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ABSTRACT: Seismic monitoring systems are well suited to detect avalanches independent of weather 
conditions. Nevertheless, seismic monitoring systems are not yet used operationally, as developing algo-
rithms to automatically detect avalanches is far from trivial. Thus far, attempts to automatically identify 
avalanches in seismic data have focused on using machine learning algorithms with varying degrees of 
complexity, requiring extensive training data sets and generally resulting in rather high false alarm rates. 
Recently, a promising new approach was introduced using so-called hidden Markov models (HMMs), a 
statistical pattern recognition tool commonly used for speech recognition. With this method, the abun-
dance of background noise data is exploited and only one training event is required. We adapted this 
method to automatically detect avalanches in data recorded by a small aperture seismic array deployed 
above Davos, Switzerland. While preliminary results were very encouraging, the number of false alarms 
remained rather high. To eliminate false detections, primarily produced by regional earthquakes or distant 
airplanes, we introduced a two-step approach to reduce the number of false alarms. First, using HMMs 
trained at a second array at a distance of 14 km, we compared the automatically detected events at both 
sites. Any co-detected events were removed. Second, for the remaining events, we used multiple signal 
classification (MUSIC), an array processing technique, to determine the back-azimuth and the apparent 
velocity of the incoming wave-fields to obtain information on the direction of the source of the events. In 
contrast to avalanches, falsely classified events had much larger changes in back-azimuth and could thus 
be dismissed. We applied this method on data recorded from January to April 2017 and automatically 
obtained an avalanche activity pattern in line with visual observations performed by the avalanche warn-
ing service in the area of Davos. Overall, our new classification approach shows that seismic monitoring 
systems can be used to automatically provide timely information of large avalanches occurring within a 
distance of 2-3 km. 
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1. INTRODUCTION 
To improve avalanche forecasting, accurate infor-
mation about the current avalanche activity are of 
great importance. Currently, avalanche activity 
information is obtained by visual observations 
which rely on good visibility. Hence it is nearly 
impossible to obtain reliable avalanche activity 
data during periods of bad visibility (e.g. snow 
storms) or at night. Existing avalanche activity 
data are often inaccurate and contain errors. In 
this study we use a seismic monitoring array and a 
machine learning algorithm to provide accurate 
avalanche activity data for small areas.  

Seismic arrays are well suited to monitor earth-
quakes, landslides and volcanoes (Suriñach et al. 
2001, Suriñach et al. 2005, Esposito et al 2006). In 
recent years, machine learning algorithms became 
more important for the analysis of continuous re-
cordings. Hammer et al. (2013) introduced an 
earthquake and query blast detector based on 
hidden Markov models. For this approach, one 
single training sample for each event type was 
sufficient to construct a reliable classification sys-
tem. Using this approach, Hammer et al. (2017) 
identified large avalanches in a 30 km range of a 
seismological broadband station of the Swiss 
Seismological Service. They analyzed a 5-day 
period of high avalanche activity in February 1999 
detected 43 confirmed avalanches with only 2 
false alarms.  

Apart from the detection of seismic events, it is 
possible to determine the direction of the signal 
using array processing techniques (Rost et al. 
2002) and by using multiple arrays, localization is 
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also possible (Métaxian et al. 2002). In most stud-
ies, a beam-forming approach was used to fulfill 
these tasks. Lacroix et al (2012) were the only 
ones who used this method to determine the direc-
tion of avalanches. A more advanced technique 
capable to identify several sources is multiple sig-
nal classification (MUSIC) (Schmidt 1986).  

In this study we used the approach proposed by 
Hammer et al. (2012), but applied the automatic 
detection to data more influenced by noise as we 
used less sensitive geophones. Due to the limited 
data, additional post-processing steps were re-
quired to obtain reliable avalanche activity data. 
Furthermore we implemented the MUSIC method 
to localize avalanche events and tried to recon-
struct the avalanche paths. 

2. FIELD SITES AND INSTRUMENTATION 
We analyzed data recorded continuously at two 
field sites above Davos, Switzerland, the Dischma 
and the Wannengrat field site. At both field sites 
seven vertical geophones are circularly arranged 
with at least one sensor in the middle. Depending 
on the ground of the field site, sensors are either 
attached to rocks using an anchor or are buried 
approximately 50 cm deep in the ground and cov-
ered with soil (Heck 2018). Currently, sensors with 
an eigenfrequency of 4.5 Hz are used for the mon-
itoring and the continuous seismic data are sam-
pled at a rate of 500 Hz. The distance between the 
sensors was on average 35 m and cannot be in-
creased due to the used instrumentation. Data are 
recorded using a low energy data storage system 
based on a Raspberry Pi and are either transmit-
ted using a long distance wireless link or are re-
trieved manually. 

3. METHODS 

3.1 Automatic detection of avalanches 
Apart from signals produced by avalanches, many 
additional seismic events such as earthquakes 
and airplanes can be identified in the seismic data. 
To differentiate between various types of signals, 
advanced machine learning methods are required 
(Heck 2018). One promising approach are hidden 
Markov models (HMMs), a machine learning algo-
rithm commonly used for speech recognition. For 
an event detector using a classical HMM approach 
(e.g. Ohrnberger 2001), a high number of training 
events are required. To circumvent this, Hammer 
et al. (2012) developed a new approach exploiting 
the abundance of data containing mainly back-
ground signals to learn a multidimensional Gauss-

ian mixture model. This background model repre-
sents the overall feature space and serves as 
seed for deriving HMM parameters for the wave-
form of rare seismic events (e.g. avalanches) us-
ing as little as one single training sample. Based 
on these promising results, we used the same 
HMM approach to identify avalanches in continu-
ous seismic data. Since we used less sensitive 
instruments over longer time periods, we had to 
adapt the approach presented by Hammer et al. 
(2012). In particular, we calculated the background 
model using data within a 24-hour window to cover 
diurnal variations in the seismic data and it was 
also necessary to recalculate the background 
model on an hourly base. To eliminate false detec-
tions in the classification results, post-processing 
steps were implemented in the classification work-
flow (Heck et al. 2018a).  

3.2 Localization of avalanches 
Since data were recorded using a seismic array, 
we also used array processing techniques to ob-
tain further information of the detected events. By 
applying multiple signal classification (MUSIC) we 
obtained information on the back-azimuth of the 
seismic source and the apparent velocity of the 
incident wave-fields (Heck et al. 2018b). Since 
avalanches have a moving source character, small 
changes of the back-azimuth with time are visible 
for avalanche events. Strong changes in the back-
azimuth, however, are produced by other seismic 
events. Hence we also used the array processing 
techniques as an additional post-processing step 
to identify false classifications. Additionally, we 
were able to reconstruct avalanche paths by com-
bining the back-azimuth results obtained using 
MUSIC with our knowledge of the local topography 
and avalanches visually observed during a field 
survey. Doing so, we were able to link seismic 
events to specific avalanche paths. 

4. RESULTS AND DISCUSSION 
We analyzed continuous seismic data recorded 
during the winter season 2016-2017 at both field 
sites above Davos. The main focus was on recon-
structing avalanche activity for the Dischma field 
site. During this winter season three main periods 
of high avalanche activity were observed by the 
avalanche warning service in the region of Davos, 
in January, in February and in March (red bars in 
Figure 1). Meteorological conditions at the 
Dischma field site differed with those closer to 
Davos, where the vast majority of avalanche ob-
servations are made. Indeed at the Dischma field 
site snow depth in January and February was 
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lower compared to the rest of Davos and almost 
no avalanches were observed during field surveys 
in the Dischma valley during those periods or on 
images from multiple automatic cameras that were 
installed there. Only for the period in March many 
avalanches were visually observed in a field sur-
vey performed several days later (blue areas in 
Figure 2). 

We performed the automatic avalanche classifica-
tion from the beginning of January to the end of 
April. As already mentioned, we used 24 hours of 
data to construct the background model and recal-
culated this background model on an hourly basis. 
To train the HMMs a one-time event model was 
used based on a confirmed avalanche recorded 
on 9 March 2017. For each sensor a background 
and event model were then calculated. Doing so, 
data recorded at each of the seven sensors of the 
array were classified. Once the classification was 
performed, all detected events with a duration 
shorter than 12 s and detected by less than five 
sensors of the array were dismissed, as suggest-
ed by Heck et al. (2018a). Doing so, we identified 
117 possible avalanche events in the continuous 
data. A manually inspection of these detections 
revealed that at least 50% of the classified events 
were produced by airplanes or earthquake. The 
time series and seismic features of these events 
had similarities to avalanches and were therefore 
falsely classified.  

To eliminate these false classifications, we imple-
mented a combined array classification. In this 

step we assumed that events that were recorded 
almost simultaneously at the Wannengrat array 
14 km away could not be avalanches. We there-
fore performed a second classification at the 
Wannengrat array with the aim to identify air-
planes and earthquakes and identified all co-
detections by comparing all classifications. Doing 
so we were able to eliminate 53 false detections 
and 64 possible avalanche events remained (yel-
low and turquoise bars in Figure 1). Nevertheless, 
these 64 events still contained some false classifi-
cations. To remove these, in a final step we ana-
lyzed the back-azimuths obtained using the MU-
SIC method. By considering that the back-azimuth 
of avalanche signals only have small changes, we 
dismissed all detections with strong variations. 
Using this post-processing step, we were able to 
eliminate an additional 37 events and 27 remained 
(turquoise bars in Figure 1). By applying the auto-
matic classification with additional post-processing 
steps we were thus able to reconstruct the main 
avalanche period in March and detected some 
further single avalanches, which released during 
the winter season.  

As already mentioned above, the two avalanche 
periods in January and February in the area of 
Davos were not pronounced at the Dischma field 
site. This already shows that the detection range 
of the seismic array is quite limited. To further 
constrain the detection range, we focused on the 
avalanche period in March and assigned seismic 
events to visually observed avalanches. To do so 
we projected the calculated back-azimuth values 
on a map and matched them with mapped ava-
lanches. Using this approach we were able to link 
11 seismic events to specific avalanche paths 
within a range of 3-4 km of the seismic array (Fig-
ure 2). Since we only had one seismic array at this 
field site, automatic localization was not possible 
as we could only estimate the direction of the 
source. 

Figure 1:  Classification results after applying the 
combined array classification and localization
based classification. Yellow bars are all events
dismissed by the location, turquoise bars are con-
sidered as avalanches and red bars indicate the
number of visual observed avalanches in the sur-
roundings of Davos (~175 km2) 
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We also compared the release times of all detect-
ed events during the two-day period in March with 
the measured precipitation (Figure 3). The first 
avalanche already released with less than 20 cm 
of new snow measured at a weather station locat-
ed 7 km to the northwest. Furthermore, avalanche 
activity stopped once the snow storm was over. 
This analysis shows that for this particular snow 
storm, avalanches could be expected at any time 
during the snow storm, already with small amounts 
of new snow, and not necessarily near the end of 
the storm when most of the snow had accumulat-
ed. 

5. CONCLUSION
Seismic monitoring systems are well suited to 
detect avalanches at remote field sites. By using 
advanced machine learning algorithms, such as 
hidden Markov models, automatic classification of 
seismic data is possible. Our experiment showed 
that compared to previously published studies, 
additional post-processing steps are required. This 
allowed us to detect 27 avalanches within a range 
of 2-3 km during the entire winter season 
2016-2017. By comparing the release time of the 
avalanches with measured precipitation during a 
major avalanche cycle in March, we saw no clear 
peak in avalanche activity, a rather surprising re-
sult. In future studies, we plan to deploy several 
nearby automatic monitoring systems to automati-
cally reconstruct the avalanche paths where ava-
lanche release. 
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