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1Météo-France - CNRS, CNRM/CEN, Grenoble, France
2Department of Wildland Resources, Utah State University, Logan Utah, USA

3Centre for Hydrology, University of Saskatchewan, Saskatoon Saskatchewan, Canada

ABSTRACT: A snow profile, i.e. the variation of snow physical properties as a function of depth, captures
the snow cover stratigraphy which is crucial for many applications such as the assessment of the avalanche
danger. With the increasing use of distributed snowpack numerical models or electronic highly-resolved snow
penetrometers, which generates a huge amount of data, there is a need for a robust and efficient method to
compare and classify snow profiles. It has long been recognized that accounting for shifted layer position, i.e.
layers at the same depth are not necessarily at the same position in the stratigraphic sequence, is crucial to
obtain a meaningful metric. In this work, we present a new metric between snow profiles based on dynamic
time warping that properly accounts for depth shifts in the stratigraphy. The new perspectives opened by
this development are illustrated on three instances: the clustering of large spatially-distributed snowpack
simulations, the correction of snowpack simulations with observed snow profiles and the quantification of the
spatial variability of measured hardness profiles.
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1. INTRODUCTION

The snowpack stratigraphy is generally described
as the superposition of different slope-parallel
layers (e.g. Fierz et al., 2009). It is often observed,
however, that vertical snow profiles measured sev-
eral meters from each other are different, making it
difficult to identify one profile representative of the
considered site. Such discrepancy between profiles
is due to the snowpack spatial variability in terms
of layer intensive property and layer depth. The
variability of the layer depths causes stratigraphic
mismatches: layers at the same depth are not
necessarily at the same position in the stratigraphy.
These stratigraphic mismatches make the compari-
son between profiles very difficult. Indeed, it is not
really relevant to simply compare the measured
property at the exact same depth in the different
profiles (Lehning et al., 2001). For instance, Fig. 1
shows three different illustrative vertical profiles of
a certain property. When computing the root mean
square difference of these profiles depth-by-depth,
it appears that profile 2 and 3 are the most similar,
which is counter-intuitive. We would instead expect
that profile 1 and profile 2 are the closest to each
other because they share common stratigraphic
sequences even if these sequences are shifted in
depth.
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Figure 1: Qualitative comparison of three illustrative profiles. A
depth-by-depth comparison of the profiles would identify Profile
2 and Profile 3 as the most similar. A layer-by-layer comparison
of the profiles would identify Profile 1 and Profile 2 as the most
similar.

The snow professional when comparing two manual
snow profiles implicitly disentangles this interweav-
ing of differences in property and depth positioning
by identifying and comparing common stratigraphic
sequences independently of their exact depth. Yet,
with the increasing use of snowpack numerical
models or electronic highly-resolved snow profilers
(e.g. penetrometers) which generates a huge
amount of data, this partitioning cannot be carried
out manually and there is a need for an automatic
method to compare snow profiles (Hagenmuller and
Pilloix, 2016).

To this end, we adapted a method used for audio
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processing called dynamic time warping (Sakoe
and Chiba, 1978; Schaller et al., 2016). This
method enables to partition the difference between
profiles into depth differences and differences of the
considered intensive property. In this way, profiles
that share the same crust or weak layer, but at
different depths can be effectively recognized as
similar and only differ by the position of the common
feature.

The method is first presented and then used to solve
three different problems: classification of simulated
snow profiles, correction of simulated snow profiles
with stratigraphy measurements and quantification
of the snowpack variability.

2. METHOD

2.1. Layer mapping between two profiles

To quantitatively compare two profiles, it is neces-
sary to perform a mapping between the layers of
the two profiles. It means that it is necessary to
explicitly identify and associate layers that are at
the same position in the stratigraphic sequence. To
this end, we followed the work of Hagenmuller and
Pilloix (2016); Schaller et al. (2016). The main idea
is to automatically adjust the layer thicknesses so
that a certain distance D between the profiles is
minimized. This distance D could be, for instance,
the root mean square difference of hardness. In
addition, the layer thickness extension or reduction
is constrained in the range between -50% to +100%
to avoid very large depth shifts. This constraint
prevents from inversion in the layer order (bottom
to top) and from very large layer dilation at the ex-
pense of the complete removal of some layers. To
solve the optimization problem, i.e. finding the best
thickness adjustments according to distance D, we
use Dynamic Time Warping (Sakoe and Chiba,
1978). The minimal distance D obtained after layer
mapping can be considered as a distance between
the two profiles.

An example of a mapping between two illustrative
profiles is shown in Fig. 2.

2.2. Layer mapping between multiple profiles

To combine multiple (more than two) profiles to-
gether into one representative profile, the method
described above does not apply directly. Indeed,
no profile of the set can be arbitrarily considered as
the reference profile and the other profile matched
to this particular profile. Petitjean et al. (2011) pro-
posed an heuristic approach to overcome this diffi-
culty. Its main idea is to iteratively match the pro-
files to the mean of the matched profile, which thus

Figure 2: Mapping between two profiles. The profiles are shown
in black. The mapping is represented by red dotted lines linking
the profile points. For instance, the weak layer at a depth of 0.6 m
in the first profile (left) is correctly associated to the weak layer at
a depth of 0.8 m in the second profile (right).

evolves with the number of iterations. After a few
iterations, the mean of the matched profiles con-
verges into a profile that can be considered as rep-
resentative of the profile set. This representative
profile preserves sharp vertical property variations
while a simple mean of the initial profiles would
smooth this feature out.

3. RESULTS

3.1. Profile classification

The proposed method is here applied to classify
profiles generated by large spatially distributed
snow pack simulations.

Daily forecasts of the numerical weather prediction
model (AROME) at 1.3-km grid spacing over the
French Alps were used as atmospheric forcing to
the snowpack model Crocus (Vionnet et al., 2016).
This type of simulation generates a huge amount of
data that cannot be reasonably analyzed manually.
Indeed, it is very difficult to identify manually a com-
mon structure in this data. To reduce the amount
of data, we propose to automatically group similar
profiles together using the matching approach.

Firstly, the distance of each couple of profiles of
the set is computed accounting for potential depth
shifts. Then an agglomerative clustering technique
is used to group profiles characterized by a small
distance to each other. Lastly, the profiles belonging
to the same cluster are matched together to derive
a representative profile of each cluster. On the ex-
ample of the Queyras massif shown in Fig. 4, the
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method identifies five consistent clusters. They cor-
respond more or less to altitude bands with a pro-
nounced East-West segmentation linked to the ori-
entation of the principal meteorological fluxes (pre-
cipitation and wind).

Figure 3: Classification of profiles simulated by the model chain
AROME-Crocus on the Queyras massif, on March 2017. Each
color represents a cluster. Only the spatial positions of the cluster
are shown here but not the corresponding profiles.

3.2. Correction of snowpack simulations

The proposed method is here applied to correct
snowpack simulations with measurements of snow
stratigraphy.

On the one hand, manual stratigraphy measure-
ments provide a direct screen-shot of the snowpack
at the pit scale but they are time-consuming and
only capture an instant of the snowpack evolution.
On the other hand, numerical models provide
estimates of the snowpack at a very high time res-
olution. Yet, these estimates can suffer from large
deviations to the observed snowpacks because
of errors in the meteorological forcing and limited
accuracy in modelling complex but essential phys-
ical processes. It thus appears natural to combine
these two sources of information to provide the best
representation of the snowpack evolution.

The method proposed in this paper can associate
each layer of the measured profile to the profile sim-
ulated at the measurement point. With this map-
ping, it becomes possible to re-initialize certain layer
variables (e.g. layer thickness, grain size, density)
of the simulation with direct measurements of the
stratigraphy. Figure 4a shows the simulated snow-
pack at Col de Porte, France for winter season 2003-
2004. The initial conditions of this simulation are
the absence of snow in August 1, 2003. Large
deviations from the observed snow depth are visi-
ble. Figure 4b shows the simulated snowpack cor-
rected every week with snow stratigraphy measure-
ments. As expected, the simulated snow depth is
in good agreement with the measurements. More
interestingly, the model with no correction simulates

the presence of depth hoar at a height of 0.4 m in
January 2003, while no observer has reported this
presence. The corrected simulation effectively does
not predict the presence of depth hoar. This differ-
ence may have important consequences to assess
the avalanche risk.

Figure 4: Correction of the snowpack simulation with measure-
ments of the stratigraphy at Col de Porte, France, winter 2003-
2004. (a) reference simulation without correction, (b) corrected
simulation. Only the grain type profiles are shown here.

3.3. Quantification of the snowpack variability

The proposed method is here applied to evaluate
the snowpack stratigraphy variability.

Snow stratigraphy was captured using a digital snow
micro penetrometer (SMP) in a spruce beetle in-
fested forest in the Uinta Mountains, Utah, USA,
over the course of winter 2015 - 2016. Repeated
measurements on fixed 20 m transects were con-
ducted every 0.5 m in four different study plots:
meadow area, harvested forest, gray forest attacked
by spruce beetle and green healthy forest. On the
raw hardness data, it is impossible to disentangle
the interweaving of vertical and spatial (horizontal)
variabilities. Indeed, the spatial variation of hard-
ness at a given depth is both affected by the spa-
tial variability of the snowpack hardness but also the
spatial variability of the layer depth and the vertical
variability of hardness. For instance, Fig. 5a shows
an example of the hardness profiles measured un-
der the harvested forest. It is easy to follow the dif-
ferent layers manually but impossible to quantify the
spatial variability. To this end, the proposed method
is very efficient and enables to match all measured
profiles so that they are aligned (Fig. 5b). The spa-
tial variability can then be simply computed as the
mean standard deviation along the transect. By re-
peating this procedure on all the data, we were able
to compute an indicator of the snowpack spatial vari-
ability as a function of the canopy closure (Fig. 5c).
We observed that the spatial variability is mainly
controlled by canopy closure with no specific visi-
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ble impact of the forest health (expect it decreases
the canopy closure) (Fig. 5c).

a) b)

c)   

Figure 5: Analysis of snowpack spatial variability under different
types of forest. (a) hardness profile transect measured under
harvested forest. A blue color means low hardness, a red color
means high hardness. (b) same profiles but aligned. (c) Intra-
set variability, an indicator of spatial variability as a function of
canopy closure.

4. CONCLUSION

The spatial variability of layer depth makes any
quantitative comparison between profiles difficult.
The proposed method successfully enables to ver-
tically align snow profiles so that continuous layers
are at the same depth. It is based on a robust al-
gorithm, Dynamic Time Warping, initially used for
audio signal processing. Despite its simplicity, the
method has many practical applications as the ones
illustrated in this paper.
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