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ABSTRACT: Detailed snowpack modelling is crucial for avalanche hazard forecasting, glaciological mod-
elling and hydrological studies, but its use is currently limited by its level of uncertainty. Ensemble forecasting
approaches are commonly used to quantify the associated uncertainties. Combined with satellite data assim-
ilation, they can help reduce the modelling errors. In this study, an ensemble simulation chain accounting for
both meteorological and modelling uncertainties was used to simulate snowpack conditions in the mountain
range (”massif”) of Grandes-Rousses covering an area of about 500km2 for various elevations, aspects and
slopes during the 2013-2014 winter. This modelling chain involves perturbed meteorological forcings from
ARPEGE-SAFRAN analysis system and multi-physics ensemble version of snowpack model Crocus called
Ensemble System Crocus (ESCROC). In addition, visible and near infrared satellite data from MODIS sensor
were retrieved in the same area and study period. Such data convey precious information on the snowpack
surface impurities content, snow microstructure properties and snowpack extent. A comparison with ensem-
ble outputs is presented to assess their potential for data assimilation with a particle filter. Results show that
there is a high potential of assimilation of MODIS observations into ensemble semi-distributed simulations
of snowpack if transformed variables are used to tackle observation systematic biases. This could lead to a
significant improvement in snowpack modelling accuracy at the massif scale in a near future.
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1. INTRODUCTION

Multilayer physically-based models such as SNOW-
PACK (Lehning et al., 2002) and Crocus (Vionnet
et al., 2012) are commonly used to monitor and fore-
cast snowpack properties at a local scale or within a
mountain range. They require meteorological forc-
ings able to account for the specificities of com-
plex mountainous terrain. In France, the operational
modelling system is based on SAFRAN meteorolog-
ical analyses (Durand et al., 1993) over relatively
homogeneous areas of about 1000 km2 (so-called
massifs) which only assimilates surface meteorolog-
ical observations. They are used to force Crocus
snowpack model at the same scale and for various
aspects and slopes. However, snowpack simula-
tions from these modelling chains suffer for numer-
ous error sources, including meteorological forcing
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and snowpack model errors (Raleigh et al., 2015),
and unresolved spatial variability. This can drasti-
cally limit the interest of the model chain for many
operational applications and scientific studies and it
has to be tackled.
At the same time, in-situ observations of snowpack
properties are sparse and with limited spatial rep-
resentativity. In this context, high-resolution obser-
vations (250m) of snowpack visible and near infra-
red reflectances from MODIS satellite sensor pro-
vide precious information about the snowpack ex-
tent and surface properties such as light absorb-
ing impurities content (LAIC) and snow grain opti-
cal size (Specific Surface Area, SSA) (Dozier et al.,
2009). Retrieval algorithms such as MODImLab
have been developped and constantly improved to
adapt it to mountainous complex topographies (Sir-
guey, 2009). This product has been proven to out-
perform MODIS MOD10 product in many studies
(Dumont et al. (2012), Charrois et al. (2013)) and
is used here. LAIC and SSA are the main vari-
ables controlling radiative transfer in snow in the
visible and near-infrared spectrum (Libois et al.,
2013). Recent developments in snowpack model
Crocus (TARTES radiative transfer scheme (Libois
et al., 2015), LAIC modelling (Tuzet et al., 2017),
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and impact of snow metamorphism on SSA (Car-
magnola et al., 2013)) make it possible to link these
properties with the surface reflectance. This allows
straightforward comparison between observed and
simulated reflectances in MODIS spectral bands.
Our goal is to assess the possibility of assimilat-
ing such products into spatialized snowpack simu-
lations.
In the recent years, snowpack ensemble ap-
proaches emerged associated with the twofold aim
of quantifying the uncertainties (Essery (2015),
Lafaysse et al. (2017)) and using it in a data as-
similation system (Charrois et al. (2016), Magnus-
son et al. (2017), Piazzi et al. (2018), Larue et al.
(2018)). In these four studies, a Particle Filter with
Sequential Importance Resampling (PF-SIR) was
successfully used to improve snowpack ensemble
simulations accuracy at the local scale. Here, we
explore the potential of extending such a system to
spatialized simulations and through the combination
of a meteorological ensemble and a multiphysical
system.
Thus, our main goal is to compare spatialized en-
semble snowpack simulations with remotely-sensed
observations of snow reflectance, and assess
whether such observations could be assimilated us-
ing a PF-SIR.

2. DATA & METHODS

2.1. Model

ESCROC (Lafaysse et al., 2017) is the multiphys-
ical ensemble version of Crocus handling 7774
different model configurations. In this study 35
members were randomly drawn between each
observation dates among the 1944 ESCROC mem-
bers using TARTES radiative transfer scheme and
combined with the explicit scheme for the evolution
of the snowpack impurities content of Tuzet et al.
(2017). This ensemble was forced by 35 perturbed
SAFRAN meterological forcings generated with
perturbations described in Charrois et al. (2016).
MOCAGE chemistry-transport model (Josse et al.,
2004) black carbon (BC) and Dust wet and dry
deposition fluxes were added to the meteorological
forcings and perturbed using an order 1 multiplica-
tive Auto-Regressive process with a decorrelation
time of 3 hours and random perturbations following
N(μ = 0, σ2 = 0.24), in a similar approach as
for the meteorological variables. Simulations on
187 topographical classes ranging from 600 to
3600 masl by 300m elevation bands, 0, 20 and
40 degrees of slope and 8 aspects (so-called
”semi-distributed” geometry) were carried out in the
Grandes-Rousses massif (French Alps), during the
2013-2014 winter.

2.2. Snow observations

MODIS top of atmosphere reflectance in the first
seven spectral bands are available at 250 to
500m spatial resolution depending on the chan-
nel. We extracted and post-processed these data
in a 15x16km region (3060 pixels) including part of
the Grandes-Rousses geographical extent and cen-
tered on Col du Lautaret field site during 2013-2014
winter with MODImLab retrieval algorithm. MOD-
ImLab accounts for atmospherical radiative transfer,
direct and diffuse contribution, multiple topographi-
cal reflection, terrain shading and snow reflectance
anisotropy. Reflectance in visible bands (1,3,4) is
mostly affected by the impurities content in snow
(such as black carbon and mineral dust) whereas in
the near infrared spectral bands (2,5,6,7) it depends
mostly on the grain size and snow metamorphism
(Dozier et al., 2009). The resulting products have a
250m resolution in all seven bands. 17 acquisition
dates with good geometrical acquisition properties
(sensor zenithal angle ≤ 30o), and clear sky were
selected. Pixels with forest, clouds, shadows, and
Snow Cover Fraction (SCF) ≤ 0.85, were filtered out
consistently with Mary et al. (2013).
The remaining pixels were classified according to
the topographical classes of our modelling system.
As a result, most of the 187 classes handle over a
tenth of so-called ”distributed observations” for most
dates. Classes where the mean SCF was under
0.85 were not considered. Finally, for each snow-
covered class, the mean reflectances were com-
puted, producing so-called ”semi-distributed obser-
vations”.
Dumont et al. (2012) consider that the error mag-
nitude associated with MODImLab-retrieved broad-
band albedo is about ±10% of the value, which
is consistent with the observational error standard
deviations of 0.053 and 0.10 for band 3 and 5
respectively prescribed in Charrois et al. (2016),
though this assessment is a challenging task (Sir-
guey, 2009).

2.3. Feasability of data assimilation with the PF-SIR

To assess the potential of applying the PF-SIR in our
spatialized ensemble simulation, a thorough com-
parison of observed and openloop (i.e. whithout
assimilation) simulated reflectances is necessary.
Firstly, time variations of the ensemble and the ob-
servations should be consistent with the expected
evolution of top LAIC and SSA along the season.
Secondly, it is expected that the observation often
lies within the ensemble, i.e. that the ensemble
spread is larger than the difference between the
ensemble median and the observation (innovation),
and than the observation error. Innovations must
also not be systematically biased. Otherwise it is
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likely for the PF-SIR to collapse (Charrois et al.,
2016). Thirdly, Pearson correlations (R) between
the ensemble median and semi-distributed obser-
vations timeseries will give additional information
on the potential of information and the feasability
of data assimilation (provided that second condition
can be satisfied). If timeseries are badly correlated,
this means that it is likely that observations carry
substantial information valuable for the ensemble,
but that data assimilation of such different datasets
will be a challenge (Reichle et al., 2004). The oppo-
site (R close to 1) will imply that there should be less
valuable information for the model within observa-
tions, but that the similarity between datasets should
make data assimilation more likely to function.
In order to address discrepancies between the two
datasets that would make straightforward data as-
similation impossible, our strategy is if possible to
avoid using any bias correction, data-driven tech-
niques, or any kind of class-dependant matching be-
tween model and observations that would hide or
compensate for systematic model errors. The three
conditions will be assessed in Sec.3.1. Solutions to
improve compliance to those conditions will be in-
vestigated in Sec.3.2.

3. RESULTS

3.1. Comparison of observed and simulated variables

As a first step, comparisons between openloop
ensemble and observations were carried out in
the classes where the observation process is the
most reliable, i.e. with low probability of being
mixed/rocky (20o maximal slope) and with large
enough pixel populations over the whole snow sea-
son (1800-3000 masl). Figs. 1a and 1b show
timeseries of ensemble and observations in MODIS
bands 3 and 5 in a sun facing slope at 2400m.
Fig.1a shows consistent time variations between
semi-distributed observations and the ensemble
in those topographical classes. Decrease in re-
flectance in both bands from November to begin-
ning of December and on January 12th is consistent
with extended periods without snowfall, leading to
BC deposition on top of the snowpack and coars-
ening of the top layer grains. Then, all dates until
end of February correspond to recent snowfalls, with
low impurities content and high SSA, hence high re-
flectance values in both bands. Finally, the end of
the snow season causes melted forms with low SSA
(i.e. low band 5 reflectance) to form at the surface
while two Saharan dust deposition events (end of
February, end of March) cause drops in band 3 re-
flectance. All those events clearly appear in both
ensemble and observation timeseries.
However, there is a notably strong bias in band 3,
together with an apparent under dispersion of the

(a)

(b)

Figure 1: Boxplot timeseries of the openloop en-
semble (blue), distributed observations (green) and
semi-distributed observations (stars) at (2400m, SE,
20o) class in MODIS band 3 (1a) and band 5 (1b) for
the 17 observation dates. Red lines denote medians
of the ensemble.

ensemble in this band (compared with Sec. 2.3 ob-
servation errors) during most of the winter.
In the infra-red band 5 (Fig.1b), the agreement is no-
tably better, with a lower bias and a higher spread,
closer to typical errors and observed variability. Both
Figs. 1a and 1b seem to indicate a statistical rela-
tionship between the observations and the ensem-
ble.

Figure 2: Regressions of semi-distributed observa-
tions and ensemble median in MODIS band 3, at
four different elevations, SE aspect, 20o slope.

Assuming a time-invariant relationship, regres-
sions were carried out between the timeseries of the
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ensemble median and the semi-distributed observa-
tions inside each topographical class. As an exam-
ple, Fig.2 shows a linear relationship between the
ensemble median and the semi-distributed obser-
vations in band 3, at four different elevation classes,
with R2 values over 0.7.

(a)

(b)

Figure 3: Regression statistics between ensemble
median and semi-distributed observations for all as-
pects at 20o slope and flat, for five elevation classes
in MODIS band 3 (3a) and 5 (3b). Only regressions
with p-values under 0.01 are displayed.

To assess a potential topographical dependency
of this relationship, statistics of linear regressions
between observations and ensemble are shown in
Figs. 3a and 3b in all the considered classes. Both
figures show overall significant and high correlations
between the ensemble median and the observa-
tions, R2 being higher in the sun facing slopes (flat,
SE, S, and E), and higher in band 5 than in band
3. Slope is always under 1, consistently with Fig. 2.
In addition regression parameters seem to depend
more on aspect than on elevation.
To summarize, time variations of the ensemble and
observations are physically consistent, and compar-
ison of the openloop ensemble versus the obser-
vations is promising since it reveals a strong linear
agreement in this semi-distributed geometry. How-
ever, data assimilation with a particle filter is not
possible in this situation due to the strong diag-

nosed biases and the apparent mismatch between
the spread of the ensemble and the observation er-
rors. Finally, high significant R values were exhib-
ited for both bands. Following Sec.3.2 shows ways
to improve the fulfilment of Sec.2.3 conditions.

3.2. Spectral bands reflectance ratio

Computing a ratio between the reflectances in two
different bands (so-called ”band ratio”) might reduce
the discrepancy between observations and model.
If successful, consistently with Sec.2.3, this correc-
tion would be much more satisfactory than for exam-
ple, using regression coefficients from Figs. 3a and
3b to adjust the observations before assimilation.
To that aim, the ratio between bands 5 and 3 was
computed. Fig.4 shows the temporal evolution of
this variable. There is obviously a better match
than for the raw reflectance values both in terms
of mean values and spread. In many cases, the
semi-distributed observation falls within the ensem-
ble. Statistics of linear regression in Fig.5 show high
R2 values generally above 0.8, though it is slightly
lower than for band 5. More interestingly, regres-
sion parameters are now centred around identity
(Slope=1, Intercept=0) which clearly illustrates the
better agreement (no systematic bias) of observa-
tions and model for this variable.

Figure 4: Same as for Fig. 1, for band ratio 5/3.

Rank diagrams are a powerful tool to assess the
potential of ensemble assimilation algorithms (Pi-
azzi et al., 2018). It consists in a frequency his-
togram of the rank of the observation within the en-
semble. In our case of markedly under-dispersive
ensemble, all the useful information content can be
condensed to whether the rank is ”under”, ”inside” or
”over” the ensemble. Tab.1 provides this condensed
rank histogram aggregated over all dates and topo-
graphical classes between 1800 and 3000 masl for
the three variables. It depicts a high bias of the en-
semble regarding semi-distributed observations in
both bands 3 and 5, the observation being under
the ensemble for 71 to 93% of the occurencies and
only 7 to 29% inside. Nevertheless, the rank dia-
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Figure 5: Same as Figs. 3a and 3b, for band ratio
5/3.

gram for band ratio is highly improved with respect
to bands 3 and 5 separately, the observation being
in the ensemble 59% of the time. Though the en-
semble remains slightly under-dispersive, this last
result is really encouraging for data assimilation.

variable under (%) inside (%) over (%)
band 3 93 7 0
band 5 71 29 0
ratio 5/3 8 59 33

Table 1: Summary of rank diagrams aggregated
over all dates and considered classes (453 occuren-
cies).

4. DISCUSSION

4.1. Sources of observation errors

Though it is clear that the ensemble reflectance can
be biased, observed values in the visible part of
the spectrum are obviously unrealistically low, with
0.8 reflectance for fresh snow in band 1 on De-
cember 29th for instance. This low bias of MODIm-
Lab retrieved observations could be consistent with
a misestimation of the atmospheric absorption and
scattering in MODImLab algorithm over the Alps as
pointed out in (Davaze et al., 2018).

4.2. Limitations of the openloop ensemble

As pointed out in Fig.1a, the ensemble seems to be
highly underdispersive during the core winter, mak-
ing it adventurous to assimilate any observation with
a PF-SIR during those dates. There are several pos-
sible explanations coming from the ensemble simu-
lation itself : underdispersion of LAIC for band 3,

SSA for band 5, and of meteorological forcings for
both bands. First, a comparison with observed im-
purities content at Col du Lautaret field site during
2016-2017 and 2017-2018 winters will help assess-
ing the performance of the ensemble in representing
impurities concentrations and uncertainties, evalu-
ate the uncertainties coming from MOCAGE impu-
rities deposition fluxes and calibrate the perturba-
tions.Such a low dispersion, however, could just be
an evidence that the information content of observa-
tions in band 3 is lower at those altitudes during the
core winter, when frequent snowfall occurs, burying
higher BC/Dust concentrated layers (light penetra-
tion in this band is only of a few cm). Nonetheless,
this spectral band still provides valuable information
during dry periods, after dust deposition events and
when surface melting brings layers with high LAIC
up to the surface.
Despite model band 5 is underdispersive to a lesser
extent, ensemble performance can be improved in
this band too. Indeed, MODIS band 5 is only af-
fected by snow SSA of the top first millimeters (Car-
magnola et al., 2013). SSA generally decreases
with snow metamorphism, from high values up to
80 m2/kg for fresh snow to around 5 m2/kg for
melt forms. Though ESCROC multiphysics includes
different metamorphism laws (Carmagnola et al.
(2014) and Flanner and Zender (2006)), falling snow
SSA is prescribed to 65 m2/kg, though this value
can vary a lot with the type of precipitation parti-
cles (Carmagnola et al., 2014). An improvement
could be (at least) to perturb this value. In addition,
our simulation account for the effects of wind trans-
port and wind-induced metamorphism. These pro-
cesses have a significant effects on surface snow
properties and could be accounted for including
Crocus-SYTRON blowing snow scheme (Vionnet
et al., 2018) to the multiphysics configurations of
ESCROC. Lastly, Tuzet et al. (2017) showed that
LAIC can substantially influence band 5 reflectance
through indirect impact of the radiative budget on
snow grain metamorphism.
Finally, underdispersion of both bands may also be
explained by a lack of dispersion in the meteoro-
logical forcings (impurities apart) causing too simi-
lar snow surface properties between the members.
Statistical perturbations of meteorological forcings
as used in this study rely on calibrations based
on in-situ measurements. This may deteriorate the
physical consistency between meteorological vari-
ables, generate some biases (Piazzi et al., 2018)
and may be insufficient to describe the temporal and
spatial variability of the uncertainty. Future work will
investigate the potential of ensemble of meteoro-
logical models such as PEARP, which may offer a
more consistent way to force our simulations (Ver-
nay et al., 2015).
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5. CONCLUSION & FUTURE WORK

This study showed a first assessment of the poten-
tial of the assimilation of remotely-sensed snowpack
reflectance in a spatialized modelling environment
close to an operational one. Though an obvious bias
in all bands has been showed, the time variation of
the ensemble and the observation are highly corre-
lated. Comparison with field measurements at Col
du Lautaret will be carried out in the near future and
help confirm our hypothesis that this bias is mostly
observational. Future developments will include a
more physical assessment of meteorological uncer-
tainties with the use of PEARP-SAFRAN as a me-
teorological forcing and assessment of the quality of
MOCAGE impurities forcings. Developments in ES-
CROC ensemble to better account for the properties
of the freshly fallen snow could be a lead as well.
In addition some leads were investigated on how to
deal with reflectance biases for assimilation by com-
puting a reflectance ratio between spectral bands.
the significantly improved agreement between ob-
servations and ensemble simulations gives us a
good confidence on the potential for operational
data assimilation of such data in Meteo-France’s op-
erational snowpack modelling chain in the near fu-
ture. It is a first step from point-scale assimilation to
operational semi-distibuted and large-scale consis-
tent data assimilation in snowpack models.
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