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ABSTRACT: Snow avalanches are potentially dangerous phenomena in many mountainous areas world-
wide. Most avalanche related research concentrates on a detailed analysis of single events at local scale. 
This research focuses at regional scale (i.e., about 7,400 km2) and aims to (i) delineate the static likelihood 
of snow avalanche occurrence for South Tyrol, (ii) to detect snow avalanches on the basis of optical remote-
sensing data and to (iii) integrate approach (i) and (ii) to achieve a better performing avalanche detection 
model. In the context of the first activity (i), the methodological framework consists of a statistically based 
mapping of zones that are prone to avalanche release. The derived avalanche release likelihood model is 
supposed to be static in time and subsequently coupled with a random walk approach to estimate snow 
avalanche paths at regional scale. For the second activity (ii) optical remote sensing imagery of the Senti-
nel-2 Sensor are used to detect avalanches with a change detection approach. Finally, the third activity (iii) 
involves the combination of the (static) avalanche model (activity i) with the avalanche detection approach 
(activity ii). First results indicate that the proposed integration of the static statistical avalanche model with 
a remote sensing based change detection approach has the potential to enhance the data-driven multi-
temporal mapping of avalanche occurrence at regional scale. 
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1. INTRODUCTION
Snow avalanche release depends on the composi-
tion of different parameters that can be roughly
classified into three main groups: snowpack, 
weather and terrain. This so called ‘avalanche tri-
angle’ describes the most important indicators for 
avalanche release: (1) The weather conditions 
must be suitable to (2) create snowpack instability 
and (3) the terrain must possess the characteristics 
necessary for the avalanche to initiate (Fredston 
and Fesler 1994). 
Several previous regional scale studies statistically 
modelled typical avalanche locations by exploiting 
historical avalanche inventories and spatial infor-
mation on predisposing factors (Pistocchi and No-
tarnicola 2012, Barbolini et al. 2009, Parshad et al. 
2017). Other studies focused on the detection of
past avalanches on the basis of remote sensing 
techniques (Larsen et al. 2013, Lato et al. 2012, 
Eckerstorfer et al. 2016). This contribution presents 

a first attempt to integrate a static statistically based 
modelling approach with a bi-temporal remote 
sensing based change detection procedure. The 
main objective is to improve the spatio-temporal in-
formation on avalanche occurrence at regional 
scale. From a methodical point of view, the proce-
dure attempts to enhance both, the static statistical 
avalanche modelling and the dynamic remote sens-
ing based avalanche detection.   

2. STUDY AREA AND DATASETS

2.1 South Tyrol, Italy
South Tyrol is the northernmost province of Italy 
and located in the Eastern Alps. The elevation of 
this 7400 km² large mountainous region (mean
slope 27°) ranges from about 200 m asl to 3900 m 
asl while the mean annual precipitation varies be-
tween 500 and 1500 mm. The combination of a sta-
ble snow cover (150 days/year) at elevations higher 
than 1200 m and the substantial relief energy ren-
ders South Tyrol particularly prone to snow ava-
lanche occurrence (Pistocchi and Notarnicola 
2012). Up to 2017, more than 2400 avalanches 
have been registered and mapped by the province 
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of South Tyrol to create an area-wide historical av-
alanche inventory. 

2.2 Datasets
The historical avalanche inventory of the province 
(n = 2491) served as ground-truth data for the sta-
tistical model (step i).  Topographic predictor varia-
bles were directly calculated from a resampled 
(from 2.5 m to 10 m) Digital Terrain Model (DTM). 
The spatial information on snow cover probability
was derived from MODIS data (Notarnicola et al. 
2013) while land cover was adopted from earlier 
analyses.
For the avalanche detection approach, satellite 
data from the Sentinel-2 Multi Spectral Instrument 
(MSI) optical sensor was used. Sentinel-2 is acquir-
ing every 3-5 days at mid-latitude. The data are ac-
quired systematically, and they are free of charge.
To test the methodical procedure, two images (10 
m resolution) related to the western part of the prov-
ince (i.e. Langtaufers valley) have been analyzed
(acquisition on 12/01/18 and 24/01/18) by focusing 
on the visible (2,3,4) and near-infrared (8) bands 
(ESA 2013). 

3. METHODS
The methodical procedure consists of three main 
activities: Regional scale statistical mapping of av-
alanche prone areas (i), avalanche detection using 
Sentinel-2 optical data and a change vector ap-
proach, and (iii) integration of activity (i) and (ii). 

The classification approach adopted for activity (i) 
is based on a binary response variable that relates 
to past avalanche release zones and avalanche ab-
sence locations. Past avalanche release areas 
were obtained by randomly sampling one point 
within the upper part of each mapped avalanche 
polygon (i.e. within the highest 10% of elevation; 
Fig. 1). Avalanche-absences were represented by 
a random sample of points located outside known 
avalanche areas. Historical avalanche pres-
ence/absence data is frequently linked with envi-
ronmental variables that are considered as static in 
time in order to assess typical predisposing condi-
tions (Pistocchi and Notarnicola 2012). Obviously, 
the inclusion of dynamic environmental information, 
such as snowpack or weather, is a challenging task 
in the case only historical avalanche data is availa-
ble. Therefore, most regional scale analyses focus 
on static predisposing factors (e.g. terrain attrib-
utes) (Parshad et al. 2017, Maggioni and Gruber 
2003, Ghinoi and Chung 2005, Bühler et al. 2013, 
Barbolini et al 2011). Within this study, frequently 
adopted variables (i.e. ‘slope’, ‘northness’, ‘eleva-
tion’, ‘roughness’, ‘convergence’, ‘land cover’) were 
used in combination with a snow probability map to 
elaborate archetypal avalanche release zones (Pis-
tocchi and Notarnicola 2012, Maggioni and Gruber 
2003, Ghinoi and Chung 2005). Slope is known as 
a key predisposing factor for avalanche release. At 
regional scale, elevation can be considered as a 
proxy for climatic influences whereas the slope ori-
entation was included to describe the spatially var-
ying effect of radiation. The produced roughness 
map as well as the land cover map were introduced
to represent spatial differences in surface friction 
(Bühler et al 2013). The convergence index was 
considered a proxy for recurrent wind and snow ac-
cumulation patterns while the snow probability map 
relates to the general snow availability at regional 
scale.
Since an initial exploratory data analysis provided 
evidence of non-linear relationships between the bi-
nary response and the chosen predictor variables, 
a classification algorithm that accounts for non-lin-
earity’s was selected. The Generalized Additive 
Model (GAM) allowed generating a likelihood map 
(scores between 0 and 1) that depicts a relative es-
timate of each pixel to coincide with an avalanche 
release zone. The resulting avalanche release like-
lihood map has been validated using model-inde-
pendent test information via a k-fold cross valida-
tion (5 repetitions and 5 folds) and the Area under 
the Receiver Operating Characteristics curve (AU-
ROC) (Steger et al. 2016). 
Furthermore, the produced static model also 
served as an input for the subsequent random walk 

Figure 1: Historical Avalanche Inventory and sam-
pled points on a Sentinel-2 RGB Image (Contains
modified Copernicus Sentinel data (2018)/Eurac
Research)
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process path model that allowed identifying likely 
avalanche paths and deposits. In summary, the 
three highest deciles, related to the release likeli-
hood map, were introduced separately into the 
Gravitational Process Path Model (Wichmann 
2017) to generate three avalanche path maps. The 
chosen random walk approach was parameterized 
according avalanche-specific recommendations 
given by Wichmann (2007). The final process path 
model (further referred to as GPPM) was produced 
by combining the three single (normalized) ava-
lanche path maps using weights that correspond to 
the associated release likelihood. The GPPM was 
validated by calculating the AUROC on the basis of 
avalanche observations that relate to the entire av-
alanche polygon.
The second activity (ii) is based on Sentinel-2 im-
agery and relates to a change vector approach in 
the polar domain, based on Bovolo and Bruzzone 
(2007). In the context of avalanche detection in this 
paper, one image X1 acquired before and one im-
age X2 acquired after a known avalanche event 
were selected. Two change images were calcu-
lated considering the visible and the infrared bands
as follows: 

=      { , }
Where Cb describes the change of the two images 
considering a given band b. The idea of this ap-
proach is to calculate two change variables

, where shows the intensity and the angle of 
the change when considered in a polar domain: 

 = +
= tan

By setting a threshold for allows the binary dis-
crimination between “changed pixels” and “non-
changed pixels”. The resulting map was then used 
to mask , which consists only of the changed pix-
els and depicts different angles (“types of change”). 
Setting a second threshold based on aimed to dif-
ferentiate avalanche-pixels from other phenomena. 
This approach appeared useful as changes can 
also concern other phenomena like shadowing ef-
fects, snowmelt,fresh snow or miss-registration er-
rors. 

The third step (iii) combined both results to improve 
the avalanche detection method. The GPPM in this 
case served as a mask to confine the change de-
tection to the likely avalanche affected areas. In 
comparison to the approach that did not consider 
the GPPM, the performed masking simplified the
avalanche detection as structures not related to av-
alanches could be filtered. In this case, also the 
threshold for the differentiation between change 
and no change could be computed automatically al-
lowing for an automatic computation of vector 
change maps within the polar domain. The compu-
tation of the threshold was done using the Expecta-
tion Maximization algorithm (Moon 1996). Based on 
the distribution of detected changes, the function 
seeks to find a predefined number of modes. The 
intersecting x-value of the two modes is the optimal 
threshold for the differentiation in Bayesian terms.

4. RESULTS
The validation results provided quantitative evi-
dence that the produced release likelihood model 
exhibits a high ability to “predict” model-independ-
ent avalanche release zones at regional scale 
(mean AUROC: 0.83). The subsequent province-
wide GPPM (Fig. 2) still reached an acceptable 
model performance (AUROC of 0.74).
The second activity (ii) resulted in a vector change 
map for the selected test site (i.e. Langtaufers Val-
ley). The results of this first trial have been achieved 
with the manual selection of thresholds for and . 
The resulting change map has been compared with 
recent point-based avalanche data from 2018. 
From a regional point of view, these avalanche 
points were, in most cases, in close proximity and 
high spatial agreement with the changes marked on 
the vector change map. Major discrepancies be-
tween known avalanche locations and detected av-
alanche zones were observed within shadowed ar-
eas. The integration of activity (i) and (ii) further im-
proved the remote sensing based avalanche detec-
tion, particularly in terms of a decreased portion of 
false alarms (i.e. non-avalanche areas wrongly 
classified as avalanches) due to the a-priori exclu-
sion (i.e. masking) of non-susceptible areas via the 
GPPM. 

5. DISCUSSION

5.1 Avalanche Likelihood Mapping
The combination of different methodical steps and 
diverse data sources showed promising results, but 
some challenges as well. The produced regional 
scale avalanche release likelihood model was
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mainly based on static environmental conditions. 
Even though the model exhibited a comparably 
high predictive performance, it should be noted that 
the actual release of snow avalanches also de-
pends on additional factors whose quantification is 
difficult to achieve. In many cases, avalanches are 
caused specifically by anthropogenic influences 

(Parshad et al 2017) or dynamic factors. These fac-
tors are difficult to quantify in a spatially explicit 
way, but their exclusion is accompanied by an in-
creased level of model generalization. Initial sensi-
tivity analysis of the GPPM indicated that the mod-
elled avalanche paths are sensitive to the respec-
tive model parameterization. Further improvement 
of the approach could be achieved by thoroughly 
identifying the best set of model parameters for 
specific regions (i.e. spatially explicit). Further im-
provements of the GPPM might be obtained by en-
hancing the (land cover) map, that directly relates 
to the friction parameter. In many cases, the avail-
able land cover map did not depict smaller hillslope 
channels in terms of assigning a specific non-forest 
class (i.e. many channels very displayed as for-
ests). The unrealistic high friction values within 
those areas strongly restricted the plausibility of the 
results (i.e. to short avalanche paths).  This prob-
lem was tackled by testing GPPMs with and without 
a spatial friction parameter. The GPPM produced 
without a spatially explicit friction coefficient was 
more suitable for our purpose. A consideration of a
very detailed land cover map (e.g. at tree-level) is 
expected to further optimize the results.

Figure 2: Regional Gravitational Process Path
Model with subset of the Langtaufers Valley. The
overview map depicts the GPPM generated with a
global friction parameter while the excerpt relates
to the GPPM obtained without a spatially differenti-
ated friction parameter.
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5.2 Avalanche Detection with Optical Remote 
Sensing 

Optical remote sensing data is rarely used for the 
detection of past snow avalanches (Eckerstorfer et 
al 2016). Several aspects related to the analysis of 
optical data in mountain regions limited the per-
formed investigations. For instance, snow cover 
can change on a daily basis while clouds frequently 
obstruct the view on the underlying terrain. Even 
though the temporal resolution of Sentinel-2 im-
proved with the launch of Sentinel-2b, the frequent 
presence of cloud cover represents a major chal-
lenge. Detectable snow cover changes can be not 
only related to avalanche occurrence, but quite of-
ten also to fresh snowfall or snow melting. The time 
span for avalanche detection might also be a func-
tion of snow characteristics and avalanche magni-
tude (i.e. larger avalanches might be visible for 

longer time spans). The “cloud problem”, which re-
duces the respective frequency of observable snow 
pixels, could then lead to incomplete avalanche de-
tection. A third issue of optical remote sensing data, 
especially within mountainous areas, are the shad-
ows. As the sun is not in the nadir at the time of 
acquisition, the images contain large areas that are 
shadowed. Our first results provided evidence of a 
substantially decreased performance of the change 
detection approach within shadowed areas. To 
remedy this, a separate application of two classifi-
ers (i.e. shadowed areas and areas without shad-
ows) is expected to be of major benefit.
Furthermore, the initial manual setting of thresholds 
for and was subjective and would further restrict 
the envisaged automatization. To overcome this is-
sue, the Expectation Maximization (EM) method 
was applied to detect an optimal binary threshold 

¯0 0.5 10.25
Kilometer

Figure 3: Comparison between the Change Vector Maps with manual and automatic selected thresholds
(Contains modified Copernicus Sentinel data (2018)/Eurac Research)
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for the identification of changed and unchanged pix-
els. The final heuristic evaluation of all results indi-
cated that the integration of steps (i) and (ii) lead to 
more plausible results, also in terms of well-identifi-
able avalanche structures and a reduction of noisy 
areas (Fig. 3). In summary, the automated pro-
cessing chain showed promising results while fu-
ture activities will also focus on an automatization 
to achieve near real time spatial avalanche occur-
rence information.

6. CONCLUSION
The conduction of studies on snow avalanches on 
regional scale is a challenge, but offers opportuni-
ties as well. The spatial scale limits the options for 
input data and usually increases the level of gener-
alization of the results. This study showed that the 
combination of a static regional scale snow ava-
lanche model with a remote sensing based change 
detection approach has the potential to improve 
spatio-temporal avalanche detection. Future re-
search will build on this study and aims to further 
optimize and automatize the performed analysis. 
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