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ABSTRACT: New remote sensing platforms under development will improve availability of optical 
and thermal spectral data for mountainous regions on a more regular basis, possibly on a daily basis 
at targeted areas. Newly available spectral remote sensing data will allow to characterize the evolution 
of the snow surfaces, particularly during the winter months when little is known with respect to large 
spatial scale development of snow surfaces. Understanding of snow surface development during winter 
has been hampered due to limited remote sensing data due to a combination of inclement weather, bi-
monthly satellite passes, and the difficulty of producing training and validation data for the snow sur-
faces. Landsat-8 optical and thermal spectral data from January 16-2017 for Central Idaho was used 
to demonstrate that snow surface with significant anisotropic development can be classified. During ski 
touring label data was generated to identifying snow surfaces. This GPS referenced data was used to 
generate the training and validation data sets for the same Landsat pass period. Spectra Optical and 
thermal spectra were processed using machine learning classification techniques. This study suggest 
that winter snowpack surfaces can be tracked with optical and thermal spectral sensors. Tracking of 
the snow surface temporal development is not only important for the forecasting of avalanches but it 
also valuable in complementing snowpack development models, as well as identifying snow layered 
structures that will impact snow melt dynamics. 
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1. INTRODUCTION 
Globally one sixth of Earth’s Population depends 
on snow or glacier melt for water resources (T. 
Painter, et al., 2009). Closer to our research area; 
a significant proportion (as much as 75%) of the 
annual fresh water in Western North America 
comes from mountain snow. Water resources 
management practices are being challenged by 
climate change, whereas we cannot only rely in 
long term statistics statistics, and we need to ac-
celerate the development of physical based 
model of processes for the ablation, develop-
ment, and melt of the mountain snowpack. For 
snowpack modeling to be successful, it is essen-
tial to develop adequate spatial and temporal de-
scriptions of mountainous snow covered areas. 

Remote Sensing from a diverse constellation of 
satellites provides image domain data of snow 
covered areas that is rich in snow spectral data at 
the optical and thermal bands. Landsat 8 offers 
an unequal opportunity to advance cryosphere 
research due to its coverage of reflective and 
thermal wavelength observations with increased 

spectral and spatial fidelity (D.P. Roy et al, 2014). 
This study is evidence of Landsat 8 capability to 
continue advancing science and offering new op-
portunities, by demonstrating how thermal and 
optical indexes can be fused into new snow in-
dexes to classify anisotropic snow surfaces. Thus 
providing new opportunities to temporally track 
the development of the mountainous snowpack. 

“Characterization of snow is critical for under-
standing Earth Systems” - This is how K. Rittger, 
et al, 2013) introduce readers to their paper about 
“Assessment of methods for mapping snow cover 
from MODIS. T. Painter et al, 1998, also stated 
that on earlier work dating almost 20 year ago; 
snow crystal sizes field data as well as adequate 
samples of crystal end-members with anisotropic 
and/or isotropic surface are required. Mixing of 
snow pixels due to vegetation and various snow 
surfaces must be also considered (T. Painter, et 
al, 1998). In this study we are are taking first steps 
in researching areas suggested by T. Painter, et 
al, 1998, simply because we need to understand 
snow in order to understand Earth’s systems! 

T. Painter, et al., 1998 asserted that remote sens-
ing would benefit from “further work” in areas 
such as; the impact of shaded snow, effect of 
mixing of snow and vegetation pixels, scattering 
of snow crystals due to faceting, and selection of 
end members representing the crystal in the field. 
In this study we attempted to address some of 
these factors, primarily through the inclusion of 
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the thermal bands, and a field training set (end-
members) with an advanced anisotropic surface. 

This study also integrates optical and thermal 
bands with different spatial resolutions, 30 versus 
100 meters respectively, while it characterizes 
snow surfaces spectral response resulting from 
ice crystals sizes ranging from 0.25 mm to 1-4 
mm that have changed in time from isotropic to 
anisotropic surfaces. In fact, It is quite amazing 
that remote sensing spectral analysis techniques 
can successfully be employed to not only to clas-
sify snow crystal sizes but also detect the pres-
ence of anisotropic faceted snow surfaces.  

The integration of optical and thermal bands is ex-
pected to improve mapping of snow in forests. 
This is a fundamental if we are to study the tem-
poral nature of facet development. It is well known 
that NSF and SH are more common at forest ar-
eas than open alpine areas.

2. BACKGROUND
The snow surface temporal development is im-
pacted by temporal cumulative effect of solar ra-
diation and topography, particularly during the 
winter at mid-latitudes corresponding to this study 
(latitude ~ 43°). 

During certain climate conditions present during 
the snow accumulation season snow surfaces 
characterized by anisotropic structures develop 
over large mountainous areas. These anisotropic 
snow surfaces have different emissivity and al-
bedo from isotropic snow surfaces. The emissiv-
ity and albedo differences between isotropic and 
anisotropic are intrinsically different and allow to 
employ optical and thermal snow indices to clas-
sify snow surfaces. 

Snow isotropic structures are common for precip-
itation snow, snow that have undergone melting 
(crusts), or aging of precipitation snow under con-
ditions lacking temperature gradients, such as 
cloudy skies or areas where radiation cooling is 
inhibited. 

The presence of anisotropic structures is the re-
sult of one of two processes; snow faceting met-
amorphosis or deposition of surface hoar crystals 
(SH). Snow metamorphosis driven by strong tem-
perature gradients, permeable snow, and low 
thermal conductivity and results in the develop-
ment of “Near Surface Facet” (NSF) crystals. The 
temperature gradient direction is normal to the 
snow surface and is fueled by long wave infrared 
cooling. The temperature gradients favor the sub-
limation and deposition of new hexagonal crystals 
and structures oriented normal to the snow sur-
face. Figure 1 shows the anisotropic snow sur-
faces observed during the survey day. 

Figure 1 

Deposition of surface hoar crystals is favored by 
climatic conditions with ample availability of water 
vapor in the atmosphere, clear skies promoting 
long-wave IR cooling in the snowpack surface, 
and tranquil weather that drives the deposition of 
“surface hoar” (SH). Similar to NSF, radiative 
cooling will drive the deposition of large hexago-
nal “platelike” crystals. Deposition of SH crystals 
is directional and normal to the snow surface. 

In summary, NSF and SH snow surface are highly 
anisotropic unlike most typical snow surfaces dur-
ing the accumulation snow season, where the 
snow is characterized as precipitation snow 
and/or combination of round and sintered (R-S) 
snow. It is unlikely that that NSF and SH can be 
differentiated through satellite spectral separation 
due to their similar anisotropic structure. Future 
research will attempt to differentiate between 
NSF and SH assuming differences in average 
crystal sizes and the ability to develop adequate 
training and validation field data sets. 

Figure 2 

Using remote sensing to estimate anisotropy is 
not new (Hendriks, et al) and it has been used to 
characterize snow surfaces at glaciers as it can 
be seen on Figure 2 where Landsat 7 image data 
was studied. In our study we intend to advance 
this body of work by characterizing an advanced 
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faceting event in central Idaho during mid January 
2017. 

For this study, the Red, Green, Near-infrared, 
short-wave infrared, and Thermal spectral bands 
are used in the classification. The next para-
graphs provide the foundation for the selection of 
these spectral bands. 

Recent studies employing Landsat 8 data, have 
advanced the understanding of optical and ther-
mal spectra in complex mountainous terrain (R. 
Kour et al., 2016). Mountainous terrain have ar-
eas of sunlit and shades that demand to carefully 
select spectral bands, such as the thermal band, 
that is insensitive to shadowing effect. Inclusion 
of the thermal spectra is important in order appro-
priately classify snow surfaces. 

The optical reflectance (albedo) of the snow sur-
face is determined by the wavelength-dependent 
refraction index of ice crystals and the size/shape 
of the ice crystal scattering the optical radiation 
(J. Dozier et al., 2007). NIR wavelengths are em-
ployed in remote sensing analysis to estimate 
snow crystal size. 

Of interest to this study is the evolution of newly 
fallen snow into NSF, where snow crystal size 
sharply increases due to the climatic induced 
strong gradients described earlier in the text. It 
should be noted that research work is needed to 
characterize the albedo of highly anisotropic and 
non-spherical crystals typical of NSF, since it is 
usually assumed that non-spherical crystal snow 
structures can “mimic” sphere radiative flux mod-
els (J. Dozier et al., 2007). This assumption is 
possibly violated due to the divergence of surface 
area to volume ratio present in advanced facets 
such as NSF and SH. J. Dozier et al., 2007 rec-
ognized issues requiring further research such as 
the impact of grain size due to diurnal snow facet 
metamorphism as well as the formation of SH. 

The inclusion of the green and SWIR spectral 
bands in our analysis is leveraged from com-
monly used ‘Normalized Difference Snow Index’ 
or NDSI: 

(1) 

Red and NIR bands reduces chances of errors 
associated with mixed snow and vegetation (R. 
Kour et al., 2015), which is important considering 
our study are results in a large fraction of mixed 
pixels of snow and forest vegetation. Recall that 
Red and NIR spectral bands are used by the 
widely used Normalized Difference Vegetative In-
dex (NDVI) so important in vegetative cover char-
acterization: 

(2) 

It appears that this study is unique on its ap-
proach to use Thermal Snow Indexes to classify 
snow anisotropic surfaces. The author could not 
identify previous remote sensing work related to 
the detection snow anisotropic surfaces such as 
NSF and SH with the exception of with the suc-
cessful detection of SH in Greenland using RA-
DARSAT (T. Manninen, et al, 2016), although the 
detection is limited to flat and homogenous terrain 
(non-mountainous and devoid of vegetative 
cover). In another work the idea of SH detection 
with MODIS was discussed but no results have 
been yet provided (R. Solberg, et al, 2009). 

This study employs Landsat 8 optical and thermal 
data with contrasting spatial resolutions, thus it is 
relevant to comment on its impact to image pro-
cessing. During this study data processing it was 
observed image quality improvements. These im-
age quality improvements have been docu-
mented by remote science researchers when fus-
ing 100-meter resolution TIRS data with the 30-m 
OLI resolution results in image data “sharpening” 
effect (D.P. Ray, et al, 2014). This sharpening ef-
fect has also been demonstrated before when 
combining surface temperature with vegetative 
indexes. In addition, the fusion of spectral data 
with different spatial resolution, has been shown 
to improve classification performance (Panpan 
Xu, et al., 2017), and it is reasonable to expect 
similar results when fusing spectral data with dif-
ferent spatial resolutions in our study.  

3. STUDY AREA
The area of study is in the Boise Mountains, in 
Central Idaho, USA. The survey area is located to 
the southwest of Mores Creek summit, along 
Idaho-21 state road. The area surveyed is known 
as the southeastern ridge of Freeman Peak and 
contains the 12-mile creek watershed. 

Vegetation cover ranges from sagebrush and 
other brush with coniferous forest at southerly as-
pects to a mixed forest of mostly conifers with 
some decorous trees with vary gin canopy cover 
from 100% to sparse and mostly open forest. Ter-
rain elevation ranges from 6000 feet to 8000 feet 
above sea level. 

The study has snow in the ground generally from 
December through April. The mostly forested 
area enjoys moderate winter temperatures that 
favors the development of NSF and SH surfaces. 

Figure 3 corresponds to the snow depth and air 
temperature at a Mores Creek Summit snow 
monitoring (SNOTEL) station for the Natural Re-
sources Conservation Service. 

NDSI =
ρGreen − ρSWIR

ρGreen + ρSWIR

NDVI =
(ρNIR − ρRed)
(ρNIR + ρRed)
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Figure 3 

Notice in Figure 3 the resulting snow depth after 
the end of a precipitation event just six days prior 
to Landsat8 pass over the area of interest. The 
diurnal temperature fluctuation below water freez-
ing temperate explains the significant abundance 
of near-surface facets found at the study area.  

The study area and GPS track follows during the 
labeling of the snow surface is shown in Figure 
4. The survey data was used to generate the
training and validation data used for the snow 
classification. 

Figure 4 

4. RESULTS AND DISCUSSION
Neural Networks and SVM classification methods 
employed for the snow surface classification pro-
duced results above benchmark values, exceed-
ing 75% overall accuracies with kappa coeffi-
cients above 0.5, as well as producer and user 
accuracies above 50%. 

The confusion matrixes results from Figure 5 
summarizes overall accuracies, kappa coeffi-
cients, and producer/user accuracies for various 
combinations of optical and thermal bands;  

• Red, Green, NIR, SWIR1, SWIR2, Thermal
1, Thermal 2 - seven bands

• Red, Green, NIR, SWIR1, SWIR2 bands -
five bands

• Thermal 1, Thermal 2 - two bands
• PCA - Top three “Eigen" layers - three bands

Figure 5 

The success of the classifications can be at-
tributed to the spectral separability of the labeled 
data. Figure 6 shows the marked “separability” or 
differentiation between the 3 labels; NSF/SH > 2 
mm crystals, NSF < 2 mm crystals, and surface 
crust/rounds. It should not be overlooked that this 
separability is direct result of the very distinctive 
crystal structure of the snow surfaces studied. 

Figure 6 

In Figure 5, notice that the classifications relying 
exclusively in thermal bands were not satisfactory 
due to the miss-classification of crust and round 
crystals surfaces. This is not unexpected, since 
there is poor separability between crust/round 
surfaces and NSF surfaces with smaller than 2 
mm crystals in the thermal bands as it can be 
seen in Figure 6. 

It is notable to point to the classification where the 
thermal bands were not employed. Overall accu-
racies and kappa values were not impacted with 
the exception of an increase for rate of misclassi-
fication of NSF surfaces with smaller than 2 mm 
crystals. Once more, inspection Figure 8 suggest 
that without the thermal bands there will fewer 
data to separate SH/NSF surfaces from NSF sur-
faces with less than 2 mm crystals. 
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Neural network analysis of data processed using 
the main three Eigen layer product of Principal 
Component Analysis (PCA) produced the best re-
sults. When selecting the top Eigen layers, in ef-
fect the noisy data and redundant spectral data is 
removed from the classification analysis that re-
sults in augmenting classification accuracies. 

Statistical analysis of the reflectance data for the 
spectral bands utilized in the analysis confirmed 
why PCA is effective with only three Eigen layers. 
These analyses showed redundancy of spectral 
information with certain band combinations, such 
as the Green and Red, SWIR2 and SWIR2 and 
Thermal 1 and Thermal 2 pairs. For the data clas-
sified most of the observed variance is carried by 
the NIR, a single SWIR, and single Thermal 
bands. NIR colinearity with Green and Red 
bands, allows us to reduce the classification di-
mension into three orthogonal hyperplanes.

Figure 7 

Figure 7 shows the classification results for the 
Neural network technique with PCA. Classifica-
tions maps were produced for each of the classi-
fication combinations listed in Figure 5, but are 
not included for the sake brevity, besides they 
were hardly indistinguishable between each 
other.

5. CONCLUSIONS
We learnt that Neural Networks and SVM tech-
niques work well classifying winter snow surfaces 
from Landsat 8 optical and thermal bands. Best 
results were resulted from the application PCA for 
dimensional reduction due to the colinearity of 
spectral bands used; green, red, NIR, SWIR1, 
SWIR2, TIR1 and TIR2. 

The fusion of 30 and 90-meter spatial resolution 
from Optical and Thermal bands complemented 
each other, whereas the machine learning classi-
fication benefited from the separability in the ther-
mals band, that was crucial in the discrimination 
between small and large anisotropic surfaces 
(SH/NSF versus small NSF). 

A final word - this study demonstrates that it is 
feasible to identify anisotropy with Landsat 8 data 
in complex mountainous terrain and with very var-
iable canopy cover! The authors hope this work 
inspires more initiatives dedicated to the charac-
terization of snow during the winter months. 
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