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ABSTRACT: Manual classification of terrain using the Avalanche Terrain Exposure Scale (ATES) is
time consuming. To increase the efficiency of expert terrain mapping, this study proposes a fully
automated algorithm within GIS software to be used as a base layer to guide expert mapping. Our new
algorithm is based on the technical model for ATES zoning. This model has specific terrain based
thresholds that can be applied for automated terrain based modelling. Our algorithm expands on prior
work by including the Potential Release Area (PRA) model to calculate the likelihood of an avalanche
releasing from a start zone. We also use the raster based, TauDEM model to determine the avalanche
runout length based on a specified alpha angle from the identified start zones. The start zone and
avalanche runout data are then merged with the slope incline thresholds according to the model for
ATES zoning. The final product is a 10 m resolution ATES map accounting for slope incline, start zone
density, avalanche runout and slope shape. As a base layer for expert guided mapping, this product
could provide the necessary quantitative input to ensure robust and consistent classification across
different regions in Norway, or globally. We demonstrate the utility of our methods by comparing expert
guided ATES maps to those generated solely by our new algorithm.
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1. INTRODUCTION Tromsg rise from a sea level to an elevation of
The Avalanche terrain exposure scale (ATES) is roughly 1200 m a.s.l. The approximate tree line
a terrain classification system developed by elevation for the region ranges from 300-350 m
Parks Canada to better communicate the a.s.l. The area is known as a mountainous fjord
complexities and risks of traveling in avalanche landscape with steep mountains and u-shaped
prone terrain (Statham et al., 2006). In 2012, the valleys as a result of glacial erosion. The area
Norwegian Water Resources and Energy around Tromsg has an Arctic transitional climate
Directorate (NVE) conducted a pilot study to due to the low insolation in the polar regions and
determine whether the Canadian ATES conflicting weather systems as a result of warm
classification could be adapted for Norway. A ocean currents in the West and cold continental
Norwegian version was proposed and several areas in the East (Velsand, 2017).

locations across the country were manually
classified by experts (NVE, 2014). This paper B QIEEEe )~ W /A Tl T\
presents an algorithm to derive high spatial o I :
resolution ATES maps based on the practical WS
model proposed by Campbell and Gould (2014).
The approach could be used as a base layer for
expert guided mapping to ensure quantitative i < -G

rigidity and consistent classification across 53
different regions in Norway, or globally.

1.1 Study Area
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We used a case-study approach to examine the - = ‘
performance of the automated ATES algorithm. C o A ; =
Our three case study regions are located in the WP i WY A
26,000 km? county Troms, Norway, a popular TRy 20Kiomells

area for backcountry skiing. Fagerfiellet,
Gabirielfjellet and Skitntinden are three popular
mountains in the proximity of the county capital 1.2ATES

Tromsg (Figure 1). The mountains proximal to Campbell and Gould (2014) identified that the
technical ATES v1.04 (Statham et al., 2006) has
several limitations and proposed a more
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thresholds (Table 1). So far over 8,000 km? of
zoned terrain has been classified at the basin
scale of 100 m to 1 km using this method. At this
scale, it can be useful for recreational trip
planning, but not for route finding in complex
terrain were a spatial scale of at least 20-30 m is
needed (Schweizer, 2003). Larger scale (i.e.
higher resolution) maps are therefore needed to
open up the possibility for more detailed route

decision-making (Thumlert and Haegeli, 2017).
Several different approaches have been
attempted (Gavalda et al.,, 2013; NVE, 2014;
Schmudlach and Koéhler, 2016; Thumlert and
Haegeli, 2017). However, for a spatial ATES
classification to be efficient, a fully automated
algorithm would need to be developed
(Schmudlach and Koéhler, 2016).

Table 1: Proposed model for zoning with the Avalanche Terrain Exposure Scale. Thresholds listed in

bold-type are required for that particular zone classification. (From: Campbell and Gould, 2014).

Starting zone density

No start zones.

Isolated start
zones with < Size

Isolated start zones with <
Size 3 potential. or several

Class 0 Class 1 Class 2 Class 3
(optional) (Simple) (Challenging) (Complex)
Open o ° 90 % < 20° 90 % < 30°
Slope 99 % <20 R ;
imﬁé . %?5%0 %?S%O <20% < 25°
and forest Mixed | gq o/ < 250 90 % < 25 90 % < 35 45 % > 35°
density? - 99 % < 35° 99 % < 45°
Forest | 99 9, <30° 90 % < 35° 99 % < 45°
No start zones with | No start zones with > Size 3 | Numerous and
> Size 2 potential. potential. overlapping paths

of any size.
Any position within

avalanche paths®

avalanche paths.

paths with > Size 2
potential.

Beyond annual runout
extent for paths with > Size
3 potential.

2 potential. start zones with < Size 2 path
potential.
Beyond 10-year Single path or paths with Potential for
Interaction with No exposure to runout extent for separation. complete burial

and fatal injury.

Terrain traps*

No potential for
partial burial or any

injury

No potential for
complete burial or
fatal injury.

Potential for complete burial
but not fatal injury.

Potential for
complete burial
and fatal injury.

Slope shape

Uniform or concave.

Uniform

Convex

Convoluted

'Slope inclines are averaged over a fall-line distance of 20-30 m.

20pen: < 100 stems/ha or > 10.0 m tree spacing on average. Mixed: 100-1000 stems/ha or 3.2-10.0 m tree spacing on average.

Forest: > 1000 stems/ha or < 3.2 m tree spacing on average.

3Position within paths based on the runout extent for avalanches with a specified return period.

“Terrain traps are features in tracks or runouts that increase the consequences of being caught in an avalanche. Thresholds are
based on the potential increased consequences they would add to an otherwise harmless avalanche. For this purpose, terrain
traps can be thought of as either trauma-type (e.qg. cliffs, trees, boulders, etc.) or burial-type (e.g., depressions, abrupt transitions,
open water, gullies, ravines, etc.). Degrees of burial used in this model are based on Canadian standard avalanche involvement

definitions (CAA, 2014).

2. METHODS

2.1 Digital elevation model

A digital elevation model (DEM) for Troms county
was downloaded from the Norwegian Mapping
Authority in the nationwide 10x10 meter USGS
raster model (Kartverket, 2013). The coordinate
system EUREF89 Universal Transverse
Mercator Zone 33, 2d + NN54, one of Norway’s
official coordinate systems were chosen. The
vertical standard deviation of the DEM is + 4 to 6
m and the scale is 1:10,000.

2.2 Slope
A slope raster was delineated after the thresholds

proposed by Campbell and Gould (2014) in ESRI
ArcMap 10.6. All slope inclines above 40° were
assigned class 3, values between 40° — 25° were
assigned class 2. Slope inclines below 25° were
assigned class 1 and the optional class 0
threshold was put at 15°. The delineated classes
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were then exported as a shapefile for each class
(Figure 2).

2.3 Potential Release Area

To calculate the start zone density (Table 1) the
potential release area (PRA) algorithm is used
(Veitinger et al., 2016). The algorithm uses three
criterions; slope, wind shelter and roughness,
calculated from the input parameters which is a
DEM, average snow depth and main wind
direction (optional, not used). Usinga 10 m DEM,
the roughness criteria is neglected due to the
coarse scale. The script is optimized for a 2 m
DEM, but both a finer and coarser scale DEM
could be applied (Veitinger et al., 2016). The PRA
algorithm is written in the programming language
R (V. 3.4.4, https://www.r-project.org/). Important
functions are accessed by the RSAGA package
(Brenning, 2008), connecting to the open source
SAGA GIS software (V. 2.2.2, http://www.saga-
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ais.org/). The PRA output is an ASCII raster file
assigning values between 0 — 1 for each cell.
Higher value means an increased likelihood of
avalanches to release. In this paper, values
below 0.05 are not considered to be a starting
zone. The values between 0.05 — 1 was exported
as a shapefile and assigned class 3 (Figure 2).

2.3.1 Slope
Slope inclines between 28 and 60° are

considered to be possible release areas. Slope
inclines between 35° and 45° are assigned the
largest membership value. On each side, the
membership values decrease and slope inclines
below 30° and above 50° are assigned low
membership values.

2.3.2 Wind shelter

The wind shelter index is used instead of a
curvature measure. Wind exposed terrain have
negative values and are assigned low
membership values, wind sheltered terrain have
positive values and are assigned high
membership values. Studies show that wind-
shelter parameters based on a DEM can reflect
the accumulated snow patterns to an outstanding
extent (e.g. Schirmer et al., 2011; Winstral et al.,
2002)

2.3.3 Roughness

The roughness factor is derived from the
neighboring tiles in the raster in a 3x3 window.
The scale of the roughness factor is therefore
averaged over a line of 30 m. Planar and smooth
terrain are assigned low roughness values and
high membership values because these are more
prone to avalanche. Rough surfaces are
assigned high roughness values and are less
likely to avalanche (Veitinger and Sovilla, 2016).

2.4 Avalanche runout

To estimate the avalanche runout, the hydrologic
terrain analysis software TauDEM and TauDEM
toolbox for ESRI ArcMap was used to derive
interaction with avalanche paths from the DEM
(Table 1) (version 5.1, http://hydrology.usu.edu/
taudem/). This is a suite of tools that can compute
the avalanche runout length. The D-Infinity
Avalanche tool detects all locations downslope of
a given starting cell until a given alpha angle from
the starting cell is reached (Tarboton, 2013). In
the algorithm, avalanche runouts were calculated
for using the tools from TauDEM and alpha angle.
Runouts where exported as shapefiles where an
18° alpha angle runout were assigned class 1,
while a 23° alpha angle runout were assigned
class 2 (Figure 2). These runout angles were
based on studies of avalanche runouts in Norway
(Lied and Bakkehgai, 1980).
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2.5 Merging and generalization

Finally, all the shapefiles for each class where
merged together. All clusters smaller than 10,000
m? within a class were bumped up to the higher
class it's surrounded by. All areas that have
multiple class values are assigned the highest
class. At the end, all polygons are smoothed out
using generalization tools in ESRI ArcMap 10.6.

2.6 Simplified flowchart
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Figure 2: The main s eps of the algorithm.

3. RESULTS

To assess the new automated ATES algorithm,
expert guided maps classified by NVE (2014) for
three areas are compared against the results
from our algorithm. We focus our analysis here
on one of our three case study areas for the sake
of brevity. The classification undertaken by NVE
in 2012 was a manual classification and could
account for land cover, something which the
current version of our algorithm doesn’t. Future
work will address this deficiency. As such, areas
below 300-350 m a.s.l. (lower third) may be
incorrectly classified in some locations as a result
of the lack of forest cover consideration. A visual
comparison of the maps is shown in Figure 3 and
4 with the NVE expert guided classification in
figure 3, and the new algorithm results in figure 4.

3.1 Algorithm performance

To measure the performance of the algorithm
compared to the expert guided NVE maps, we
used the model performance metrics, true skill
score (TSS) and the probability of detection
(POD) as calculated from a 2x2 contingency plot
(e.g. Hendrikx et al., 2014; Table 2).

Table 2: The algorithm model performance
scores compared to the expert guided maps.
TSS POD
Class 1 0.15 0.57
Class 2 -0.02 0.57
Class 3 0.21 0.69
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Figure 3: Map of Fagerfjellet showing the output
map from the algorithm, where green, blue and
black is class 1, 2 and 3 terrain respectively.
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Figure 4: Map of Fagerfjellet showing the expert
guided classification done by NVE.
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A beta version of the ATES mapping for all of
Norway can be found at https://temakart.nve.no/
link/?link=autokast.

4. DISCUSSION

4.1 Methods

To create an automated algorithm for ATES
terrain classification, it's challenging to use the
qualitative classification (v1.04) as proposed by
Statham (2006). Therefore, the quantitative
model proposed by Campbell and Gould (2014)
is used. Its primarily derived from slope incline
and land cover, but the model additionally
emphasizes start zone density, interaction with
avalanche paths, terrain traps and curvature are
emphasized (Table 1). To avoid simple terrain
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being neglected, the non-avalanche class
threshold was changed to 15°

The second most important factor is the land
cover. Implementing a land cover in the algorithm
should be straight forward based on the given
thresholds dividing the land cover into open,
mixed and forest. At this stage, it has not been
implemented in the algorithm due to the lack of
reliable land cover data for Norway at the relevant
spatial scale. If in the future, robust landcover
data were to become available at the appropriate
scale, then this could be easily implemented into
the algorithm.

The avalanche runout is estimated using the
raster based TauDEM model (Tarboton, 2013) to
determine the avalanche runout length based on
the alpha angle from the identified start zone. The
advantage of using the alpha angle to estimate
the runout length is that it's a powerful input
variable to fine tune the algorithm runout
estimations for different regions and climates.
Lied and Bakkehgi (1980) undertook empirical
studies on 423 well known maximum extents of
avalanche events in Norway. They found that
100% of avalanches stop within an alpha angle
of 18° and 95% stop within 23°. Due to this, all
runouts within an 18° alpha angle would be
classified as simple terrain. Avalanches don’t
normally run that far, so a 23° runout angle was
set as the threshold for challenging terrain,
having more frequent avalanches.

4.2 Results

The algorithm is on average within the thresholds
proposed by Campbell and Gould (2014), except
for in simple terrain where 15% of the terrain is
between 20-25°, 5% more than allowed (Table 1).
This value is dependent on the total amount of
simple terrain and the valley floor has not been
classified. Including these, would increase the
number of data points below 20°, resulting in a
lower percentage of terrain between 20-25°. At
this stage, the algorithm works well for open
terrain, but not able to account for land cover
data, something the expert guided maps does.
Due to these limitations, the maps should not be
compared directly, with only consideration given
to the POD and TSS scores.

Furthermore, the survey area classified by the
algorithm is larger than the NVE classification.
However, only the area mapped by NVE is used
for the contingency plots. Looking at the figure 3
and 4, the algorithm produces a similar spatial
pattern as the NVE classification. The long
narrow corridor in the lower middle is identified in
both maps. Some small areas of this corridor is
determined as challenging by the algorithm, but
its located below the tree line and would possibly
be classified down if a land cover mask was
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included. Above this corridor, NVE has classified
the area as simple and challenging terrain. The
algorithm identified this as a potential start zone,
and therefore been classified as complex.

Looking at the POD and TSS (Table 2), the NVE
classification results in a more generous
classification. This is especially shown in
challenging terrain with a TSS of -0.02.

Various other automated models have been
proposed to create ATES maps. Schmudlach and
Kdhler (2016) developed an algorithm that
computes a 10 m continuous ATES map based
on the statistical likelihood of human triggered
avalanches. A drawback with this method is that
validation is based on expert judgement making
it difficult to validate. The latest model proposed
is the one from Thumlert and Haegeli (2017)
which developed a mapping algorithm from the
movement of professional ski guides. They
developed an ATES map with a spatial resolution
of 20 m and proved that it’s possible to make an
ATES map based on observed terrain use from
professional ski guides. However, they
acknowledge that the method has several
limitations including having to decide whether the
skied terrain was a wise decision or not to
determine whether to include it in the dataset or
not. The method is also computationally
expensive and only derived from one climate over
two seasons, making it vulnerable if applied for
different climates. The advantage with the GIS
algorithm proposed in this paper is that it can be
fully automated and only needs a digital elevation
model as input. This makes it possible to map
large areas.

5. FUTURE WORK

The next logical step would be to include land
cover data if the resolution and data would
become reliable. Also, the alpha angles could be
adjusted according to the ones that can be
calculated from automatic avalanche occurrence
data (e.g. Eckerstorfer et al., 2017).

6. CONCLUSION

The goal of this work was to develop a fully
automated algorithm that would be able to
produce a high resolution ATES map from a
DEM. Comparing the algorithm towards the
expert guided ATES maps made by NVE, the
spatial trends are similar, but NVE does not map
strictly according to the proposed thresholds
making a direct comparison difficult. Despite this,
the preliminary results look promising, but more
work is needed to make a fully automated
algorithm that accounts for all parameters. A
large percentage of the Norwegian backcountry
terrain is above tree line, for such a region, the
current algorithm could already be a helpful tool
for expert guided mapping. Using the automated
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algorithm could increase the quantitative rigidity
and the consistency between different experts.
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