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ABSTRACT: State of the art avalanche simulation software is used for avalanche prediction and hazard map-
ping. Amongst other factors, the choice of an appropriate rheological model is of major importance. Here,
we apply a rheological model based on kinetic theory, which unifies two different flow types; (i) the rapid
motion of granular material, based on a statistical description of collisions between the particles and (ii) slow
motions by incorporating the critical state theory. The involved model parameters strongly influence the simu-
lation results. They are optimized with the help of an objective method, comparing different simulation results
to documented avalanche events. This multivariate optimization approach incorporates variables such as
runout length, velocity, affected area and volume growth.
Simulation results with good overall accordance to the observations can be identified, when applying the op-
timization to a single avalanche event. However, a comparison of multiple events shows, that the optimal
parameter sets for single events can hardly be applied to a wide range of avalanches. Therefore, the opti-
mization method is adapted for the combined optimization of multiple avalanches and the resulting parameter
distributions are evaluated. By performing simulations with the obtained optimal parameter set and the optimal
parameter sets from the single analysis for respective avalanches, the prediction accuracy can be evaluated.
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1. INTRODUCTION

Avalanche simulation software is a commonly em-
ployed tool for avalanche prediction and hazard map-
ping. The underlying process model, which consists
of an appropriate friction relation as well as a reason-
able description of entrainment, and its implementa-
tion are important for the reliability of simulation re-
sults.

In this work the practical application of a rheolog-
ical model from the field of extended kinetic theory
(Vescovi et al., 2013) to the depth averaged process
model SamosAT DFA (Snow Avalanche MOdelling
and Simulation - Advanced Technology, Zwinger
et al., 2003; Sampl and Zwinger, 2004; Sampl, 2007)
is shown. The derived frictional relation (Rauter
et al., 2016) unifies two different flow types; (i) the
rapid motion of granular material, based on a sta-
tistical description of collisions between the parti-
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cles and (ii) slow motions by incorporating the critical
state theory.

An optimal parameter setting for the used rheo-
logical model can be identified for a single avalanche
event by back calculation, using a objective optimiza-
tion framework (Fischer et al., 2015). This frame-
work is build on the comparison of simulations with
varying parameters, respectively their results to dif-
ferent documented avalanche characteristics and a
statistical evaluation of good simulation runs and
their underlying parameters. Arising uncertainties in
the simulation and optimization procedures (simpli-
fication of the process model, numerical uncertain-
ties, observational errors) can be evaluated by con-
sideration of parameters distributions.

The used framework is extended to the combined
optimization of five avalanche events, in order to ob-
tain optimal parameters, which are potentially suit-
able to a wide range of avalanches. The associated
uncertainties, which arise in the estimation of opti-
mal parameters is investigated and their effect on the
forward simulation is observed.
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Figure 1: The optimization framework consists of three parts: ob-
servation, simulation and optimization. Data gathering and ho-
mogeneous processing is done in the observation box. The sim-
ulation box contains the simulation software (SamosAT) and its
necessary input (process model, numerical parameters, initial and
boundary conditions). The simulation results are used for the op-
timization, based on the comparison of documentation and simu-
lation data and a statistical determination of optimized parameter
distributions ΩΘ for the process model.

2. OPTIMIZATION FRAMEWORK

The optimization framework in this work consists
of three parts (see figure 1). First, reference data
for the investigated avalanches has to be collected
and reviewed in a homogeneous way. This data
serves as simulation input as well as for the com-
parison to the simulation results. Second, a simula-
tion set up for selected reference avalanches is de-
termined. This includes the definition of initial and
boundary conditions and the choice of the process
model. Then, 10 000 Monte Carlo simulations with
varying process parameters are performed. Third,
the optimization of the varied process parameters
is realised. Therefore the simulation results are
transformed in an avalanche path dependent coor-
dinate system and simulated avalanche character-
istics, that can be compared to observed ones, are
determined. Simulation runs with good accordance
to the observation are identified and their underly-
ing process parameters are statistically evaluated.
Using this objective optimization algorithm, adjusted
parameter distributions and further on optimal pa-
rameter combinations for the investigated process
model are determined.

Optimization variables

A central concept of the used optimization frame-
work is the usage of the optimization variables. They
represent different characteristics, that can be ac-
cessed through both, observational data and sim-
ulation results. In this work, five optimization vari-

ables X = {r, t, f , umax,V} are investigated and in-
cluded in the optimization process to consider dif-
ferent avalanche characteristics. Quality and quan-
tity of observational data is often limited and inho-
mogeneous. Therefore observational variables and
their associated uncertainty are denoted by X̂ ± σX̂ ,
whereas simulation variables by plain X.

2.1. Observation

The observational data serves as input for the sim-
ulation and is used to evaluate the quality of multi-
ple simulation runs. In this work multiple avalanche
events are considered in the optimization process.
The five investigated avalanches are Alpenlahner
avalanche (Bad Bleiberg, carinthia), Ganderwiesen
avalanche (St. Anton, Tyrol), Heiligenblut avalanche
(Lienz, East Tyrol), Lubitzgraben avalanche (Mall-
nitz, Carinthia), Trins avalanche (Gschnitz valley, Ty-
rol).

For the simulation input mainly the knowledge of
release areas, potential entrainment areas and re-
lated snow cover distributions is necessary. The
release areas are delineated by evaluating docu-
mented release scenarios, but also considering po-
tential release areas according to guidelines and
models (Maggioni and Gruber, 2003; Veitinger et al.,
2015). The snow depth distribution is based on esti-
mations of extreme snow depths (Leichtfried, 2010),
which get projected onto the mountain slope (see
mountain snow cover, Fischer et al., 2015). This al-
lows to assume a smooth and consistent snow cover
distribution for release and entrainment conditions.

Optimization variables: The observational vari-
ables are based on chronicle data. If no field data is
available, empirical laws may provide valuable data
for the optimization variables. The affected area Âaff

outlines multiple run out limits, i.e. run out delin-
eations or points from single events get combined
to an enfolding area. So the documented run out r̂
is represented as the furthest point of the affected
area Âaff in the avalanche path dependent coordi-
nate system. The maximal velocity of the avalanche
is approximated using the empirical estimate ûmax ≈

0.6
√

g ∆z (McClung and Schaerer, 2006). The doc-
umented deposition volume is assumed by summa-
rizing the initially released snow volume and the ap-
proximated entrainment volume (Sovilla et al., 2006,
2007) following V̂dep = Vrel + 0.5 hmsc Aent. The ob-
served avalanche characteristics for the five investi-
gated avalanches are summarized in table 3.

2.2. Simulation

For each of the investigated avalanches in the pre-
sented framework a simulation set up (consisting of
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Alpenlahner Ganderwiesen Heiligenblut Lubitzgraben Trins

r̂ (m) 2384 3215 2736 1781 3203
Âaff (m2) 85089 120266 63872 51696 53889
ûmax (m s−1) 61.96 69.98 62.75 56.32 64.34
V̂dep (m3) 388225 774390 355653 428370 366769

Table 1: Observational variables X̂ for avalanches: r̂ - runout, Âaff - affected area, ûmax - maximal velocity, V̂dep - deposition volume.
Related uncertainties σX̂ are σr̂ = 25 m, σÂ = 0.15 Âaff , σû = 10 m s−1, σV̂ = 0.25 V̂ent.

simulation input, process model and simulation out-
put) is defined and 10 000 simulations with varying
process parameters are performed.

The simulation input comprises initial conditions,
such as the definition of release and entrainment
areas and their respective snow depth distribu-
tions, and boundary conditions (e.g the digital terrain
model).

The used process model unifies the description of
frictional behaviour and entrainment and is specified
by the governing equations, respectively their imple-
mentation in the simulation software (Sampl, 2007).
In this work a simplified expression form of the fric-
tion relation is used (Rauter et al., 2016):

τ(b) = µσ(b) + ρ̄ ψ
( ū
h

)2
, (1)

where µ represents the dry friction coefficient and ψ
accounts for dynamic stresses. This covers the ba-
sic features of the extended kinetic theory (collisional
based kinetic theory at low volume fractions and
the so called critical state theory from soil mechan-
ics at high volume fractions, Vescovi et al., 2013).
Equation (1) is similar to classic phenomenologi-
cal friction relations like the Voellmy friction relation
(Voellmy, 1955). The entrainment process, that is
approximated by a simple law for erosive entrain-
ment with the erosion energy parameter eb (Fischer
et al., 2015):

q̇ =
τ(b)

eb
‖ū‖ . (2)

Similar definitions can be found in the literature (see
Christen et al., 2010).

The unknown process parameters can be summa-
rized in a set Θ = {µ, ψ, eb}. In the used probabilistic
simulation set up 10 000 Monte Carlo combinations
of Θ are performed. This means that the respective
parameters get varied randomly within defined inter-
val bounds. These are determined by the physically
relevant parameter space, values found in the liter-
ature and previous studies or experimental results
and are µ ∈ [0.1, 0.6], ψ ∈ [0.001, 0.010] m2 and
eb ∈ [0, 20000] J kg−1. The resulting input parame-
ter distributions, which are distributed uniformly, are
summarized in Ωin

Θ
(see figure 1).

Optimization variables: The main results of the
SamosAT simulation software are the temporal evo-

lution of the state variables flow depth or veloc-
ity or their conversion to dynamic pressures. The
used optimization approach uses the maximum val-
ues over the time, the so called dynamic peak pres-
sures p (x, y), and transforms them in an avalanche
path dependent coordinate system (Fischer, 2013).
By introducing a pressure threshold plim = 1 kPa,
a boundary of the impact zone of the simulated
avalanche can be identified and further on inter-
preted as simulated affected area Aaff . The furthest
point in the avalanche path dependent coordinate
system where the pressure threshold is exceeded
(p > plim) marks the run out r. The matched affected
area (true) t summarizes the area, where the simu-
lated affected area coincides with the documented
affected area (Aaff ∩ Âaff). The exceeded affected
area (false) f are those areas, where the simula-
tion result exceeds the documented affected area
(Aaff \ Âaff). Maximal velocity umax and total volume
Vdep are direct results of the simulation.

2.3. Optimization

The optimization approach, which is used in this
work to calculate adjusted parameter distributions,
is based on an informal statistical approach (Fischer
et al., 2015). An arbitrary function is introduced to
quantify the correspondence between observation
and simulation, without explicitly considering model
uncertainties (McMillan and Clark, 2009). A draw-
back of this method is that the resulting parameter
distributions represent an estimate of total uncer-
tainties and can therefore not be assigned explic-
itly to model or input uncertainties, which is possible
with formal Bayesian approaches (Ancey, 2005; Eck-
ert et al., 2007, 2008; Gauer et al., 2009; Hellweger
et al., 2016).

The employed function, which determines the cor-
respondence is a normalized, Gaussian function N
with mean X̂ and variance σ2

X̂
. With this defini-

tion the accordance is bounded in the interval αX ∈

[0, 1], where 1 means optimal accordance and 0 de-
notes no accordance for the respective optimization
variable X = {r, t, f , p, umax,V}. The uncertainty of
the documentation variable determines the tolerance
and scale of the used function. So for each simu-
lation run a final accordance α is determined by a
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µ σµ,50 % ψ σψ,50 % eb σeb ,50 %

Single analysis
Alpenlahner avalanche 0.305 ± 0.017 0.0070 ± 0.0018 15797 ± 2577
Ganderwiesen avalanche 0.254 ± 0.015 0.0058 ± 0.0026 6785 ± 2080
Heiligenblut avalanche 0.286 ± 0.021 0.0052 ± 0.0021 7604 ± 3329
Lubitzgraben avalanche 0.315 ± 0.022 0.0072 ± 0.0018 11134 ± 3845
Trins avalanche 0.296 ± 0.011 0.0059 ± 0.0022 14583 ± 3373

Mean 0.291 ± 0.017 0.0062 ± 0.0021 11180 ± 3041

Combi analysis
0.292 ± 0.021 0.0063 ± 0.0022 10543 ± 3884

Table 2: Mean values and interquartile ranges of the optimal parameter distributions, separated for single analysis and combi analysis.
The full distributions are shown in figure 2.

multiplication of the single αX

α =
∏

X

αX , (3)

which for a good simulation tends towards α → 1.
Simulations, which do not agree with the documen-
tation in single or multiple regards are marked by a
low accordance α→ 0.

The objective of the single analysis is a statis-
tical parameter optimization of 10 000 simulations
with variable process parameters (µ, ψ, eb) for a sin-
gle avalanche path (Fischer et al., 2015) by iden-
tifying simulations, which match the documenta-
tion best and investigating the underlying parame-
ter distributions. Using the optimization variables
X = {r, t, f , umax,V}, the simulations are ranked by
maximising the degree of simulation-observation-
correspondence α. A statistical evaluation of the
best simulation runs and their corresponding pro-
cess parameters is performed.

The aim of the combi analysis is the statistical pa-
rameter optimization for the combination of multiple
avalanche paths. Therefore the same simulation set
up as for the single analysis is used and a fixed num-
ber of best simulations per avalanche event are iden-
tified. Their underlying parameters are identified and
combined optimal parameter distributions are calcu-
lated. They can be analysed and characteristic val-
ues are obtained (e.g. median values or quantiles).

3. RESULTS

In this section the results of the optimization frame-
work are shown. The optimal parameter distribu-
tions for the single analysis and the combi analysis
are displayed and the related uncertainties are high-
lighted. In a further step, simulations of the same
avalanche events, which were already used in the
optimization framework, with the optimized parame-
ter combinations are performed. Thus the effects of
parameter uncertainties on forward simulation pur-
poses are emphasised.

3.1. Optimized parameter distributions ΩΘ for Θ =

{µ, ψ, eb}

In the single analysis a statistical parameter opti-
mization of 10 000 simulations with variable process
parameters (µ, ψ, eb) for every single avalanche path
is performed. After calculating the optimization vari-
ables and furthermore the simulation-observation
accordance, it is possible to identify the best 5 % →
500 simulations. A statistical evaluation of the best
simulation runs and their corresponding process pa-
rameters is performed. The resulting parameter dis-
tributions (see 2) and their characteristic values (e.g.
median and quartiles) are summarized in table 2.2.
The median is used for each avalanche path for for-
ward simulation.

Based on the best simulations of the single analy-
sis, the optimal parameter distribution of the combi
analysis can be evaluated. The fixed number of
5 % × 10 000 = 500 best simulations from each
avalanche event are identified and their parameter
combinations combined. The resulting distribution of
5× 5 % × 10 000 = 2 500 parameter combinations is
displayed in figure 2. The resulting parameter distri-
butions can be analysed and used for forward simu-
lation (e.g. median values of distributions, table 2.2).

In figure 2 the optimized parameter distributions
for the single analysis for each avalanche event and
for the combi analysis are shown for the parame-
ters µ, ψ and eb. The gray area summarizes the full
5 % best parameters, the blue ranges represent the
25 %- and 75 %-percentile and the red line shows the
median. The medians and the interquartile ranges
σΘ,50 % = Θ75 % − Θ25 % are summarized in table 2.2.
For µ relatively clear peaks can be found, whereas
for ψ no significant trend is observable. This indi-
cates, that the influence of the Coulomb friction pa-
rameter µ to the observational variables is higher
compared to the negligible influence of ψ. For the
entrainment parameter eb, remarkable differences
between the different avalanche events can be ob-
served. The ranges of σΘ,50 % indicate the spread-
ing in the distributions of the optimal parameters and
can be interpreted as related uncertainties. The
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Figure 3: Forward simulation of the Ganderwiesen avalanche.
The small box in the right bottom shows an overview of the Gan-
derwiesen avalanche with its release area (red polygon), affected
area (azure polygon) and the avalanche path (green line). The left
box is a zoom in the deposition area of the avalanche. The red
(combi analysis) and blue (single analysis) lines shows the 1 kPa
bounds of the simulations with optimized parameters.

mean value out of the single analysis shows less
spreading than the combi analysis for each variable
(σµ,50 % = 0.017 versus σµ,50 % = 0.021, . . . ), which
indicates a rise of uncertainty for the combi analysis.

3.2. Forward simulation

For each of the avalanches two simulations with dif-
ferent process parameters are performed: the re-
spective optimal parameter setting from the single
optimization and the combined optimal parameters
from the combi analysis (median values, see table
2.2). The simulation results are processed in the
avalanche path dependent coordinate system and
the optimization variables are determined and sum-
marized in table 3.

In figure 3 the results of the forward simulations
for the Ganderwiesen avalanche are shown. The
azure polygon represents the documented affected
area, whereas the red and blue lines show the 1 kPa
bounds of the simulations with optimized parame-
ters. It can be observed that the simulation with the
optimal parameters from the single analysis (blue)
shows a good accordance to the documented af-
fected area and leads to a good runout estimation
(εr = 5 m), whereas the simulation after combi anal-
ysis fails to predict the observed runout length (εr =

105 m) and also the lateral spreading is not repro-
duced well.

Note that other optimization variables like veloc-
ity or avalanche volume are not visible in this fig-
ure, but have to be taken into account to make a
meaningful judgement about the quality of a simula-
tion. Therefore the absolute errors εr = | r̂ − r |, εu =

| ûmax − umax | and εg = | ĝ − g | are introduced to
get an idea about the uncertainties of the different
optimal parameter settings regarding different docu-

mentation aspects (runout r, velocity u and volume
growth g = Vdep /Vrel).

Table 3 summarizes these optimization variables
and the respective errors for the five investigated
avalanches. Runouts are underestimated and over-
estimated for the single analysis, but also for the
combi analysis. However the mean error of simu-
lations with optimal single analysis parameters are
smaller than with optimal combi analysis parame-
ters (± 23 m versus ± 43 m). The velocities are un-
derestimated systematically (≈ 19 m/s) for both op-
timization approaches, compared to the empirical
estimate of the velocity. However, when compar-
ing the simulated velocities for both parameter sets
for each avalanche, small differences can be ob-
served. The volume growth is generally underesti-
mated, which can be attributed to the high estimate
of possible entrainment due to the definition of pos-
sible entrainment areas Aent and the approach for
the snow cover distribution hmsc. However, values for
the volume growth are in a reasonable range (Sovilla
et al., 2006, 2007).

4. SUMMARY AND CONCLUSIONS

In this work a multivariate optimization method for
process parameters, incorporating different observa-
tional variables to cover various avalanche charac-
teristics, was applied to the operational avalanche
simulation software SamosAT for five documented
avalanche events.

It was shown, that for each avalanche event good
parameter combinations were found in order to re-
produce the respective observations in different re-
gards quite good, e.g. the mean absolute error of the
runout of the five investigated avalanches was εr =

23 m. When comparing the parameter distributions
of the single analysis to the parameter of the com-
bined analysis, it could be observed, that not sur-
prisingly with the amount of considered avalanche
events in the optimization, the uncertainty in the op-
timized parameter distributions has gone up. This
can be addressed to the differences in the optimal
parameter settings and their related uncertainties for
the different paths.

Forward simulations with the median values of the
optimized parameter distributions were performed
and the main avalanche characteristics for the re-
spective events were evaluated. A main focus was
laid on the uncertainties of the forward simulations
to the documentation. But also the differences be-
tween the optimization cases (single and combi anal-
ysis) were observed. It could be seen that runouts
were underestimated and overestimated for both op-
timization cases, but the mean absolute error was
smaller at simulations with optimal single analysis
parameters than with optimal combi analysis param-
eters (± 23 m versus ± 43 m). This coincides with
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μ

Alpenlahner avalanche

Ganderwiesen avalanche

Heiligenblut avalanche

Lubitzgraben avalanche

Trins avalanche

0.1 0.2 0.3 0.4 0.5 0.6 0 5000 10000 15000 200000.0010 0.0025 0.0050 0.0075 0.0100

ψ eb

0.1 0.2 0.3 0.4 0.5 0.6 0 5000 10000 15000 200000.0010 0.0025 0.0050 0.0075 0.0100

Combi

Figure 2: Optimized parameter distributions µ, ψ and eb for both optimization approaches: the respective single analysis for each
avalanche event and the combi analysis. The shown violin plots represent approximations of histograms of the best 500 simulations for
the single analysis, respectively 2 500 simulations for the combi analysis. The gray areas summarize the full range of best parameters,
the blue ranges represent the 25 %- and 75 %-percentile (lower and upper quartile) and the red lines shows the median values.

r εr
Docu Single Combi Single Combi

Alpenlahner avalanche 2 384 2 342 2 368 42 16
Ganderwiesen avalanche 3 215 3 220 3 110 5 105
Heiligenblut avalanche 2 736 2 764 2 681 28 55
Lubitzgraben avalanche 1 781 1 756 1 796 25 15
Trins avalanche 3 203 3 219 3 225 16 22

Mean 2 664 Mean 23 43
≈ 1 % ≈ 2 %

umax εu
Docu Single Combi Single Combi

Alpenlahner avalanche 62 52 53 10 9
Ganderwiesen avalanche 70 53 50 16 19
Heiligenblut avalanche 63 30 29 33 34
Lubitzgraben avalanche 56 49 51 7 5
Trins avalanche 64 38 38 26 27

Mean 63 Mean 19 19
≈ 30 % ≈ 30 %

g = Vdep /Vrel εg
Docu Single Combi Single Combi

Alpenlahner avalanche 1.78 1.59 1.86 0.19 0.08
Ganderwiesen avalanche 3.11 2.59 2.02 0.52 1.09
Heiligenblut avalanche 4.22 2.10 1.64 2.12 2.58
Lubitzgraben avalanche 2.94 1.79 1.84 1.15 1.10
Trins avalanche 1.48 1.42 1.52 0.06 0.04

Mean 2.70 Mean 0.81 0.98
≈ 30 % ≈ 36 %

Table 3: Optimization variables (runout r, velocity u and volume growth) from simulations with the respective optimal parameter setting
from the single optimization and the combined optimal parameters from the combi analysis. Additionally the absolute errors εr =

| r̂ − r |, εu = | ûmax − umax | and εg = | ĝ − g | are included.
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the related uncertainties in the parameter estima-
tion. Velocities and the volume growth were under-
estimated systematically compared to the introduced
empirical laws, which on the other hand might also
be subject to over- or underestimation. However due
to lack of observational data of extreme events they
serve as valuable estimates.

It could also be highlighted that it is important
to consider the uncertainties of process parame-
ters, when making forward simulations of avalanche
events with a single optimal parameter combination.
As a consequence, a forward simulation concept,
which is based on a probabilistic simulation, follow-
ing optimal parameter distributions, could be devel-
oped.
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