOWPACK model simulations 

We used the one-dimensional snow cover model 
SNOWPACK (v3.5) for this study (Bartelt and 
Lehning, 2002). We initiated the model runs with 
the field collected snow profile from January 7, 
2021, and modeled at an hourly time step through 
April 25, 2021. We used standard model settings 
except applying the “NIED” water transport 
method for snow because it is capable of model-
ing more complex water movement than the 
standard “bucket” method (Hirashima et al., 
2010). We ran model simulations for HGWX and 
each of the four nearest HRRR gridpoint inputs.  

2.5 Quantitative profile similarity analysis  

To quantify the accuracy of SNOWPACK model 
results we use the dynamic time warping (DTW) 
method from the sarp.snowprofile and 
sarp.snowprofile.alignment packages developed 
by Herla et al. (2021) for the R programming lan-
guage (R Core Team, 2019). The DTW method 
ingests two snow profiles, identifies correspond-
ing layering, and resamples and rescales the lay-
ers of a query profile (modeled in this study) to 
that of the reference profile (observed in this 
study). To calculate similarity, layers of the 
aligned profiles are mapped and the distances 

between the full set of matched layers are com-
bined into an overall similarity score. This score 
can be further divided into separate similarity 
scores for new snow (precipitation particles and 
decomposing fragments), bulk grains (rounds, 
facets, rounding facets, and melt forms), weak 
layers (surface and depth hoar), and crusts (melt 
freeze crusts and ice forms). These four layer-
specific similarity scores are weighted differently 
in the calculation of the overall similarity score; 
weak layer and crust scores are weighted more 
heavily to accentuate their importance in ava-
lanche forecasting applications. 

We calculate similarity scores between observed 
in situ snow profiles and all SNOWPACK mod-
eled outputs, both AWS-driven and NWP-driven, 
in all snow layer categories. We also use the av-
erageSP function in the sarp.snowprofile.align-
ment package to create an average HRRR profile 
from the four individual grid points. This produces 
a representative profile for the regional conditions 
around the study site, but we note that this is dif-
ferent from spatially interpolating the snow pro-
files using a physically based model such as AL-
PINE3D. 

3. RESULTS AND DISCUSSION 

3.1 AWS - HRRR comparison 

The HRRR modeled data captured each of the 
weather patterns measured at HGWX but did 
have easily identifiable biases. HGWX consist-
ently recorded colder air temperatures than all of 
the HRRR model grid points (Figure 3). The sea-
sonal mean air temperature differences ranged 
from +0.29 to +2.82°C for the four HRRR model 
grid points. To correct for these warm biases, we 
subtracted the seasonal mean difference from 
each observation in the timeseries, at each of the 
four HRRR points. 

Figure 3: Air temperatures as modeled by the 
nearest four HRRR grid points (blue and green) 
before bias-correction and recorded at HGWX 
(black). 
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Incoming shortwave radiation recorded at HGWX 
was substantially less than modeled radiation at 
all of the HRRR points (Figure 4). Cumulative 
daily incoming shortwave radiation at all HRRR 
points was 35.5 - 56.2% higher throughout the du-
ration of this study. This directly affects the mod-
eled consolidation and melt of surface snow. We 
attribute this difference to localized terrain effects 
at our study site, which are not present at the 
HRRR points. At the site, HGWX is installed near 
the base of a 300 m ridge with steep walls imme-
diately to the west. Recorded incoming shortwave 
radiation drops sharply around 14:00-16:00 local 
time during the winter when the sun moves be-
hind this ridge. The HRRR points are far enough 
away from the site that they are not influenced by 
this local terrain feature, though we question 
whether this effect would be well-represented at 
the 3 km spatial resolution of the HRRR model. 
We did not make any adjustments to the HRRR 
solar radiation values before using the data to 
drive the SNOWPACK model. 

 
Figure 4: Daily summed incoming shortwave ra-
diation as modeled by the nearest four HRRR 
points (blue and green) and recorded at HGWX 
(black). 

We also scaled the precipitation at each of the 
four points using a multiplier (15 for this study) to 
correct for underestimation bias. This type of pre-
cipitation bias correction has been utilized in other 
studies (Bellaire et al., 2011, 2013). 

3.2 Modeled and observed snow profile 
comparison 

Calculated snow profile similarities between in 
situ observed and SNOWPACK modeled profiles 
resulted in overall similarity scores between 0.62 
and 0.21 (Figure 5). The HGWX-derived simula-
tions consistently outperformed all HRRR-derived 
simulations in all similarity categories when 
tested against the observed profiles. Within the 
HRRR-derived profiles, we note that input data 
from the points on the west side of the Bridger 
Range ridgeline resulted in higher similarities to 

observed profiles than points on the east side of 
the ridge, even though the study site itself is east 
of the ridge. We hypothesize that this is due to 
poor terrain representation on the 3 km HRRR 
grid but requires more investigation to be certain. 

For all modeled profiles, weak layer similarity is 
the highest but also shows the largest range. For 
example, profiles from the HGWX, both HRRR 
points west of the Bridger Range ridgeline, and 
the average HRRR profile all have at least one 
comparison date with a weak layer similarity 
score of 1.0. However, these perfect similarity 
scores are for the April 24 profiles, where the ob-
served and modeled profiles contained a single 
layer of basal depth hoar of similar thickness that 
counted toward the weak layer category in the 
similarity analysis. All modeled profiles scored 
their minimum weak layer similarity with the Jan-
uary 14 comparison, after only one week into the 
experiment. On this date the modeled profiles 
feature a rapidly grown layer of depth hoar to ~40 
cm thick during a period of cold clear weather, 
which contrasted with the observed 7 cm thick 
layer of depth hoar.  

New snow and bulk grain similarity scores dis-
played considerable variation across the modeled 
profiles. New snow similarity scores ranged from 
0.91 to 0, and the extremely low values are the 
result of either missed precipitation or mis-char-
acterized (rain instead of snow) events. Bulk grain 
similarity ranged from 0.64 to 0.07 and was gen-
erally well captured by all models with the excep-
tion of the HRRR southern grid point modeled 
profiles. 

Crusts consistently had the lowest similarity 
scores throughout the season. We attribute these 
low scores to a persistent melt freeze crust seen 
in the midpack of our SNOWPACK simulation 
outputs that was never observed in the field. This 
consistently mis-represented crust layer is also 
the primary contributor to our relatively low overall 
similarity scores due to the preferential weighting 
of weak layers and crusts. 

We also compared the HGWX-derived and 
HRRR-derived model profiles directly (Figure 6), 
instead of using the observed profiles as the ref-
erence. These results indicate that the represen-
tation of crusts and precipitation particles have 
the largest variation between the two input da-
tasets, with closer agreement in weak layer rep-
resentation. Again, we note that the HRRR points 
on the opposite side of the Bridger Range ridge-
line from the HGWX have higher similarity to 
HGWX-derived profiles.
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Figure 5: Similarity scores between observed in situ snow profiles and different SNOWPACK model 
output broken into weak layer, crusts, precipitation particles, bulk grains, and overall profile similarities. 

 
Figure 6: Similarity scores between HRRR-derived SNOWPACK model output compared to HGWX-
derived output. 

3.3 Individual profile similarities  

We additionally analyzed two sets of profiles, mid-
winter (February 10) and spring (April 11), to pro-
vide further insight into model discrepancies and 
strengths during the 2021 winter (Figure 7). 

A sizable storm deposited approximately 80 cm 
of new snow at the study site in the two days prior 
to the February 10 profile, then air temperatures 
dropped gradually to -15°C at the time of field 
work. When compared to the observed profile 
from February 10, the HGWX-derived and 
HRRR-derived profiles have the same similarity 
scores for crusts (0.0) and weak layers (0.88). 
Only one thin (1 cm) pencil-hard crust layer was 
recorded in the observed profile at 63 cm from the 
ground, yet both modeled profiles featured thick 
melt-freeze crusts 10-20 cm thick at knife hard-
ness resulting in the 0 similarity score. The high 
weak layer similarity score of this set is related to 

the single weak layer of basal depth hoar quanti-
fied in the similarity analysis found in all profiles. 
The HGWX-derived profile has slightly higher 
similarity scores than the HRRR average profile 
for both new snow (0.83, 0.79, respectively) and 
bulk grains (0.41, 0.4, respectively), which results 
in a higher overall similarity for HGWX (0.53, 
0.52, respectively).  

Prior to the April 11 field day, a small storm de-
posited 6 cm of new snow atop 30 cm of mixed 
melt forms, melt freeze crusts, and ice lenses 
from interspersed diurnal warming over the previ-
ous two weeks. The difference in similarity scores 
between HGWX-derived (0.58) and HRRR-de-
rived (0.47) models increased for the April 11 pro-
files. The gap in similarity is primarily due to dif-
ferences in weak layer (0.88 and 0.60 for HGWX 
and HRRR, respectively) and bulk grain (0.32 and 
0.03, respectively) similarity scores. All models 
handle the crust-melt-form matrix of the upper 
snowpack well, while the midpack exhibits the 
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Figure 7: Observed, HGWX modeled and HRRR average modeled snow profiles from February 10, 2021 (top 
row), and April 11, 2021 (bottom row).

greatest differences. The midpack of the observed 
April 11 profile is isothermic but contains thick (~50 
cm) layers of rounded grains that transition to facets 
below 57 cm from the ground. The HGWX-derived 
temperature profile is not completely isothermic and 
contains a mixture of rounded grains, melt forms, and 
rounding facets. The HRRR-derived profile exhibits a 
very similar temperature profile to that of the ob-
served profile yet contains only melt forms (i.e., wet 
snow). We attribute these moisture related differ-
ences primarily to the increased solar radiation at the 
HRRR points. 

We note that the results presented here could vary 
widely for other case studies. For example, AWS- 
and NWP-derived model profiles might be more sim-
ilar if an NWP point is located closer to the site of 
interest. Terrain complexity is also an important fac-
tor, and NWP-derived profiles could better represent 
a site of interest if the site is not highly influenced by 
small-scale topographic features. 

4. COST BENEFIT ANALYSIS 

The AWS-derived SNOWPACK model profiles had 
higher similarity scores than NWP-derived model 
profiles when compared to in situ observations. In 
this case study, the largest improvement was in the 
representation of new precipitation amounts through-
out the season and bulk grain layers during the tran-
sition from dry to wet snow in the spring. In order to 
access these benefits, operational avalanche fore-
cast centers will need to devote resources to the in-
stallation and maintenance of an AWS. Estimated 
costs for a fully equipped AWS with all necessary 
sensors, data logger, batteries, and solar panels are 

approximately $20,000 from a reputable manufac-
turer, plus additional expenses for radio equipment 
for automated data transfer.  

In addition to these up-front costs to purchase AWS 
equipment, we estimate that initial AWS installation 
and ongoing maintenance during the season require 
between 1-2 weeks of devoted personnel hours. In 
the United States, avalanche forecasters are often 
hired through federal agencies at the GS7 level, cor-
responding to a salary of up to $23.98 per hour. AWS 
installation and maintenance at this rate costs be-
tween $960–1920. We note that these costs can rise 
considerably if sensors malfunction or break during 
the winter season, which is not uncommon in harsh 
alpine environments. In situ snow profile collection is 
necessary to validate model performance, but we do 
not anticipate additional costs in this regard as dig-
ging pits already represents a significant portion of a 
forecaster’s duties. However, prioritizing in situ data 
collection at the AWS location may prevent broader 
observations across the forecasting region. 

Regardless of the input data source, avalanche fore-
casting operations implementing snow stratigraphy 
modeling within their workflows will need to budget 
additional personnel hours for the task. Although 
NWP data are generally free to download, accessing 
and processing the data to be usable as stratigraphy 
model input requires considerable programming ex-
pertise. Similarly, installing and operating snow cover 
models are not always straightforward. We estimate 
at least one month of devoted personnel hours for an 
employee with some familiarity with coding and 
weather models, for an estimated cost of $3850. 
Once initial computer workflows are set the process 
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can be largely automated for daily forecasting, bring-
ing the time requirement down to an estimated 15 
minutes per day to incorporate model output into op-
erational forecasts.  

Integrating snow cover models into avalanche fore-
casting operations has both short- and long-term 
benefits. In the short-term, snow cover models cap-
ture critical weak layer deposition that emerge from 
brief meteorological moments (Horton et al., 2014). 
Subtle grain metamorphism or deposition due to spe-
cific meteorological conditions are challenging to ob-
serve overnight as a forecaster, but are captured by 
snow cover models, potentially reducing forecast un-
certainty. In the long-term, models provide a basis for 
tracking specific weak layer progression throughout 
the season in a specific location (Bellaire et al., 2011, 
2013). Having a consistent grasp of one location’s 
conditions allow forecast teams to orient valuable 
field time toward additional locations, improving their 
spatial understanding of the snowpack and critical 
weak layer distributions. Additionally, scaling snow 
cover models up to multiple locations and elevations 
within an operation reduces spatial uncertainty in 
snowpack structure, especially in data-sparse areas 
(Herla et al., 2022). 

We also note that the benefits of snow cover model 
integration into operational forecasting are not imme-
diately available. Our case study illustrates the im-
portance of calibrating the modeled inputs to match 
field conditions. Specifically, we corrected tempera-
ture and precipitation using observations from the 
AWS at our study site. Similar meteorological input 
tuning could be completed without an AWS through 
repeated model runs with minor input tweaks and 
output comparison to observed snow profiles (Horton 
and Haegeli, 2022). As observations are collected 
over multiple seasons, the validation dataset be-
comes richer and likely encapsulates a wider range 
of snowpack conditions. This enables a more robust 
validation of the stratigraphy model and can increase 
understanding of the utility of the tool for a particular 
operation and site. 

We close this cost-benefit analysis with some 
thoughts on the relative strengths and weaknesses 
of AWS-derived and NWP-derived stratigraphy mod-
els. With radio or cellular transmission, it is possible 
to obtain live data from an AWS, while some NWP 
output may have a lag time of minutes to hours be-
fore it can be accessed and downloaded. Assuming 
an AWS site is well chosen and the instrumentation 
is properly installed, AWS observations will provide a 
more accurate representation of the snowpack at a 
site of interest, which is likely to result in more accu-
rate stratigraphy models. The observations are easily 
validated and data files are typically more approach-
able than NWP output. However, up-front equipment 
costs are high, and sensor malfunction mid-season 
can result in a data gap of days to weeks or longer. 
NWP output has no up-front direct costs and data 

availability is highly reliable, and provides opportunity 
to scale modeling efforts from a single point to much 
larger regions (e.g., Horton and Haegeli, 2022). How-
ever, this method potentially represents a larger tech-
nical hurdle and, in most cases, will result in a less 
accurate representation of the snowpack for specific 
locations. 

5. CONCLUSION 

We used input data derived from both AWS observa-
tions and NWP models to drive a snow stratigraphy 
model at a field site in southwest Montana, USA. 
AWS-derived modeled profiles showed higher quan-
titative similarity scores to in situ observations than 
NWP-derived profiles, especially for new snow and 
bulk grain layers. We attribute the lower performance 
of NWP-derived models to poor representations of 
terrain and its local influence on incoming shortwave 
radiation in the NWP inputs. We also observed the 
creation of additional melt freeze crusts in all SNOW-
PACK modeled outputs that did not align with our 
field collected profiles. While the particular similarity 
scores are unique to our study site, the analysis and 
methodology detailed here can broadly serve as a 
template for avalanche forecast operations to assess 
the potential utility of stratigraphy models for their 
specific workflows.  Forecasting operations can ex-
pect personnel costs of approximately $4000 for ini-
tial implementation of any snow stratigraphy model-
ing, plus an additional $22,000 for up-front AWS 
equipment costs, installation, and ongoing mainte-
nance. 
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