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ABSTRACT:

Ski-resort management strongly depends on meteorological conditions, in particular natural snowfall and con-
ditions favorable for technical snowmaking. Therefore, improved anticipation capabilities up to the seasonal
scale hold significant potential to improve the real-time adaptation of ski-resorts to upcoming meteorologi-
cal conditions. In this context, the H2020 PROSNOW project will build a demonstrator of a meteorological,
climate and snow management prediction system from few days to several months ahead, with a seamless
approach specifically tailored to the needs of the ski industry. This work presents preliminary results achieved
within PROSNOW. A 4 day lead-time numerical weather prediction product has been combined with clima-
tological forcing in order to feed the detailed snowpack model SURFEX/ISBA-Crocus, allowing to generate
an ensemble of possible realizations of the unfolding of the snow season. Snow height simulations, carried
out at different altitudes in a French ski-resort, are shown and several improvements in the ability to better
forecast the observed snow height on the ski slopes are discussed. The relative impact of the current snow
conditions and the upcoming meteorological conditions on the future state of the snowpack is assessed using
appropriate statistical metrics (Rank Diagrams, Brier Scores, CRPS and CRPSS), highlighting in particular
the impact of re-initializing the snow height throughout the winter season and using forecast against mere
reanalysis-based forcing to drive the simulations. Overall, our results show the significant potential of the
approach combining snow height initialization and forecast forcing to predict the future state of the snow-
pack, thereby demonstrating the interest of the PROSNOW modeling framework as a decision-making tool
for ski-resort managers.
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1. INTRODUCTION economic terms (premature melt of the snow pro-

duced, overproduction, inadequate grooming fre-
When looking at weather and snow forecast, ski- quency, etc.) and ecological, not to mention the
resort operators have to rely on various and scat- quality of snow on the slopes and the satisfaction
tered sources of information, hampering their ability of skiers.

to cope with highly variable meteorological condi-
tions. This makes the snow management optimiza-
tion particularly challenging, in particular for snow-
making. For example, the required water volumes
are currently estimated before the snow season and
based on general information, such as the worst en-
countered snow season in the past, with only one or
two decades of historical hindsight. This lack of an-
ticipation can have negative consequences, both in

In this context, snow management and slope
preparation in ski-resorts could strongly benefit from
anticipation tools to assist the decision-making pro-
cess. Improved anticipation capabilities at all time
scales, spanning from "weather forecast” (up to 5
days typically) to “climate prediction” at the sea-
sonal scale (up to several months) holds signifi-
cant potential to increase the resilience of socio-
economic stakeholders and support their real-time
adaptation potential to upcoming meteorological
*Corresponding author address: conditions. The H2020 PROSNOW project (www.
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specifically tailored to the needs of the ski industry
(Morin et al., 2018).

The key hypothesis behind PROSNOW is that ad-
equately combining in-situ observations of the snow
conditions on ski slopes, which form the starting
point of any forecast, with atmospheric predictions
spanning meteorological to seasonal time scales in
a seamless manner (Pappenberger et al., 2011),
will provide added value for operational decision-
making. This hypothesis is discussed in this work,
introducing and quantifying the added value of com-
bining forecast and climatological information for the
prediction of snow conditions at the scale of the sea-
son. In particular, we have assessed the partition-
ing of the predictability of snow conditions due to,
on the one hand, the initial conditions of the snow-
pack (i.e. the impact of the "memory of snow”) and,
on the other hand, the upcoming weather condi-
tions. All these evaluations of the predicted con-
ditions of the snowpack have been performed com-
puting appropriate, proper statistical metrics (Rank
Diagrams, Brier Scores, CRPS and CRPSS), well
suited for analyzing the skills of probabilistic fore-
casts. This statistical evaluation is crucial to esti-
mate the uncertainty affecting the forecast and the
expected impact of operational decisions taken at
various times of the season by the ski-resort man-
agers.

2. MATERIAL AND METHODS

2.1. Crocus snowpack model

In this study, we have used the detailed snowpack
model SURFEX/ISBA-Crocus (Vionnet et al.,
2012). This model, referred to as Crocus hereafter,
explicitly solves the energy and mass balance
of the snowpack to simulate the evolution of the
physical properties of a multi-layer snowpack in
a detailed manner, including internal phenomena
such as phase change, water percolation, snow
compaction, snow metamorphism and their impact
on the radiative and thermal properties of the
snowpack. Here we focus only on natural snow
processes.

2.2. SAFRAN analysis

In order for Crocus model to be run, consistent
meteorological input data are required.  The
generation of those data necessary to feed the
numerical snowpack model Crocus is carried out
by the meteorological downscaling and surface
analysis tool SAFRAN (Durand et al., 1999).
SAFRAN operates at the geographical scale of
meteorologically homogeneous mountain ranges
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(so-called "massifs”) within which meteorological
conditions are assumed to depend only on altitude.
For the analysis of meteorological surface fields,
the guess used by SAFRAN consists of vertical
atmospheric profiles from numerical weather
prediction (NWP) models. A robust assimilation
scheme corrects the initial guess using ground-
based and radiosonde observations as well as
remotely-sensed cloudiness. Thus, SAFRAN
provides hourly meteorological conditions for each
massif for 300 m-spaced elevation bands, also
accounting for aspect and slope.

2.3. PEARP-SAFRAN ensemble forecast

In this study we have used a probabilistic version of
ARPEGE, called PEARP for Prévision d’Ensemble
ARPEGE (Descamps et al., 2014), to generate an
ensemble of 35 different predicted meteorological
conditions. PEARP has been post-processed to
provide forecast data matching the type (variables)
and geometry (massifs, elevations) of SAFRAN.
This PEARP-SAFRAN forecast (also referred to as
PEARP hereafter) has a 4 day lead-time and it is
initialized each day at 6 UTC.

2.4. Snowpack modeling configurations

The forcing data described above (SAFRAN analy-
sis and PEARP-SAFRAN ensemble forecast) have
been combined in different ways to provide the
Crocus snowpack model with the required meteo-
rological driving data. The resulting configurations
are presented in Fig. 1.

Analysis (A). The SAFRAN analysis has been
taken as a proxy for the meteorological obser-
vations, since, as explained earlier, it already
integrates measurements from various sources
and the spatial scale of simulated variables does
not have observation equivalents. Analysis-based
snowpack simulations have been run starting from
the 1st of August and are considered as "pseudo-
observations” of the snow season of interest.

Reanalysis (R). The SAFRAN reanalysis of 35 past
winter seasons (from 1982/1983 to 2016/2017) has
been used to generate an ensemble of meteorolog-
ical conditions. This ensemble has then been used
to drive Crocus to obtain 35 possible evolutions
of the snow conditions. The median value of
this ensemble is considered as a climatological
reference, since it represents the expected snow
conditions for each location of interest based on
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Snow height

Snowpack modeling
configurations

A= Analysis
(1 member for current season)

R = Reanalysis
(35 members from past seasons)

A’ = Analysis + Reanalysis-based forecast

(initialization from analysis, forcing from reanalysis)

B’ = Analysis + PEARP + ysis-based forecast

(initialization from analysis, forcing from PEARP and reanalysis)

D+4

1st of August

of year Y -
Initialization

Day D

31stof July
of year Y+1

Figure 1: Snowpack modeling configurations obtained with different combinations of meteorological forcing
data. For the reanalysis, in the graphic only the quantiles 20, 950 and q80 are shown.

climatology.

Analysis + Reanalysis-based forecast (A’). This
configuration is a combination of the first 2. For
each calendar date, the outputs of the SAFRAN-
Crocus analysis have been used to provide the
initial state of the snowpack, starting from which
an ensemble of snow simulations has been built
by using the SAFRAN reanalysis of past seasons
as a surrogate for possible meteorological future
conditions for the next weeks to months. This con-
figuration, called A’ with reference to Fig. 2 of Morin
et al. (2018), shows the impact of initializing the
state of the snowpack, compared to configuration R
which does not include any initialization during the
sSnow season.

Analysis + PEARP + Reanalysis-based forecast
(B’). This configuration is similar to A’, with the
difference that the first 4 days of forecast are taken
from PEARP-SAFRAN, instead of reanalysis. It is
called B’ with reference to Fig. 2 of Morin et al.
(2018) and allows to highlight the combined contri-
butions of initializing the state of the snowpack and
using NWP to drive the simulations instead of mere
reanalysis.

We expect that moving from R to A’ to B’ (i.e.
starting from the reanalysis and complexifying
the system by progressively accounting for the
initialization and using NWP) will improve our ability
to match the actual behavior of the snowpack
represented by model run A.
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2.5. Statistical metrics

Forecast scores are used to quantify the accuracy
and/or degree of association of a forecast to an
observation (or an estimate of the actual value of
what is being predicted), whereas skill scores are
used to evaluate the skills of a forecast with respect
to the skills of a reference method, supposedly sim-
pler to implement. In this work, the performances
of the ensemble simulations have been evaluated
using the 3 metrics described below.

Rank Diagrams

Rank Diagrams (sometimes also called verifica-
tion rank histograms or Talagrand diagrams) are a
way to show how reliable an ensemble forecast is
compared to a set of observed data (Hamill, 2000).
In other words, they measure how well the ensem-
ble spread of the forecast represents the true vari-
ability (uncertainty) of the observations, by counting
where the verifying observation falls with respect to
the ensemble forecast data.

In an ensemble with perfect spread, each mem-
ber represents an equally likely scenario, so the
observation is equally likely to fall between any
two members. A flat diagram then means that the
ensemble is accurate (or reliable): the observed
values are indistinguishable from any forecast
member of the ensemble and the ensemble
spread correctly represents forecast uncertainty.
Conversely, deviations from a uniform distribution
mean that the model is biased. U-shaped dia-
grams are obtained when the ensemble spread is
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too small, many observations falling outside the
extremes of the ensemble (in particular, a peak
on the right side of the diagram indicates that the
ensemble members are systematically lower than
the observations). Finally, a dome-shaped diagram
means that the ensemble spread is too large, too
many observations falling near the center of the
ensemble.

Brier Score

The most common probabilistic score is the Brier
Score (Brier, 1950), which describes the ensemble
forecast system performance in terms of a given
threshold exceedance. In its most common formu-
lation, the Brier Score (BS) is defined as the mean
squared error of the probabilistic forecast:

1 N
BS = Z}:
where N is the number of prediction instances,
P{ is the forecast probability of exceeding a given
threshold at instance i and P¢ is the observed out-
come of the event at instance i (1 if the observation
is above the threshold, O otherwise). The Brier
Score ranges from 0 (representing a perfect score)
to 1, since this is the largest possible difference
between a predicted probability (which must be
between 0 and 1) and the actual outcome (which
can take values of only 0 or 1).

(P - P2 (1)

Continuous Ranked Probability Score

The Continuous Ranked Probability Score
(CRPS) compares a forecast with an observation,
where both are represented as Cumulative Distribu-
tion Functions (CDF's). The equation for calculation
of the CRPS is the following:

1 N X=+0C i , 2
CRPS = + ; j; - (CDF! (x) - CDF? (%)) dx

(2)
where CDF{ is the forecast probability CDF at in-
stance i and CDF? is the observed probability CDF
at instance i. If the observation is represented by a
single value, then the corresponding CDF is a sin-
gle step-function with the step from 0 to 1 at the
observed value of the variable (Heaviside function).
The calculation of the CRPS, which can be seen as
a Brier score integrated over all possible thresholds
(Brown, 1974), results in a value expressed in the
units of the forecast variable (meters, in the case of
snow height). The perfect score is achieved when
CRPS is equal to 0, meaning that the forecast en-
semble is both accurate (low bias) and sharp (small
spread).
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The skill of a prediction system can also be com-
puted with respect to its benefit over a simpler en-
semble prediction method. To this aim, the CRPS of
a forecast can be compared to the CRPS of a refer-
ence, baseline method via the Continuous Ranked
Probability Skill Score (CRPS S):

CRPS

CRPSS =1—- —
CRPS .y

®3)
By definition, CRPS S equals 0 when the prediction
performs similarly to the baseline method used as a
reference, approaches 1 when the prediction over-
performs the reference and tends to -co when the
prediction under-performs the reference.

2.6. Implementation and evaluation data

This work reports on simulations carried out during
the 2017/2018 winter season, characterized by very
large snow accumulations in the French Alps, es-
pecially above 2000m. Results obtained at differ-
ent altitudes and on flat terrain in the French ski-
resort of Les Saisies (in the Beaufortain mountain
range, Haute-Savoie, with elevations ranging ap-
proximately from 1200m to 2100m) are shown. Les
Saisies is one of the 8 pilot ski-resorts of the PROS-
NOW project.

The snowpack model Crocus (Sect. 2.1) has
been run using different combinations of forcing
data provided by the SAFRAN analysis (Sect. 2.2)
and the PEARP-SAFRAN forecast (Sect. 2.3), gen-
erating several ensembles of possible realizations
of the unfolding of the snow season (Sect. 2.4).
Then, results have been evaluated in terms of snow
height using the metrics described in Sect. 2.5.
During this evaluation process, each of the 3 snow
height ensembles (R, A’ and B’) has been compared
to A to assess its performances.

For the Rank Diagrams, for a given elevation
and a given initialization date D, the percent-
ages of curves falling above or below the pseudo-
observations have been computed for each lead-
time (D+1, D+2, etc.) and then added. Finally, the
results obtained for all 151 daily initializations along
the season (from 01/11/2017 to 31/03/2018) have
been aggregated and normalized in order to end up
with a single diagram per elevation per season.

For the Brier Scores, a similar approach has been
followed, with 2 main differences. First, for each
lead-time the members of the ensembles and the
pseudo-observations have been compared to 3 pre-
defined snow height exceedance thresholds (set to
0.5, 1 and 2m) through Eq. 1. The values of N
in the equation correspond to the number of days
(D+1, D+ 2, etc.) after each initialization and then
decrease when the initialization date D is moved
along the season and less lead-time dates remain
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Figure 2: Simulated snow heights during the 2017/2018 winter season at 2100m at Les Saisies ski-resort.
Colors correspond to different snowpack modeling configurations (see Fig. 1 for more details).

available. Second, in this case the results from dif-
ferent initialization dates have not been aggregated,
so that the evolution of the Brier Scores over the
season can be represented.

For the CRPS, Eq. 2 has been applied for all
initialization dates along the season and computed
for all lead-times. Then the results have been ag-
gregated for each lead-time value. In this case,
the values of N in the equation represent the total
number of results obtained for each lead-time and
decrease with increasing lead-time (when the lead-
time is D + k, N is equal to the number of days in
the season, 151, minus k). The CRPSS has been
calculated through Eq. 3 using the CRPS of the re-
analysis as a reference. This way, it is possible to
highlight the impact of initialization only (A’) and a
combination of initialization and NWP (B’) against
the performances of mere reanalysis (R).

3. RESULTS AND DISCUSSION

Figure 2 shows the time evolution of snow height
during the 2017/2018 winter season, at 2100m on
flat terrain within Les Saisies ski-resort. The snow-
pack simulations have been fed with a combination
of different forcing datasets: the blue dashed line
represents the analysis of the current season, the
black dashed lines represent the quantiles 20, 50
and 80 of the reanalysis, the cyan curves repre-
sent the simulations initialized on the 18th of De-
cember 2017 with the analyzed state of the snow-
pack and driven by the reanalysis-based forecast,
the green curves represent the simulations driven
by the PEARP forecast from the 18th to the 22nd of
December 2017 and the red curves represent the
simulations initialized with the state of the snowpack
at the end of PEARP and driven by the reanalysis-
based forecast.

The ensemble simulations of Fig. 2 eloquently
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show how the wide variability in meteorological con-
ditions translates into a wide range of snow height
values, when meteorological conditions from differ-
ent years are used. The range of snow height
values which can be “expected” starting from a
given initialization date increases rapidly with lead-
time, so that predicting precisely snow height val-
ues using only forcing data from the reanalysis has
poor predictive power at the seasonal scale. Using
PEARP to force the snowpack simulations during
the first 4 days after the initialization improves the
forecast even after the 4 day timespan. However,
this effect fades over time and less than 2 weeks
after the initialization the benefit of having used the
NWP product instead of mere reanalysis is almost
negligible.

Since we have used forcing data coming from the
reanalysis of past winter seasons to drive the snow-
pack simulations (except for the first 4 days after
the initialization, when PEARP was also used), we
expect that the overall match between the predic-
tion and the analysis is maximized when the un-
folding of a given season resembles most the cli-
matological median. In contrast, predictions made
during snow seasons displaying significantly higher
or lower snow height than the reanalysis will dis-
play under- and over-estimated snow heights, re-
spectively (the example shown in Fig. 2 belongs to
the first case). For the same reason, the predic-
tion curves and the reanalysis exhibit similar pat-
terns, which is simply due to the fact that the same
meteorological forcing data have been used to per-
form all simulations. Nevertheless, significant dif-
ferences between the climatological values and the
prediction results (with and without using PEARP)
are present, due to the initialization with snow con-
ditions potentially widely different from the climato-
logical median. This mainly stems from the inter-
annual variability in snow precipitation during the
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accumulation period, which is the main driver of
seasonal snow variability in the case studied.

In order to generalize these first conclusions and
to better quantify the relative importance of current
snow conditions, date of the prediction and upcom-
ing meteorological conditions on future state of the
snowpack, we have run different snowpack ensem-
ble simulations (Sect. 2.4) for a larger number of
initialization dates and then computed the statisti-
cal scores (Sect. 2.5) with the approach described
in Sect 2.6. Some results are shown in Fig. 3,
Fig. 4 and Fig. 5, which present, respectively, the
Rank Diagrams, the Brier Scores and the CRPS
and CRPSS for the whole 2017/2018 winter season
at Les Saisies ski-resort.

The Rank Diagrams (Fig. 3) generally show a
peak on the right side, indicating that the ensemble
members are systematically lower than the obser-
vations. Indeed, the snow cover during this particu-
lar season was more abundant than the average,
which leads to an overall under-estimation of the
observed snow height by the simulations driven by
the reanalysis. This effect increases with altitude,
since snow accumulation during the 2017/2018 win-
ter season was particularly large at higher eleva-
tions. For example, the performances of the re-
analysis with respect to the analysis at 2100m (top
right panel) indicate that almost 80% of the times at
least 34 members of the reanalysis are below the
pseudo-observations. More interestingly, the effect
of initializing the snow conditions (middle row) leads
to a flatter diagram, meaning that the forecast en-
semble tends to be more accurate compared to the
one obtained without initialization (top row). In this
representation, the added-value of PEARP (bottom
row) is not easy to capture and leads to results sim-
ilar to those obtained with an entirely climatological
forcing.

The Brier Scores (Fig. 4) improve with elevation,
since larger snow accumulations make it easier to
reach a given snow height threshold faster in the
season. Similarly, for a given elevation scores im-
prove when the snow height threshold is reduced.
Looking at the performances of the ensembles, the
graphics clearly show the improved skill of the pre-
diction system in which the simulations are initial-
ized with the analyzed snow height (cyan curves)
compared to the skill of reanalysis alone (black
curves). Indeed, the Brier Scores of the reanalysis
are always worse (higher) then those obtained with
an initialization of the snow conditions and this dif-
ference remains as long as the snowpack builds up
and diverges from the climatological behavior. The
benefit of using PEARP during 4 days (red curves)
is small, because, as explained in Sect. 2.6, the
scores are calculated for each initialization date by
aggregating results for all lead-times, and the ef-

508

fect of using PEARP becomes negligible after a few
weeks.

The CRPS and CRPSS (Fig. 5) show an obvi-
ous degradation of the scores with lead-time. Re-
gardless of the lead-time, however, it is clear that
accounting for the current snow conditions signifi-
cantly improves the skill and the usefulness of the
model chain. The predictability of snowpack con-
ditions using the snow height initialization keeps a
predictive value with respect to the reanalysis for a
few weeks after the date of the prediction, in terms
of snow height values. These scores also allow
to highlight the improving effect of adding PEARP,
whose benefit lasts beyond the 4 day lead-time and
is more significant when larger amount of snow are
present on the ground. These results assess the
possibility to carry out informative forecasts at time
scales exceeding one week and provide the foun-
dation for the development of the PROSNOW oper-
ational chain.

4. CONCLUSIONS AND OUTLOOK

The current study addresses the predictability of
snow conditions in mountain regions, providing
quantitative insights into how current snow condi-
tions and subsequent meteorological conditions in-
fluence the unfolding of a given snow season. To
this goal, a prediction system was built, consisting
of an ensemble of numerical simulations performed
with the detailed snowpack model Crocus, fed by a
combination of meteorological conditions and initial-
ized daily with pseudo-observations.

It was found that the current version of the pre-
diction system keeps an interest with respect to re-
analysis until a few weeks after the prediction date.
Two comments can be made in this regard. First,
this result highlights the importance of the initial-
ization, since the snowpack can keep memory of
its past state during several days, as the statistical
scores presented in this work clearly show. Sec-
ond, this result also indicates that, regardless of the
initial conditions and the date of the prediction, me-
teorological conditions are the main driver of snow
conditions in mountain regions beyond a lead-time
of a few weeks. This is not surprising but quan-
titatively demonstrates that medium-range predic-
tions of natural snow conditions will mostly improve
through improvements in meteorological forecast.
Indeed, we found that using a numerical weather
prediction product with a 4 day lead-time (PEARP)
improves the scores with respect to a simple clima-
tological forcing, and this despite the main known
limitations affecting the PEARP product, i.e. an
under-dispersion of the ensemble and a relative un-
derestimation of the forecast probabilities of snow-
fall (Vernay et al., 2015).
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Figure 5: CRPS and CRPSS for the season
2017/2018 at 4 elevations at Les Saisies ski-resort.
The configurations R, A’ and B’ are explained in Fig.
1.

Our modeling framework was inspired by the ap-
proach developed by Morin et al. (2013), which has
been refined and extended here through 3 main im-
provements. First, the statistical analysis introduced
by Morin et al. (2013) has been improved using
more complex statistical metrics, in order to fully ac-
count for the spread between ensemble members.
Second, the work of Morin et al. (2013) was limited
to only one point at 2400m in the Mont-Blanc mas-
sif, whereas here we have performed simulations at
different elevations, thereby assessing the general-
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ity of the conclusions reached by Morin et al. (2013).
Third, in addition to the climatological forcing, we
have introduced the use of an ensemble weather
forecast product, allowing to take into account pre-
dicted conditions for the first 4 days after the initial-
ization. We have demonstrated that this improve-
ment, by explicitly accounting for the meteorological
situation and its potential development into the fu-
ture, extends the time frame over which the forecast
system has a predictive power superior to the clima-
tological data.

Several additional developments are currently in
progress to corroborate and refine the results of this
study. First, other NWP products will be seamlessy
integrated into a fully-fledged modeling chain to ex-
tend the meteorological forecast period, combining
different progressively increasing lead-times up to
the seasonal scale. In particular, the Ensemble
Prediction System (EPS) probabilistic forecast de-
veloped at the European Center for Medium-range
Weather Forecast (ECMWF) will be used until lead-
times of 15 days. To assess the added-value of sea-
sonal forecast over climatologically-based predic-
tion for lead-times beyond 15 days, the Copernicus
Climate Change - Seasonal Prediction (C3S-SP)
system will be added to the modeling chain. Sec-
ond, the snow management practices (grooming,
snowmaking) will be explicitly accounted for in the
snowpack simulations (Hanzer et al., 2014; Span-
dre et al., 2016; Hanzer et al., 2018), to represent
the actual state of the snow on the ski slopes. And
third, daily measurements of water consumption for
snowmaking and snow height on the ski slopes will
be integrated into the chain to adjust the snow con-
ditions at the initial step of the prediction to field ob-
servations.

All these combined developments will make it
possible to build up the PROSNOW real-time op-
erational chain, which will help ski-resort operators
to improve the snow management through a better
anticipation of the weather and snow conditions on
the slopes.
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