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ABSTRACT: Satellite remote sensing products are used on a daily basis by avalanche forecasters, as a 
crucial aid in prediction of storms during the winter and spring. While these remote sensing products pro-
vide valuable information about approaching storms, and have been part of an avalanche forecaster’s 
daily routine for decades, we still do not have remote sensing products which provide information about 
snowfall amounts, nor total snow on the ground. Although research over the past decade has demon-
strated the potential for monitoring snow using remote sensing, current operational snow remote sensing 
products are limited to snow covered area, which is of little direct use to avalanche forecasters. Snow ra-
dar remote sensing is just now reaching a maturity level where sensors and data are becoming available 
at the necessary spatial and temporal resolutions, and at the appropriate frequencies, that are relevant for 
avalanche forecasting. Satellite radar with spatial resolutions on the order of meters, and repeat intervals 
on the order of days, have just recently removed some of the major limitations for radar remote sensing in 
the mountains. Microwave radar is highly sensitive to liquid water, providing both a challenge to estimat-
ing snow mass, as well as an opportunity for monitoring the spatial extent of melt and rain-on-snow 
events. Changes in snowpack mass cause changes in microwave radar amplitude and phase, and radar 
is also being used to monitor snowfall rates. Ground-based radar systems can track snow water equiva-
lent, estimate snow density and liquid water content, are used to measure falling snow, and for avalanche 
detection. Recent airborne snow radar missions, and preliminary results from recently launched satellite-
based radar sensors, have indicated that operational monitoring of changes in snow water equivalent and 
depth, as well as recent avalanche activity, will likely be possible at high resolution in the near future from 
space. Recent results from our network of tower-based radar systems, as well as results from the recent 
intensive NASA SnowEx airborne snow remote sensing campaign will be presented. This presentation 
will review the current state-of-the-art of radar remote sensing of snow from ground-based, airborne, and 
satellite-based platforms, in the context of snow products that will be available and useful to avalanche 
forecasters in the near future. 
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1. INTRODUCTION 

While satellite based products have been used 
operationally for decades by weather and ava-
lanche forecasters, the satellite products for snow 
on the ground are currently of limited use for the 
avalanche forecasting application.  Due to the 
large variability in seasonal snow, with correlation 
lengths on the order of 50-100 meters (Deems et 
al., 2007), relatively high resolution is required to 
capture the patterns of snowfall across the land-
scape, in particular in the mountains.  Temporal 

resolution also provides a challenge, as avalanche 
forecasters need information during and immedi-
ately following storms.   

Current and future satellite sensors are rapidly 
closing the resolution gap, and although ava-
lanche forecasters have the highest spatial and 
temporal resolution requirements for snow prod-
ucts, estimates of snow properties from space-
borne sensors are likely to become useful to the 
snow avalanche community in the near future.  
Optical sensors only give information about the 
snow surface and the fractional snow covered ar-
ea, which is of limited use for avalanche forecast-
ing.  Radar, in contrast, is sensitive to the 
properties of the entire snowpack, and can 
achieve the required spatial and temporal resolu-
tions for avalanche applications. 
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Ground-based radar experiments have shown that 
microwave radar can be used to estimate snow 
water equivalent, snow depth, and map stratigra-
phy (Ellerbruch and Boyne, 1980; Gubler and 
Hiller, 1984; Marshall and Koh, 2008).  There are 
complications when snow is wet (Lundberg and 
Thunehed, 2000), but recent work has leveraged 
this sensitivity to directly estimate liquid water con-
tent (e.g. Bradford et al., 2009; Heilig et al, 2015), 
providing the first non-destructive approach to 
monitoring liquid water dynamics.  Tower-mounted 
radars now provide continuous real-time estimates 
of snow water equivalent (Marshall and Robert-
son, 2016).  While individual radar observations 
can be difficult to interpret, after spatial averaging, 
the amplitude of the reflections from stratigraphic 
layers can be directly related to the density con-
trast (Rutter et al., 2016).  Ground-based radars 
have been used to study creep and to detect ava-
lanches (e.g. Gubler and Hiller, 29184; Lucas et 
al., 2016).   Ground-based radar has also been 
used to study glacier mass balance (e.g. McGrath 
et al., 2018). 

Airborne radar has been used for decades to map 
snow accumulation rate patterns in the polar re-
gions (e.g. Gogineni et al., 2007; Kanagaratnam et 
al., 2001), and to estimate snow water equivalent 
(SWE) in the mountains (e.g. Yueh et al., 2009; 
Rott et al., 2013).  The SWE retrievals from Ku-
band radar are sensitive to microstructure, which 
has challenged this approach, but has lead to the 
use of the SnowMicroPenetrometer in these snow 
hydrology remote sensing efforts (e.g. Proksch et 
al., 2015).  Satellite radar has been used to moni-
tor changes in the surface of ice sheets, for detec-
tion of melt events, and recently has been applied 
to avalanche detection (Eckerstorfer et al., 2017) 

This coming winter, the NASA SnowEx mission 
will perform biweekly radar observations in the 
Western U.S. with a lower frequency L-band In-
SAR, which is not sensitive to microstructure and 
can be used to estimate SWE in some conditions. 
This experiment will help determine the potential 
for operational use of the NISAR L-band radar, 
which launches in early 2022 and will have a 10 
meter resolution, and a 12-day repeat, with near 
global coverage.   
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