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ABSTRACT: Avalanche risk management assumes an in-depth knowledge of the 
nivometeorological situation to which tools for the definition of avalanche potential release can be 
associated. The application of the PRA tool, developed by the SLF, on 600 real cases in Aosta Valley 
showed the important role played by the wind direction in determining scenarios of avalanche de-
tachment. On those basis a rapid method has been developed, using the 10m wind intensity and di-
rection data provided by the Cosmoi2 predictive model. The wind direction input was calculated by 
averaging vectorially the wind directions over the 24h, weighted with the cube of the intensity. In order 
to validate this procedure, the data elaborated with our procedure were compared with 1) the data of 
52 automatic stations and 2) the observations contained in the Models 1 A.I.NE.VA. Scenarios of 
possible snow eroded / loaded areas are realized according to the wind direction at both valley and 
single-basin scales. Daily, after 40 minutes calculation time, three graphs are forecast: 1) statistical 
summary of the basins eroded / loaded by the wind on the 26 micro-areas in which the Aosta Valley is 
divided, 2) wind direction on the 800 cells of the Cosmoi2, 3) probability of erosion / deposit on each 
individual avalanche basin. Those graphs are displayed in the Avalanche Local Committees (CLV) 
web platform. The procedure, while giving satisfactory results, has limits due to the simplicity of the 
model used, to scale issues and to the snowdrift amount neglected in the modelisation. 
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1. INTRODUCTION 
In Aosta valley, the management of local ava-
lanche danger is guaranteed by the Local Ava-
lanche Commissions (CLV) that support the 
mayors in the decision-making (i.e. closure / 
opening of roads, evacuation of population cen-
ters ...), by evaluating snow conditions and 
snowfall stability. 

The CLVs operating in Aosta Valley are 17 and 
are technically supported by the Avalanche 
Warning Service of Aosta Valley (UNV) techni-
cians, who make available the material and data 
in their possession, to improve the evaluations 
and the forecasting.  

Thanks to the implementation of some projects 
funded by the EC, such as STRADA 2.0 
CAPVAL and ART-UP-WEB (Segor et al., 2016),  
the UNV of Aosta Valley has tried to identify, 
through a critical analysis, which are the 
nivometeorological parameters to be monitored 
and through which tools and methodologies it is 
more effective to quantify them. The analysis 
goal is to create event scenarios based on ava-

lanche detachment processes. 

2. POTENTIAL RELEASE SCENARIO 
Within the CAPVAL project, UNV tested the 
avalanche tool PRA (@Potential Release Area) 
(Veitinger et al., 2014) in many real cases oc-
curred in the Aosta valley. The input data need-
ed to PRA simulation are: 

DEM (2 meters), that simulates the roughness 
of the slope. 

Hs, that defines the snow depth in the release 
area.  

Wind, that defines the wind direction and the 
wind tolerance. 

600 simulations were carried out and a specific 
database was created with more event scenario 
for real cases. 

In order to validate these scenarios, a critical 
analysis of the results obtained was carried out, 
comparing them with data (photos, shapefiles ...) 
of the regional Avalanche Cadastre (CRV) (De-
bernardi and Segor, 2013). This validation has 
shown that the tool represents adequately and
in detail the probable release avalanche areas; 
however, the representation of very large areas 
requires very long processing times.  

The goal is to have event scenarios in forecast 
for the entire regional territory in a short time. In 
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order to do this, it was decided
procedure: 

 - considering only avalanche e
within the P.A.V. (Plan Avalanch
land surface reduction accelerat
cessing, because it reduces t
surface DTM (Digital Terrain M
the data are processed; 

- considering only the parameter
ting the parameter Hs. The ana
processed with the PRA proced
the parameter Wind is much mo
the parameter Hs in defining a 
the values of Hs changes, the sc
very little. On the contrary, whe
Wind direction change,  scena
changes (Fig. 1) . 

Figure 1: The wind direction i
cantly the event scenario. On t
procedure, on the bottom our sim

3. METHOD 
To associate wind direction to
site, we decided to use the Cos
model. Aosta Valley is divided in
with 2.7km of edge. In each cel
tion and intensity u at 10m over
available in forecast with a 3h tim
into account the change in direct
of the wind during a day, the win
vectorially averaged over the 24
the cube of the intensity. This ch
the Föhn (1980) equation: 

Q=k u3 , with k=8 10-5 s3d-1m-2     

At the beginning of our study
Duynin et al. (1980) equation: 

Q=c (u-5)3 , with c=7.7 10-5 s3d-1m

Since in too many situations 
snowdrift even when Avalanche
recorded snow transport, we de
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and to use Eq.1. 
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the cartographic 
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alysis of the data 
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ore decisive than 
scenario: when 
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smoi2 predictive 
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4h, weighted with 
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                     (1) 

y, we used the 

m-2                          (2) 

Eq. 2 gave no 
e Cadastre data 
ecide to not con-
ppearing in Eq.2 

Having obtained the wind d
from the principle that, in rel
wind direction, the slopes a
ed" from the snow accordin
The downwind slopes are lo
are subject to deposit of s
downloaded (and therefore
sion). According to Fig.2 co
ing meaning: 
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exposure is opposite to the
therefore, subject to probabl

ORANGE represents the r
sectors and, therefore, subj
wind storage; 

GREEN represents the upw
exposure is consistent with
and, therefore, subject to the
the snow; 

YELLOW represents the 
areas and, therefore, subje
erosion. 

Figure 2: Example of expos
and erosion of snow, with a 

Our procedure, written wit
software R, automatically fin
for each cell of Aosta Valley
aging over 24h, defines whic
ited and which ones erode
cells and finally does a s
micro-area scale, as expla
Sec. 5.2.  

4. VALIDATION 
The method exposed before
2016 years and compared w
ed by snow weather auto
A.I.NE.VA. Models 1.  

In our validation process, w
where both the Probability 
and Success Ratio (SR) a
POD and SR are index bas
cy table (Fig.3). POD= hit
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th the open source 
nds the wind direction 
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swers to the question “What fra
served “yes” events were corre
SR=hits/(hits+false alarm) answ
tion: “What fraction of the simula
were correctly observed?”  

Figure 3: Contingency table. 

4.1 A.I.NE.VA. Models 1
A.I.NE.VA. Models 1 are compile
ent locations in Aosta Valley an
mation about the snow drift oc
present, the exposure of the s
Aosta Valley is divided in the 
used in the Snow and Avalanch
shows the 15 sectors (the blu
ones) where there is a good c
tween  the A.I.NE.VA. Mode
Cosmoi2 elaborated data.. 

Figure 4: Validation based on
Models 1. Yellow: min(SR,POD)
min(SR,POD) 0.75, 
min(SR,POD)>0.75, grey: not e
the statistics, white: no data.  

4.2 Weather automatic station
Cosmoi2 data, both with a time
vectorially averaged over the 24
with data of 52 stations located
(Fig. 5). Generally the wind inten
than 4m/s, without a unique 
AWS nor Cosmoi2 always ove
ues).  
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ectly simulated?” 
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snow deposition. 
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Figure 5: The data in the
simulated with the Cosmoi2
left) and recorded by the 
France (on the right). 

Fig. 6 shows the sectors w
POD are greater than 0.5. W
introduction of the vectoria
wind direction ameliorates th
where there is concordance 

Figure 6: Sectors validated 
data. In blue the sectors of t
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m/s, and hence where the 
cant. In yellow the other one
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5. VISUALISATION
In the Avalanche Local Com
platform, two kinds of sce
dynamics) concerning the 
played to support the UNV 
CLV components in their 
sions. 

5.1 Static scenarios
The static scenarios are c
tions that graphically re
transport scenarios, on P.A.
to a predefined wind direct
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5.2 Dynamic scenarios
As regards the dynamic scenar
graphic representations are prop
40 minutes’ calculation time. Th
scenarios, in forecast, of the f
6h00, averaging the wind directi
ous 24h. 

The first one (Fig.7) represent
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represent a good degree of re
automatic station data. The cya
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adjacent Cosmoi2 cells (Fig. 8).
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wind directions of the 6 adjacent 

Figure 7:  Wind vectorially averag

Figure 8: Cases in which the 
validated (on the left), or not (o
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Figure 9: The deposit / erosi
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Figure 10: Cartographic rep
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the deposition, in white the
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(Fig.11). In particular, the co
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Fig. 7.
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transport for single 
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within the pie chart 
percentages of red 
ge (possible deposit) 
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During the winter season 2017-2
were validated directly on the
(Fig.12) by the UNV forecasters 
nents of the CLV.  

Figure 12: Validation of the m
platform. 

In particular, they validated 259
13) on 109 different days giving
Unfortunately not all the  micro-
dated adequately. 

Figure 13: The validation don
2017-2018. 

6. CONCLUSIONS 
In conclusion, our procedure 
mation about the slopes loaded
wind at a scale of 2.7km, for the
territory, in a short time. Since t
are given in forecast it is possib
a more accurate Snow and Av
both to focus the attention on
paths with more problems due to

However, this methodology is e
has the following limitations:  

- wind speed data (direction an
simulated and forecast, therefor
limitations of the model Cosmo
cells, simulated non real topogra
3h…);  

- the erosion and deposit pheno
eled without taking into account t
snow, the presence or absence

2018 those maps 
e web platform 
and the compo-

map on the web 

9 scenarios (Fig. 
g 97 comments. 
-areas were vali-

e in the winter 

gives the infor-
d and eroded by 
e entire regional 
those scenarios, 
le both to obtain 

valanche bulletin 
n the avalanche 
o snow drift.

experimental and 

nd intensity) are 
re they have the 
oi2 (2.7 km wide 
aphy, data every 

omena are mod-
the quality of the 
 of snowfall, the 

order in which the winds oc
or not by ridges and valleys;

- wind transport maps are a
when the wind intensity is 
transport. 

Finally, in the future we cou
cedure in a more complex 
cast or, for instance, in a
model. 
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