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Avalanche simulations are an integral part of hazard assessment. Determining the potential hazard requires
a multidisciplinary approach, including different scientific fields such as geography, meteorology, physics, civil
engineering and mathematics. The application of probabilistic methods allows one to develop a complete,
comprehensive applicational concept for snow avalanche simulations, ranging from back calculation to pre-
diction. In this context optimal parameter sets or runout distances are represented by probability distributions.

Existing deterministic avalanche dynamics models contain several parameters (e.g. friction), some of them
more conceptual than physical. Direct measurement of these parameters in the field is hardly possible. Hence,
a parameter identification has to be undertaken, matching simulation results to field observations. This inverse
problem can be solved by optimization or by a Bayesian approach (Markov chain Monte Carlo). An important
task in snow avalanche simulation is to predict process intensities (runout, flow velocity and depth, ...). The
identification process yields parameter distributions, that can be utilized for probabilistic reconstruction and
prediction. Arising challenges include: the limited amount of observations, correlations appearing in model
parameters or observed avalanche characteristics (e.g. velocity and runout) and the effective and accurate

handling of ensemble simulations, always taking into account the related uncertainties.
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1. INTRODUCTION

Over the last decade probabilistic methods have
been successfully applied in snow avalanche simu-
lation for simple flow models, compare e.g. |[Eckert
et al.|(2010) or|Eckert et al.|(2007). Here we present
an approach for operational avalanche simulations,
performed with a 2-dimensional operational simula-
tion software (SamosAT |Sampl and Granig, 2009;
Zwinger et al., 2003) combined with a simulation
results-post-processing technique (Fischer, 2013}
Fischer et al., |2015b) in order to compare and rate
simulation results with respect to one observed
extreme avalanche event.

The first goal of this work is to back calculate the
distribution of the model parameters fitting a spe-
cific avalanche. The parameter distributions 7(6) are
derived, such that an avalanche simulation tool ap-
proximates measured field data y.,s = f(x,6) for
given input data x and a simulation model f with flow
model parameters 6. To do so, we apply a stochas-
tic approach explicitly treating the arising uncertain-
ties in the measurements as well as in the simulation
model. We employ Bayes’ theorem and the theory of

Markov chains to derive the previously unknown pa-
rameter distributions 7(6) through back calculation of
a known event.

The second goal of this work is to perform a pre-
diction of characteristics ypq for an avalanche on
a given path considering the parameter distributions
n(0) given through the back calculation. Here Monte
Carlo simulations allow one to estimate the variabil-
ity of the simulation results yp.q, explicitly taking into
account the obtained parameter distribution.

2. Mathematical model

Mathematically we can realize the parameter estima-
tion by solving an inverse problem. To model certain
kinds of uncertainties all variables are considered as
random variables. With this step the inverse problem
turns into a so called statistical inverse problem. The
objective of statistical inversion theory is to extract in-
formation and assess the uncertainty about the vari-
ables based on all available knowledge of the mea-
surement process as well as information and models
of the unknown parameters that are available prior to
the measurement. The statistical inversion approach
is based on the following principles:
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1. all variables included in the model f are mod-
eled as random variables,

2. the randomness describes our degree of infor-
mation concerning their realizations,

3. the degree of information concerning these val-
ues is encoded in the probability distributions r,

4. the posterior probability distribution is the solu-
tion of the inverse problem.

Point number 4l is the crucial difference between
the statistical approach and classical regularization
methods such as maximum likelihood or residual
squares. (see e.g. Kofler et al.| (2016); [Fischer et al.
(2015b) for application in avalanche simulations).
We denote random variables by capital letters and
their realizations by lower case letters. Solet®,Y be
random variables. In Bayesian theory it is assumed
that we have some information about the model pa-
rameters ®. Thus we can encode this information
into a probability density 6 — m,:(6), called the prior
density. The conditional probability density of Y,
given a value of the unknown ® = 6, is

n(6,y)

7(ylo) = )’
pr

if 7,0 (6) # 0. 1)

This term is called the likelihood function, because
it expresses how likely different measurement out-
comes yops With given ® = 6 are. Given measured
data Y = yqbs, the conditional probability distribution

71'(9, yobs)

, i (Yobs) # 0 (2
”(yobs)

7(@lYobs) =

is called the posterior distribution regarding the in-
put. It gives the probability for the unknown parame-
ters 6, assuming given measured data yps.

Bayes theorem summarizes the previous notations
and reads as

ﬂpr(g)ﬂ(yobSW)

ﬂ(yobs) (3)

ﬂposl(e) = 7(0lyobs) =

In summary we can say that solving an inverse
problem can be divided into three subtasks:

1. finding a probability density n,, that represents
the prior information ®

2. finding the likelihood function m(y.s|6) that de-
scribes the interrelation between the observa-
tion and the unknown parameters 6

3. developing methods to explore the posterior
probability density.

2.1. Back calculation

To explore the posterior distribution we use Markov
chain Monte Carlo (MCMC) methods, i.e. we uti-
lize the Metropolis-Hastings algorithm to generate a
chain of parameter combinations, which follows the
posterior distribution. It is shown that under certain
conditions a Markov chain converges to a unique
stationary distribution. For more details we refer to
Brooks et al.| (2011), Nummelin| (1984) and [Kaipio
and Somersalo| (2005).

2.1.1. The algorithm

Metropolis et al. (1953) published a scheme to gen-
erate a Markov chain having a desired stationary dis-
tribution and Hastings generalized it in 1970. Sim-
ulations following his scheme are said to use the
Metropolis-Hastings (M-H) algorithm.

The idea of the algorithm is as follows: One chooses
a starting point in the state space. Then for a certain
number of iterations (length of the chain) in every it-
eration one draws a candidate following the so called
proposal distribution and computes the ratio r of the
likelihood function times the prior of the current state
of the chain to the likelihood function times the prior
of the candidate. Then one adds the candidate to
the chain if r > 1. If the ratio is smaller than 1 one
adds the candidate with probability » and the actual
state of the chain with probability 1 —r. To add candi-
dates with a smaller likelihood function compared to
the actual state of the chain with a certain probability
ensures that the chain does not get caught in a part
of the state space with a high density.

2.1.2. Monitoring

A common method to assess the convergence be-
haviour of the M-H algorithm is to start various
chains at different starting points. As mentioned ear-
lier we use a 2-dimensional operational avalanche
simulation software, which is computationally very
expensive and we cannot apply most of the MCMC
diagnostics proposed in the literature. Generating
a chain containing 3000 elements (performing 3000
simulations runs) needs about one week. There-
fore, we decided to do “graphical diagnostics” and
to check three different characteristics of the chain
suggesting a high convergence speed.

These properties are:

e The acceptance rate: it is the fraction of pro-
posed moves which are accepted. An accep-
tance rate of about 25% is generally considered
appropriate for the multivariate case.

e The mixing: a chain is said to have good mixing
if it moves fast from one part of the state space
into an other. How fast the chain moves can be
read off the trace plots.
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e The autocorrelation: it gives the correlation of
the elements in the chain. A fast decreasing au-
tocorrelation function indicates independent el-
ements and a higher efficiency in exploring the
target distribution.

Note that good mixing and small autocorrelations do
not indicate that the chain has already reached its
equilibrium distribution.

2.2. Prediction

The next step is to use the posterior distribution
Tpost(6) to perform predictive simulations. The simu-
lation results give probabilities for certain avalanche
characteristics (runout, velocities) and explicit infor-
mation about their variabilty and are directly linked to
the back calculated posterior distribution. To realize
this we use a Monte Carlo approach: we generate
a sample of the model parameters following the
posterior distribution, perform simulations with these
parameter combinations and evaluate the simulation
results statistically.

Thus we should generate a sample following the
posterior distribution, i.e. it should be sampled
from the same distribution as obtained from the
Markov chain. One common method to realize this
is to apply the inversion method componentwise.
However, we cannot use this method in a straight-
forward way because the components of the chain
are correlated. But it is possible to approximate the
joint distribution by means of a copula, preserving
the marginals and the linear correlation coefficients
(estimated through the covariance matrix Cy) of the
original multivariate distribution. We shall apply this
method of generating multivariate samples, using
a Gaussian copula. For more details we refer to
Nelson| (2006).

3. Application in operational avalanche simulation

In the following section we will present the applica-
tion of the theory discussed above and show how
to derive the posterior distribution of 8 and how this
distribution can be used for avalanche prediction.

3.1. Model

To perform the avalanche simulations we utilize
the snow avalanche simulation software SamosAT
(Snow Avalanche MOdelling and Simulation -
Advanced Technology, Zwinger et al., 2003; Sampl
and Zwinger,2004). The simulation results are
transfered in a path dependent coordinate system
(Fischer,|2013) in order to be able to compare simu-
lation results from paths with different topographies.

The model parameters
As bottom friction and entrainment relation we use
the well known Voellmy friction relation for the basal
shear stress 7® | which combines a Coulomb bot-
tom friction with a velocity dependent drag term

® = O'(b),u + ?ﬁz,

with the dimensionless Coulomb friction parameter u
and the turbulent friction coefficient &, combined with
a simple assumption for the entrainment rate

g = —Iull, (4)
ep

that includes the erosion energy parameter ey,
(Fischer et all 2015a). The choice of the fric-
tion and entrainment model defines a set of flow
model parameters 6 = {u,&,e,}. The appropriate
parameter ranges of each model parameter are
constrained by physically relevant ranges, results
of scaling analysis, experimental work or prior
model optimization through back calculations. We
choose the intervals of the single components to be
1 €[0.1,0.5], € € [0,25000] and e, € [1000, 30000].

Simulation results

The input for each simulation is the documented re-
lease volume and the path topography. Additionally
an initial snow distribution (Mountain Snow Cover
- MSC) is taken into account, which is determined
with respect to the topography of the path and ex-
treme snow heights (Leichtfried, 2010; Fischer et al.,
2015b). After each simulation run (which computes
the spatio temporal evolution of flow depths and ve-
locities), a post processing step uses the peak pres-
sure values to obtain the following main simulation
result variables:

e runout r

velocity umax

normed true positive tp

normed true negative tn

deposit volume V.,

3.1.1. Documented data

One avalanche path, namely Alpenlahner, is given
with a documentation which can be considered ex-
treme and can serve as a design event in terms of
hazard zoning. Observations of the avalanche event
include a release volume of 218517 m?, more obser-
vational variables are summarized in table {1
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Figure 1: Flowchart of the back calculation and prediction concept
F U tp n Vigep ¢ in the model and its numerical implementation
[m] [m/s] [m?] [m?] [m3] respectively.

2384 61.7 85089 377687 388225

Table 1: Documented data for the path Alpenlahner

3.2. Back calculation

In this subsection we specify the components we
need in order to apply the Metropolis-Hastings algo-
rithm such as likelihood function, prior and proposal
distribution.

As mentioned earlier the goal is to solve the statisti-
cal inverse problem

f(X,0,E) =Y, ®)

for the unknown parameter vector ®. In the following
we consider a statistical inverse problem with addi-
tive noise subsumed in the random variable E with
expected value zero; the probability density m,ise Of
the noise is assumed to be known (see below). Here
X corresponds to the input data such as release vol-
ume and topography and Y to the documented data.
The error term E should model the arising uncertain-
ties

e in the measured data (runout, velocity, affected
area and deposit volume)

Mathematically these assumptions lead to
fX.0,E)=Y & f(X,0)+E;=Y+Ey. (6)

where E; denotes the error that we get from the im-
plementation of the model and Ey denotes the noise
that we get from the uncertainty in the measured
data in table Tl

The function f describes the simulation procedure
and the postprocessing of the result. Note that we
do not take into account any error resulting from un-
certainties in the input data X.

These assumption on the error and Bayes’ theorem
lead to

7(Oyobs) ﬂ'pr(g) * Tnoise (f (X, ) = Yobs)- (7)

The notation indicates that the posterior distribution
of the unknown parameter equals the prior distribu-
tion times the likelihood function up to a normalizing
constant.

To apply algorithm [2.3.1] one has to define a
proposal distribution, a prior distribution and an
appropriate likelihood function.
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The proposal distribution
We decided to take a Gaussian proposal distribu-
tion, where the mean should be the current state
of the Markov chain. Trial and error suggests the
covariance matrix C, = diag(0.022, 80007, 8000%)
in order to let the Markov chain have the desired
properties discussed in section [2.1.2]

The prior distribution
A priori we do not know anything about the model
parameters apart from physically relevant intervals,
see |Fischer et al.| (2015a). This information can be
expressed by a probability distribution, namely in a
continuous uniform distribution which formally reads
as

Tpe(60) = X10.1,0.51(01) X x10,250001(62) X X10.300001(63)

8)
for 6, = ,u,02 = f and 63 = e.

The likelihood function
As commonly accepted we decided to model the er-
ror E as Gaussian random variable with zero mean.
Then the likelihood function reads

7(Yl0) = Mnoise (f(x,6) —y) =

1
const - exp (_E(f(x’ 0) - N (f(x, -] (9)

with const = 1/ /(27)5 - det(Zg).

The likelihood covariance matrix
Again we assume E, and Ey to be Gaussian.
Further we can use the fact that the sum of two
independent Gaussian random vectors with covari-
ance matrices Xg, and Xg, is again Gaussian with
covariance matrix £ = X, + X,

3.2.1. Generation of the Markov chain 6hack

In this section we present the results of the
Metropolis-Hastings algorithm. Due to the fact that
we cannot exactly determine when the chain has
reached its equilibrium distribution we decide to
search for an appropriate proposal distribution and
stop the algorithm after 3000 iterations, such that the
monitoring properties are sufficiently met.

We assume the resulting Markov chain to follow the
posterior distribution.

For a presentation of the results we use the path
Alpenlahner. Trace plot and autocorrelation function
of the generated Markov chain indicate good mixing
and the acceptance rate equals 0.42.

3.3. Prediction

To produce a sample egf,i‘f from the posterior distribu-

tion we use its marginals and a Gaussian copula, as

described in subsection 2.2l To get an upper bound
for the sample size in order to get meaningful sta-
tistical results we use Bikelis’ theorem, see |Graham
and Talay| (2013). It turns out that 500 simulations
are enough to estimate the expectation value of the
runout up to 3 m with a confidence level of 95%.

To check if the sample follows the posterior distribu-
tion we consider the marginals and the linear corre-
lations between the components. A componentwise
two-side Kolmogorov-Smirnov test does not reject
the hypothesis that the components of the Markov
chain and the components of the sample are sam-
pled from the same distributions for u, £ and e;,. Also
the linear correlation matrices are very close.
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Figure 2: Histograms and boxplots of the simulation
results generated with parameter combinations from
a sample Ggfff ~ 7 (6ly).

Figure [2] shows the histograms and the boxplots
of the simulation results generated with the above
mentioned sample ngf;f for the path Alpenlahner.

From these one can read off that 95% of the simu-
lated avalanche area covers 90% of the documented
affected area and just 5% cover more than 30% of
the non-affected area. The predicted mean values
of the runout and deposit volume equal 2362 m
and 351553 m? respectively and are close to the
documented data in table [{l We should mention that
the predicted maximal velocities are much smaller
than the documented one: the 95% confidence
interval is [36.7m/s,46.7m/s] and the maximum
equals 49.8 m/s.

3.3.1. Probability map

Another approach to evaluating the avalanche simu-
lation results generated with a sample following the
posterior distribution, is to construct a “probability
map”. For a certain path this is a map which gives
the probability that a certain region gets struck by an
avalanche given the observed data.
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Probability zones
[d<=05
[105-095
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Figure 3: Zoom in on the deposition area for the path
Alpenlahner. The different colors show the probabil-
ity zones and the documented affected area is out-
lined blue. The picture on the top left illustrates the
map for the whole path domain.

We perform avalanche simulations with the pa-
rameter sample Hgfif and count how often each
square of a rectangular grid overlying the domain
gets struck by the a simulation. Getting struck by the
avalanche means that the pressure of the avalanche
averaged over the square is greater then 3 kPa.
Then a probability can be assigned to each square
estimated by the relative frequency.

Mathematically one can interpret the probability
map as follows: We take Q = [hit,nohit]” as un-
derlying discrete probability space, where n is the
number of squares of the map. The probability mea-
sure P has the hitting probability of the j-th squares
as its j-th marginal. Then we can define a random
variable (I for impact)

I:Q—{0,1}",

Low) 1, the square j gets struck
(W) =
! 0 the square j does not get struck

and use the results I”,i = 1,..,N of N Monte
Carlo simulations to approximate the expectation
value of the Bernoulli random variable I; by the rela-
tive frequency.
The probability that an arbitrary area j gets struck by

the avalanche can be approximated by

N

1 .
PUj = o) ~ 5 D 1)),
i=1

In figure [3] one can see that less than 5% of the
simulations overflow the affected area and hit large
parts of the non-affected area. Most of the simula-
tions (90%) approximate the affected area quite well.
Only the lateral extend in the beginning of the runout
area appears overestimated by the simulations.

4. SUMMARY

In conclusion we can state that a probabilistic ap-
proach can successfully be applied to derive the pos-
terior distribution of the 3-dimensional flow model pa-
rameter 6 = {u,&,e,} and the resulting distribution
can be used to generate predictive avalanche simu-
lations. These simulations can be used to assess the
quality of the derived model (parameters) and give,
moreover, empirical distributions of the estimator of
each result variable, not just a point estimator. The
resulting predicted result variables, like runout or de-
posit volume, are close to the documented event
apart from the maximum flow velocity. Most of the
simulated avalanches are 60% — 75% slower than
the documented avalanche.

Further our approach contains several limitations.
First, due to the complexity of our simulation con-
cept, we cannot argue the convergence of the
Markov chain, i.e. we are not able to formally check
if the Markov chain has reached a stationary sate.
However, we observed good mixing in the chain and
thus high efficiency of the algorithm. Second we
consider neither the measurement uncertainty in the
release volume nor the measurement uncertainty in
the topography, i.e. we do not handle the input vari-
able X as a random variable and do not take it into
account in the corresponding error in equation (6).
Third we just give a rough estimation of the covari-
ance matrix of the implementation error. A better as-
sessment could be achieved investigating different
implementations.

The improvement of the second and third point will
be part of future research as well as taking into ac-
count multiple and unknown avalanche paths, simi-

larly to the approach by Kofler et al.| (2016) presented
in the same proceedings.
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