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AVALANCHE DETECTION IN SENTINEL-1 RADAR IMAGES USING CONVOLUTIONAL
NEURAL NETWORKS
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ABSTRACT: Knowledge about frequency and location of avalanche activity is important for avalanche fore-
casting and hazard mapping. Traditional field monitoring has limitations especially when surveying large
remote areas. Thus avalanche detection in Sentinel-1 radar satellite imagery has been developed in recent
years as an alternative. Current state-of-the-art automatic signal processing results in an accuracy of roughly
80%, but has in problematic cases (snow turning from wet to dry) an accuracy below 50% when compared to
manual interpretation. We thus explored the use of convolutional neural networks (VGG-19 and AConvNets)
in detecting avalanches in radar images, and evaluated if these networks were able to outperform currently
used radar image classification. The CNN’s produced consistently accuracies above 90%. While conventional
signal processing seems to fail on images that are easily categorised by human experts, the neural networks
seem to have problems with the same images that are also considered borderline cases by a human expert.
It is likely that enlarged and improved datasets, as well as transferred learning, can increase the accuracy
even more.
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1. INTRODUCTION While an experienced operator is able to iden-
tify avalanches in SAR change detection compos-
1.1. Current state-of-the-art avalanche detection ites with high confidence, automatic signal process-
ing produces an average accuracy of roughly 80%
Knowledge about avalanche activity in space and (Vickers et al., 2017). Accuracies of over 90% are
time is important for avalanche forecasting and achieved in some ideal cases (snow turning from dry
hazard mapping. Traditional field monitoring of to wet), but in more problematic cases (snow turn-
avalanche activity, however, has limitations due to ing from wet to dry), accuracy’s drop below 50%.
often reduced visibility and difficulties in frequently The large span in accuracy are due to a very dy-
monitoring inaccessible areas. This can lead to high namical radar signal from variable snow conditions
uncertainty in determining avalanche risk. (wet/dry snow) effecting the temporal change detec-
As an alternative, synthetic aperture radar (SAR) tion method. Another major issue is that while an
data from Sentinel-1 has been used for avalanche operator can recognize an avalanche simply based
detection in recent years. The use of SAR data al- on its shape, this is difficult to incorporate into tradi-
lows to monitor large areas, unaffected by clouds tional signal processing algorithms, as no avalanche
and light conditions. Temporal change detection is alike.

combined with edge detection are used to identify
avalanches in radar images (Vickers et al., 2017).
This state-of-the art avalanche detection method is
currently used in operational avalanche detection in
Norway.

Avalanches are detectable due to their relatively
higher backscatter than the surrounding snowpack
(edge detection), and their increased backscatter

We believe that the detection method developed
by Vickers et al. (2017) is close to reaching its 'hard
limit’ in terms of average achievable accuracy. We
therefore hypothesize that by using convolutional
neural networks for avalanche detection in SAR im-
ages, higher average accuracies can be achieved.

when comparing images with identical SAR geome- 1.2. Basic concept of convolutional neural networks
try six days apart (temporal change detection). The

high relative backscatter stems from the debris’ high Neural networks, also referred to as artificial neural
surface roughness compared to undisturbed snow networks, are a form of machine learning patterned
(Eckerstorfer and Malnes, 2015). after how neurons operate in the human brain. The

processing nodes are the individual neurons or-

_ . dered in multiple layers. Each neuron is assigned
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predict the output labels (in our case ‘avalanche’/’no
avalanche’). This process is repeated multiple times
and based on the results, a gradient is calculated to
optimise the neurons weights (backpropagation).

Convolutional neural network (CNN) is a special
type of neural network that excels in extracting ab-
stract features from raw images by applying sequen-
tially convolutional and pooling layers. Convolutional
layers contain spatial filters which are adapted to
the data to solve a target task, while pooling lay-
ers, shrink the spatial features map to generate a
more abstract representation (see Figure 2). CNNs
are capable of capturing, at the same time, the
non-linear relationships between the image chan-
nels and spatial patterns arising from the neighbor-
hood. Their successful application in various re-
mote sensing tasks has grown considerably in the
last years (Zhu et al., 2017)

2. DATA AND METHODS

2.1. Dataset and preparatory work

The test dataset consists of eight Sentinel-1 images
(activity images) with corresponding images of sim-
ilar geometry and orbit from 6 days earlier (refer-
ence images). From these eight images, we con-
structed four data channels using the polarization of
the radar images, where vv; and vv, stand for VV
polarization in the activity image and reference im-
age respectively and vhy and vhy for VH polariza-
tion. The Sentinel-1 images had a typical dimen-
sion of around 10.000 x 5.000 pixels, where each
pixel measures 20 x 20 meter. In order to reduce
the number of false alarms we masked out terrain
where avalanches cannot be detected or occur (e.g.
radar shadow and layover areas, dense forest, wa-
ter bodies, too steep or too far away from a slope).

We trained neural networks to categorize small
image slices into the labels ’avalanche’ and ’non-
avalanche’. Training used pre-labelled (manual in-
terpretation) from an expert (see example in Figure
1). Each original SAR-image was split into slices of
64 x 64 pixels, making each slice 1280 x 1280 me-
ters. The relative small size of the slices was cho-
sen to reduce the number of avalanches per slice, to
have a larger dataset of images and to allow using
larger batch sizes, while at the same time keeping
the memory consumption relatively low. However, a
major drawback of using smaller slices was that they
likely contained only a portion of the avalanche and
that some spatial information useful for the detection
was potentially lost.

An expert conducted manual identification in the
eight Sentinel-1 change detection pairs and delin-
eated avalanche debris. To facilitate interpretation,
RGB images were constructed where the two VV
polarization images vvy and vv, were put into the

378

RGB channels as [vvs, vv1, vv2]. Avalanches would
then appear as green features in the rendered im-
age (Figure 1). Slices that contained more than

W2,W1,W2

W5, Wy, (vhl - Vh2}

Expert
interpretation

Figure 1: Examples of RGB images with polarization information
in different channels and associated expert interpretation

10 pixels and marked as ’avalanche’ by the opera-
tor, were included in the training set for avalanches.
For each image a corresponding number of ’'no
avalanche’ images were randomly selected. In both
cases slices with less than 50% valid data were ex-
cluded from the training dataset.

After data preparation, the total dataset con-
sisted of 817 slices with avalanches and 817 with-
out avalanches. The training dataset consisted of
80% of these images (N=1308), while the remaining
326 images were used only for testing of the trained
network and quantifying its accuracy.

2.2. Convolutional neural networks

Two different convolutional neural networks were
evaluated (Figure 2). The first model is called VGG-
19 (Simonyan and Zisserman, 2014). It is based
on an up to 19-layer deep CNN that is commonly
used for categorising natural images. The second
model is a slightly modified version of a model called
A-ConvNets described in Chen et al. (2016). It
is a 6-layer deep all-convolutional network specifi-
cally designed for analysing SAR-images. We mod-
ified the model slightly by adding three additional
dropout-layers with a probability of 50% to randomly
drop connections during training. This regularization
techniques discourage neurons coupling and help to
prevent overfitting during training, especially in pres-
ence of few data samples.

Two different inputs were tried for the VGG-19
as exemplified in Figure 1, namely [vva, vvy, vvs]
and [vva, vvq,(vha - vhy)]. For VGG-19 there were
weights trained on millions of images from the Ima-
geNet library (Deng et al., 2009) available. Here we
followed three different approaches: (i) we trained
the entire network from scratch with randomly ini-
tialised weights; (ii) we used the pre-trained weights
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VGG-19 AConvNets
SAR image 3x64x64 SAR data 4x64x64
Conv 64 - 3x3 Conv 16 - 5x5
Conv 64 - 3x3 MaxPool - 2x2
MaxPool - 2x2 Dropout - 50%
Conv 128 - 3x3 Conv 32 - 5x5
Conv 128 - 3x3 MaxPool - 2x2
MaxPool - 2x2 Dropout - 50%
Conv 256 - 3x3 Conv 64 - 6x6
Conv 256 - 3x3 MaxPool - 2x2
Conv 256 - 3x3 Dropout - 50%
cp:’""':s? ;"‘: Conv 128 - 5x5

axriool - ex Dropout - 50%
Co -

nv 512 - 3x3 Conv 10 - 3x3
Conv 512 - 3x3
Conv 512 - 3x3 FC 2 - Softmax
Conv 512 - 3x3
MaxPool - 2x2

Conv 512 - 3x3
Conv 512 - 3x3
Conv 512 - 3x3
Conv 512 - 3x3
MaxPool - 2x2

GlobAvgPool - 1x1
FC 1024 - RelLu

FC 2 - Softmax

Figure 2: Design of the VGG-19 and AConvNets. Each layer in
the models consists of multiple neurons The first active layer in
the VGG-19 network is named “Conv 64 3x3”. This is a 64 neuron
wide convolutional layer containing a 3x3 spatial filter. The vari-
ous pooling layers shrink these spatial filters. The fully connected
layers (FC) do not contain any spatial filters.

and froze the first ten layers; (iii) we used the pre-
trained weights and trained the entire network.

The procedure of ‘recycling’ network parameters
trained on different dataset is called 'transfer learn-
ing’ (Yosinski et al., 2014) and is grounded on the
fact that the first layer in a CNN learns on low-level
features (such as edges) that are general purpose
and suitable for different applications. Indeed, it has
been shown that CNN'’s trained on different natu-
ral images mostly differ in the last layers (Razavian
et al., 2014). Those are the ones that are fine-
tuned. Transfer learning greatly helps to prevent
overfitting in big networks when only few data are
available. For transfer learning to be possible, the
input data needs to be structured the same way.
For the AConvNets we did not have available pre-
trained weights. We were not able to reuse pre-
trained weights since the SAR data also consisted
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of only four data channels. We encoded the input
data as [vv1, vvo, VA4, vho] in this case.

For all experiments we used Python 3.5.2, Ten-
sorflow 1.4.0 and Keras 2.0.9.

3. RESULTS

3.1. Accuracy assessment

The networks were trained to label the images in
the two categories ’avalanche’ and 'no avalanche’.
The reported accuracy is based on how well the net-
works performed when trying to predict the images
in the validation dataset (Table 1). All training con-
tinued until the reported accuracy started to decline.
The average of five runs is reported here. The train-
ing can often continue and receive close to perfect
prediction of the training data, while the accuracy of
the validation data stops or even declines. This is
called overfitting, and will occur in neural networks
when there is too little data available. At this stage
it is reasonable to stop the training since further op-
timisation has no increased predictive capacity for
data outside the training set.

3.2. Examples of CNN classification

Figure 3 illustrates 12 examples of slices classi-
fied by VGG-19 selected for illustrative purposes.
The first six examples (1-6) are slices classified as
‘avalanche’. Slices 1, 2 and 3 show avalanches that
were easy to detect both for the expert and for the
network. A qualitative assessment of the validation
dataset indicates that the network makes few, if any
errors in detecting these types of avalanches (e.g.
100% confidence). In slice 4 the network expresses
100% confidence that this is not an avalanche. The
error stems from the avalanche being just outside
the slice (lower right corner). The expert would not
be able to classify this image as ’avalanche’ by just
looking at the 64 x 64 pixels slice. The last two
examples, 5 and 6, are examples of errors made
by the network, which are accompanied by lower
confidence levels. Avalanches 5 and 6 are diffuse
avalanches that are also difficult for the expert to in-
terpret.

In Figure 3 there are also six examples of the net-
work classifying the slices as 'no avalanche’ (7-12).
The first three examples (7-9) are correct (true neg-
atives). Slices 10, 11 and 12 are examples of false
positives where the network incorrectly classifies the
slices as 'no avlanche’. There are areas with rela-
tively high backscatter, however, insufficiently clear
to be manually classified as 'avalanche’. From the
errors it is relatively easy to understand that the net-
work can be confused. The network seems to make
errors in images that are also problematic to classify
for humans.
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Table 1: Accuracy of 5 different CNN configurations and their confidence interval (Cl)

Net Channels Weights Accuracy (95% ClI)
VGG-19 VVs, W1, Vo random 89.3% (88.2-90.5%)
VGG-19 VVo,W1,(Vho-vhy)  random 90.7% (90.1-91.3%)
VGG-19 WVo,W1,(Vho-vhy)  ImageNet 92.7% (91.8-93.5%)
VGG-19 VWVa,WV1,(Vha-vhy)  ImageNet - 10 frozen 91.5% (90.6-92.4%)
AConvNets  vv{,vvs,vhy,vhs random 90.8% (89.9-91.7%)
RGB Expert RGB VV polarisation [vvp,vvy,vv;p] as well as with adding

(w2, wi ,ww2)

(vw2,vwi,ww2)

100%

)
o >
2 3
=
- — \D m
3 2 = @
o — c

)
S S
15 [ =
[ -

w
100%

Bl
o at
mn
Wil

s

Figure 3: Examples of slices classified by VGG-19 and an expert
(1-6) as well as false detections (7-12) The percentages indicate
the network’s confidence that the image is an avalanche (1-6) or
that the image is not an avalanche (7-12).

False negatives
False positive

4. DISCUSSION

Both CNN architectures considered in this work
achieved promising results in detecting avalanches
in SAR images, with accuracies around 90%.

The experiments were done on small 64 x 64 pixel
slices, limiting the used networks to access a lot of
the available information coming from the area sur-
rounding an avalanche. Indeed, the manual iden-
tification of avalanches was done on the entire im-
ages, and a human interpreter would also have had
major problems perfectly categorizing 64 x 64 pixel
slices without being able to observe broader sur-
roundings. We can therefore hypothesize that by
including information on backscatter and slope an-
gle from neighbouring slices, the networks perfor-
mance would likely improve. This would be a next
logical step to try to improve the network’s accuracy.

The VGG-19 network was both trained using only
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VH polarisation to the third RGB channel [vvs, vvi,
(vhy - vhy)] (Figure 1). The version using only VV
polarisation is identical to the image examined by
the expert and achieves an accuracy of 89.3% (95%
Cl, 88.2-90.5%). Adding the VH polarisation on the
other hand achieves an accuracy of 90.7% (95% ClI,
90.1-91.3%). While the difference is not significant
at an 0.05-level it is still worth noticing since adding
additional data without any predictive effect usually
should have caused a decline in accuracy. Further-
more this might be an indication that there is infor-
mation about avalanches in the VH polarisation data
that currently is not used.

We did see a significant effect of adding pre-
trained weights. This was only possible for the VGG-
19 network, and the best version did achieve an
accuracy of 92.7% (95% ClI, 91.8-93.5%). In con-
volutional networks so called low-level features are
learned by the first layers, while high-level features
are learned at later layers. In learning to recognise
an image of a face, neurons recognising features
like edges, curves and lines will fire in the first lay-
ers, while neurons recognising for instance an eye,
will fire in one of the last layers.

It is worth mentioning that the pre-trained weights
had been generated by training on more than a mil-
lion of images from ImageNet, a collection of 'nat-
ural images’ (Zoran, 2009). Natural images have
a rich co-variance structure and their spectrum is
usually non-Gaussian and follows a power-law dis-
tribution. It is not evident that this applies to the
SAR-images and this potentially reduces the effect
of transfer learning in our case. This hypothesis is
also strengthened by the fact that there was no ap-
parent effect of freezing the bottom layers. If the
natural images and the SAR-images had the same
underlying structure, this would usually have had a
positive effect on the training. Similar research cor-
roborates our findings (Penatti et al., 2015).

Concerning the training of model weights from
scratch, a common rule-of-thumb is that few thou-
sand of samples are required for each class in the
dataset (Ciresan et al., 2012) to be able to com-
pletely fine tune the neural network. We did have
654 images of avalanches in the training dataset
which is a bit less than is usually recommended.
The fact that adding pre-trained weights improved
accuracy, even when this weights are not ideally
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suited, indicates that the result should improve when
adding more labeled images.

While it is very time consuming to annotate thou-
sands of avalanche images, an alternative could
have been to pre-train our network on a large
amount of other SAR-images and then fine-tuning
it on the data for the specific task at hand. This al-
ternative approach will be explored in future work.

In our experiments AConvNets performed about
the same as the VGG-19 (90.8% (95% ClI, 89.9-
91.7%) vs 90.7% (95% CI, 90.1-91.3%)) when us-
ing randomly initialised weights. It was not pos-
sible in this project to add pre-trained weights for
AConvNets, so it is hard to estimate the final poten-
tial of this network with the current amount of data.
AConvNets has less than half the depth of VGG-
19. Deeper networks are generally chosen when
you need to remember complex high-level features,
like it is often the case with natural images. That the
same performance can be achieved with a simpler
structure might indicate that learning high-level fea-
tures is not an important property when analysing
SAR-images. Simpler structure means shorter train-
ing time and networks that are easier to optimise,
and should in general be chosen when giving simi-
lar performance.

5. CONCLUSION

To conclude, the experiments were mainly done to
investigate the potential of using CNNs in detecting
avalanches in SAR-images and if CNN detection is
able to outperform conventional radar image clas-
sification. The obtained results are promising, es-
pecially since the networks have been trained end-
to-end and without doing any pre-processing, apart
from some masking of non-valid areas. Direct com-
parison of the accuracy between the tested CNN'’s
and state-of-the-art image classification is limited by
the different size of the slices used (64 x 64 pix-
els vs 50 x 50 pixels). However, the CNN’s seem
to produce consistently accuracy’s of around 90%.
It is likely that by using larger trainings datasets,
accuracy can be improved even more. We have
such datasets available to us from consistent au-
tomatic avalanche detection in Norway during the
last two winters (2016-2018) (see companion paper
from Eckerstorfer et al. in these proceedings).
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