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ABSTRACT: Over the last decades, an increasing number of software tools for modelling rapid mass flows
(e.g. avalanches, debris flows) has been developed, tested and applied in scientific and practical studies. But
the accurate description of the involved processes still remains a challenge and assumptions are necessary
for a simplified description of the natural process. Due to these assumptions, model parameters (e.g. friction)
may not present physical properties and thus are commonly back-calculated to fit observed data, which also
involve a degree of uncertainty.

We present a Bayesian approach to perform a parameter optimization for the mass flow model r.avaflow,
based on documented avalanche events, where uncertainties arising from model simplifications and impre-
cise observations are explicitly considered. To compare simulation results and documentation data, multiple
avalanche characteristics (e.g. run-out lengths, deposition patterns or maximum velocities) are investigated.
To derive a posterior distribution for the parameters of the basal friction relation, the Metropolis-Hastings
algorithm is applied.

The posterior distribution is used to perform (i) a probabilistic forward simulation of the same avalanche
event and (ii) a probabilistic prediction for a ’theoretical unknown’ avalanche track. The dynamic peak pres-
sure results of multiple model runs are evaluated in terms of probability maps. These display the probabilities,
that an avalanche hits a certain region of the respective avalanche track, conditional on the used optimization
data and considered uncertainties. Observations allow an assessment of the correspondence between theo-
retically predicted and real events. The outcome illustrates that including uncertainties in both the optimization
and prediction process helps to asses the reliability of simulation results for future avalanche events.

Keywords: Bayes’ theorem, Metropolis-Hastings algorithm, parameter estimation, probabilistic simulation,
posterior distribution, back calculation, prediction

1. INTRODUCTION

Avalanche simulation software packages rely on
process models, which describe the physical pro-
cess. Due to a lack of process understanding and
also computational capabilities, the models have to
be simplified. This leads to process model param-
eters, which may not represent physical properties
and therefore have to be optimized. The parame-
ter estimation is done by solving an inverse problem
(Ancey, 2004), where the arising uncertainties have
to be considered in the optimization process.

In the past, several probabilistic approaches have
been proposed, which incorporate uncertainties in
the calibration or optimization of process param-
eters of simplified block models (Eckert et al.,
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2007a,b, 2010) or in the assessment of avalanche
risk (Favier et al., 2016), often limited to single
optimization variables, mainly the run-out length.
(Straub and Grêt-Regamey, 2006) apply a prob-
abilistic simulation set up to AVAL-2D, combining
a probabilistic avalanche release and deterministic
model parameter scenarios for the mass flow model.

In this work, we show the application of known
mathematical concepts and theories from the field
of Bayesian statistics to the optimization of pro-
cess model parameters for the two-dimensional
avalanche simulation tool r.avaflow (Mergili et al.,
2017). We propose a technical work flow to in-
corporate uncertainties in the optimization process
and derive parameter distributions, which can be
used for probabilistic forward simulation and predic-
tion. Finally we introduce two-dimensional probabil-
ity maps. These show conditional probabilities, that
an avalanche simulation hits a certain region, i.e.
the dynamic peak pressure results exceeds 1 kPa,
given the considered optimization data. The prob-
ability maps allow for intuitive interpretation of pre-
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Figure 1: Overview of optimization framework (adapted from Hellweger et al., 2016).

dictive avalanche simulation results and associated
uncertainties. The statistical framework for back cal-
culation (green) and prediction (blue) is depicted in
figure 1.

2. THE INPUT-OUTPUT MODEL

The used input-output model y = f (x, θ) combines
the mass flow model r.avaflow Mergili et al. (2017)
and a postprocessing of simulation results (AIMEC,
Fischer, 2013; Fischer et al., 2015). r.avaflow in-
cludes different flow models: (i) a general two phase
model and (ii) a one phase model with a classical
Voellmy friction (Voellmy, 1955; Salm et al., 1990)
or a modified frictional relation, accounting for ran-
dom kinetic energy (Buser and Bartelt, 2009). In this
work, we make use of the one phase flow model with
the process parameters θ = {δ0, ε} of the Voellmy
friction relation (Voellmy, 1955; Salm et al., 1990)
for the basal shear stress τ(b) = σ(b) tan δ0 +

g
ε
ū2 .

The boundary and initial conditions x (e.g. re-
lease volume, Vrel) are derived from documentation
data. Together with a set of process parameters θ,
a simulation run is performed and the results are
transformed in a flow path relative coordinate sys-
tem. In this coordinate system, the scalar result vari-
ables

• r . . . the run-out,

• tp . . . the true positive area,

• tn . . . the true negative area,

• umax . . . the maximal velocity

are derived and collected in the output vector y =
{r, tp, f p, umax}. The maximal velocity is a direct sim-
ulation result, whereas the other three result vari-
ables are derived from the peak pressure result and
represent the 1 kPa reach (run-out) and 1 kPa out-
line.

3. TEST CASES

We make use of two documented avalanche events
from Austria, the Kerngraben avalanche (Salzburg)
and the Wolfsgruben avalanche (Tyrol). Facts about
the events can be found in table 1.

The Kerngraben avalanche event is used for the
back calculation task, including the respective op-
timization variables and arising uncertainties. The
result of the back calculation are optimized param-
eter distributions for the process model parameters,
covering the associated uncertainties.

Using the parameter distributions, obtained from
back calculation of the Kerngraben avalanche, we
then perform probabilistic Monte Carlo simulations
evaluate the simulation results in terms of probability
maps for the following scenarios

• back calculation - forward simulation for the
Kerngraben avalanche,

• back calculation - prediction for the Wolfs-
gruben avalanche.
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Vrel fall height r umax tp tn
Kerngraben avalanche 65,000 m3 780 m 1,741 m 55 m/s 241,272 m2 1,648,774 m2

Wolfsgruben avalanche 275,000 m3 980 m 2,103 m 58 m/s 550,992 m2 1,747,317 m2

Table 1: Documented data for investigated avalanches.

Figure 2: Trace plots: shown are all proposed candidates θ∗.

4. BACK CALCULATION

The aim of the back calculation task is to trans-
late arising uncertainties (documentation and input-
output model) in a probabilistic distribution of pro-
cess parameters. In here, we perform a back calcu-
lation for the Kerngraben avalanche (for details, see
table 1).

For each simulation run with given input (bound-
ary and initial conditions x, process parameters θ)
the result variables y = {r, tp, f p, umax} are calcu-
lated. These are compared to the documentation
variables yobs (see table 1), using a likelihood func-
tion, which expresses the probability of the observed
data given the parameter combination θ

π(yobs|θ) = πerr(yobs − f (x, θ)) .

The error term models arising uncertainties

• in the measured data (run-out, velocity, af-
fected area and deposit volume),

• in the model and its numerical implementation
respectively.

To apply the Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970), we
further define the probability density πpr(θ), called
the prior density, which in our case simply rep-
resents uniform distributions within the intervals
δ0 ∈ [0◦, 30◦](μ ∈ [0, 0.577]), ε ∈ [500 m

s2 , 2500 m
s2 ].

Now we specify deterministic starting values
θ(0) = {15◦, 1500 m

s2 }. A proposal distribution
q(θ∗, θt) serves to suggest possible candidates of
parameters θ∗ within the parameter space for each
iteration step t. The likelihood of the respective
simulation results is assessed and used to decide,
which parameter combination is added to a Markov

chain. If the candidate is accepted, the parameter
combination θ∗ is set as new state (θ∗ �→ θt+1); if
the candidate is rejected, the actual state of the
chain is kept for the next iteration step (θt �→ θt+1).
This way we generate a Markov chain of parameter
combinations, asymptotically following the posterior
distribution πpost(θ). The proposal distribution is
chosen as a two-dimensional Gaussian distribution
centered at the actual state θt of the Markov chain,
with mean zero and covariance matrix Σprop

Σprop =

[
52 0
0 5002

]
.

In figure 2, trace plots of all proposed candidates
after 2000 iterations are displayed. They show, how
the parameter space for the respective parameters
has been explored. The candidates for δ0 are sug-
gested in the range from δ0 ∈ [0◦, 18◦], whereas the
distribution of possible candidates of ε is wider and
covers the whole parameter space of the prior dis-
tribution.

From the candidates, 968 different parameter
combinations were accepted, thus resulting in an
acceptance rate of 0.48. The mean values of the re-
sulting distributions are δ̄0 = 11.3◦ and ε̄ = 1714 m

s2

(see figure 3). The calculation time is about 18 h on
a single core CPU with 3.40 GHz.

5. PREDICTION

In this section we utilise the derived parameter dis-
tributions in a predictive simulation set up. Monte
Carlo simulations with a sample of the optimized
distributions allow us to estimate the variability of
simulation results with respect to the considered un-
certainties. With the given initial and boundary con-
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Figure 3: Histograms of the derived Markov chain for θ from the
back calculation.

ditions x for the respective avalanche events (see
table 1) we perform

• a probabilistic forward simulation for the Kern-
graben avalanche,

• and a probabilistic prediction for the Wolfs-
gruben avalanche.

We distinguish between forward simulation and pre-
diction, because of the considered data in the back
calculation process.

The Monte Carlo sample consists of N = 500
parameter combinations; Gaussian copulas ensure
that the marginal distributions of the sample follow
the posterior distribution θ, conserving the correla-
tions between the parameters. This leads to 500
simulation results which can be further processed
to 500 avalanche characteristics ypred and evaluated
statistically (e.g. distributions of run-outs r).

In this work we focus on the visualisation of pre-
dictive avalanche simulation results in terms of prob-
ability maps. We counted the relative hitting fre-
quency

I j =

{
1, location j gets hit
0, location j does not get hit

for an arbitrary location j of the simulation raster. A
hit means that a threshold, i.e. 1 kPa of the dynamic
pressure result, is exceeded. Hence the conditional
probability that an area j is hit by a single simulation
Ii

j, i = 1, . . . ,N can be evaluated as

P(I j = 1|yobs) =
1
N

N∑
i=1

Ii
j ,

given the observed data yobs included in the respec-
tive optimized parameter distribution. The displayed
results differ from approaches in e.g. Straub and
Grêt-Regamey (2006), where the annual probability
distribution of the run-out distance is conditional on
deterministic model parameters. The impact indica-
tor scores in Mergili et al. (2018) are not associated
to a probabilistic derivation of process parameters.

In figure 4, the results of the predictive simulations
are shown for the Kerngraben avalanche (left) and

Wolfgruben avalanche (right). Therein the boundary
of the documented affected area is highlighted with
a blue line. The colormap indicates the probability,
that a respective area of the simulation raster is af-
fected by an avalanche, given the considered data.
In the case of the Kerngraben avalanche, the bound-
ary served to determine the run-out length and af-
fected areas for the back calculation and is covered
by nearly all predictive simulations. Just at the bor-
der of the orographic lower left branch, the probabil-
ity drops to ≈ 50 %. It can also be seen, that the
process model predicts a high probability in the oro-
graphic right part of the deposit area, which has not
been covered by the optimization data yobs.

The prediction for the Wolfsgruben avalanche
shows an overall good agreement to the observation
in the upper part of the avalanche track. In the depo-
sition zone, the simulations tend to be a bit shorter
than the documentation, thus showing a low proba-
bility (≤ 10 %) in the orographic lower right branch
of the affected area, where in fact an impact has
been documented. This can be explained by the
main flow direction of the simulations, which tends
to move straight downstream and thus a bit more to
the left, compared to the documentation. Further-
more a finger on the right side has been predicted
by the simulation, which has not been documented
so far. However this finger is related to a low proba-
bility. The predicted run-out range in the central flow
direction is also more stretched for the Wolfsgruben
avalanche, compared to the Kerngraben avalanche.

6. CONCLUSIONS

A probabilistic concept has been applied to the sim-
ulation software r.avaflow to (i) derive a posterior
distribution of the 2-dimensional process model pa-
rameter θ = {μ, ε} and (ii) employ this posterior dis-
tribution to perform predictive simulations.

We showed the different ingredients required to
apply a Metropolis-Hastings algorithm in the back
calculation procedure of the Kerngraben avalanche
event. After 2000 iterations and a total CPU-time of
≈ 18 h, a Markov chain with 968 combinations of
the process model parameters could be found.

We then distinguished between (i) forward simula-
tion of an avalanche event (Kerngraben avalanche),
which was considered in the back calculation and (ii)
prediction of an (theoretically) unknown avalanche
event (Wolfsgruben avalanche). Using the posterior
distribution, Monte Carlo samples (500 parameter
combinations) were derived and applied to the two
test cases. The probabilistic results showed gener-
ally a higher accordance of the documented affected
area for the forward simulation than for the predic-
tion of the unknown event.

The used probability maps are a useful tool to
evaluate the variability of simulation results, with re-
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Figure 4: Probability map of N = 500 Monte Carlo simulations for the Kerngraben avalanche (left, forward simulation) and the Wolfsgruben
avalanche (right, prediction). The colormap indicates the hitting probability from 0 (low) to 1 (high). The blue outline marks the border of
the respective documented event.

spect to the considered optimization data. The visu-
alisation allows for easy interpretation and introduc-
ing thresholds (e.g. 95 % quantiles according to en-
gineering sciences) and confidence intervals helps
to eliminate outliers. Consideration and evaluation
of uncertainties associated with avalanche simula-
tions is imperative for researchers and practitioners
as rational basis to further employ a risk based haz-
ard assessment.
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