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ABSTRACT: Early warning systems (EWS) play a crucial role in managing the risks posed by avalanches 
and other mass-movement processes to settlements and infrastructures. Although guidelines to evaluate 
the effectiveness of structural protection measures, such as avalanche defense structures, are commonly 
used in practice, this is not the case for EWS. Recently, a novel framework to evaluate their effectiveness 
as a function of their reliability was proposed (Sättele et al., 2016). In this framework, the reliability of au-
tomated EWS parts is modeled probabilistically in Bayesian Networks (BN) and expressed in terms of the 
probability of detection and the probability of false alarms. It could be shown that the optimal trade-off be-
tween those two strongly depends on the strategy applied to monitor the hazard and the thresholds ap-
plied to deliver early warning. Besides this, the results revealed that human factors, such as the risk 
attitude of decision-makers, are decisive in an EWS evaluation. In this paper, we demonstrate how the 
influence of human factors on the reliability of avalanche EWS can be assessed quantitatively. In line with 
established human reliability analysis (HRA) methods, which are frequently applied in industries, such as 
nuclear power (Kirwan and Ainsworth, 1992), we start with a detailed task analysis. To identify the cogni-
tive tasks required of avalanche experts we conducted structured interviews. From these interviews a ge-
neric mental model is derived. The interviews also allowed us to identify the personal and external factors 
that influence if a task is conducted successfully. To demonstrate a qualitative assessment, nodes of the 
mental model and personal and external human factors are comprised in an extended BN. Finally, we 
discuss the potential of, and limitations regarding the integration of human factors into our framework for 
the evaluation of EWS. 
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1. INTRODUCTION 

In the last decade, early warning systems (EWS) 
are increasingly applied as mitigation measures to 
prevent avalanche damage and casualties on 
roads, railways and in settlements (Gubler 2000; 
Bründl et al. 2004; Sättele 2015). EWS have be-
come widely accepted as flexible and cost effec-
tive mitigation measures, although little is known 
about their effectiveness (degree of risk reduction 
they achieve). In the context of an integrated risk 
management approach the effectiveness and the 
costs of alternative mitigation measures are com-
pared to identify optimal risk mitigation strategies 
(Bründl et al. 2009). When evaluating the effec-
tiveness of structural mitigation measures, clear 
guidelines are in place; e.g. in Switzerland 
(Margreth and Romang 2010).  

Facilitating the evaluation of complex EWS, Sät-
tele et al. (2016) recently proposed a novel 
framework generically applicable for EWS applied 
to mass movement processes. A classification, 
distinguishing EWS according to their degree of 
automation forms the basis of this framework. The 
reliability of automated EWS is expressed in terms 
of the probability of detection (POD) and the prob-
ability of false alarms (PFA), which both influence 
the EWS effectiveness. EWS commonly reduce 
risk by decreasing the presence probability of per-
sons and mobile objects in endangered areas. To 
be effective, they have to detect hazardous events 
(POD) and lead to protective actions with which 
affected persons comply. A large number of false 
alarms can reduce the probability of compliance 
(POC), which is known as cry wolf syndrome 
(Breznitz 1989).  

In this framework approach the reliability is mod-
eled in a Bayesian network (BN). Essentially, a BN 
represents a probabilistic modeling tool, which 
allows efficient representation of a joint probability 
distribution of several random variables. BNs con-
sist of a qualitative part, represented through a 
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directed acyclic graph (DAG), and a set of local 
conditional probability distributions, which quanti-
tatively represent the dependencies between ran-
dom variables. Over the past decades BNs have 
been increasingly applied in the fields of engineer-
ing risk analysis and reliability (Langseth and 
Portinale 2007; Straub and Der Kiureghian 2010; 
Weber et al. 2012) and for natural risk (Straub 
2005; Aguilera et al. 2011). For a more in depth 
introduction we refer to the relevant textbooks, e.g. 
Jensen and Nielson (2007).  

The reliability assessment of non-automated EWS 
is treated in less detail in this recently published 
framework, although it is well known that human 
factors strongly influence the EWS effectiveness 
(Sorensen and Mileti 1987). This is because 
human tasks conducted in EWS are very complex 
and primarily cognitive e.g. to evaluate the danger 
and decide on protective actions (Stoffel and 
Schweizer 2008). Similar to naturalistic decision-
making approaches described by Klein (1998), 
tasks in EWS are conducted under time pressure, 
deal with high stakes (death/life), with incomplete 
information, poorly defined procedures, dynamic 
conditions and involve a large degree of uncertain-
ty (see also Stewart et al. 1997; Doswell III 2004; 
Downton et al. 2005; Morss et al. 2005; Guzzetti 
2015; Morss et al. 2015).  

The influence of human factors in the field of ava-
lanche risk management has received little atten-
tion in the past and existing studies focused on 
recreational decision-making (Zweifel and Haegeli 
2014). Decisions made by avalanche experts are 
highly dynamic and influenced by itera-
tive/evolutionary tasks in which information is as-
sembled cumulatively over time (McClung 2002a; 
McClung 2002b). To evaluate avalanche danger, 
experts judge the snow instability in space and 
time relative to a given trigger level. To do so, they 
analyze snow pack data, cues on current and fu-
ture snow and weather conditions and triggers 
such as new snow, skiing, explosives, temperature 
change. The performance of the experts depends 
on their personal traits and perception, which 
again depend e.g. on experiences, risk propensity 
and biases. An extensive study on organizational 
biases was recently published by Johnson et al., 
(2016). Their interviews with 392 avalanche ex-
perts revealed that organizational factors, such as 
a strong safety culture, regular trainings and clear 
procedures, lead to good decisions; while opera-
tional pressure, weak management and decision-
making structures have a negative influence. 
However, compared to other industries, decisions 
made by avalanche experts involve a large degree 

of freedom. For example, thresholds defined in 
safety concepts for critical amounts of new snow 
are mainly indications that can be adapted for in-
dividual situations, rather than fixed target values 
(Schweizer and Föhn 1996). By using their exper-
tise, experts can often compensate for incomplete 
and uncertain information and make better deci-
sions. For example, new snow data measured by 
automated stations can vary strongly within miles 
of critical release areas. Furthermore, weather 
forecasts, besides being inherently uncertain, typi-
cally provide lower spatial resolution than required. 

These characteristics of avalanche EWS hinder 
the application of existing quantitative human reli-
ability analysis (HRA) methods developed for safe-
ty critical industries, such as nuclear power, 
aerospace and railway. Unlike in the field of ava-
lanche risk, procedures and decision-rules are 
clearly defined in these industries, and thus make 
the concept of human error applicable. Despite the 
difficulties of evaluating human error in the as-
sessment of avalanche EWS, the basic ideas and 
steps of HRA can be adapted for our needs.  

Within the context of a probabilistic risk assess-
ment for a man-machine system, HRA is con-
cerned with the influence of human failure events 
(HFEs). After their identification HFEs are quanti-
fied using human error probabilities (HEPs) (Kir-
wan and Ainsworth, 1992). Typically HEPs are 
assigned conditionally on a specific context, which 
is described through performance shaping factors 
(PSFs). Both internal and external factors such as 
stress, education level, and management culture 
can be considered (Groth and Mosleh 2012; VDI 
2015). Currently more than 50 HRA methods exist 
and new methods are continuously developed 
(Groth and Swiler 2013). For comprehensive 
summaries on HRA methods see (Kirwan 1994; 
Bell and Holroyd 2009; Spurgin 2010; Boring 
2012; Di Pasquale et al. 2013). To overcome the 
weaknesses of traditional quantification frame-
works and to increase the traceability of HRA 
methods, BNs have become increasingly popular 
in HRA (Zwirglmaier et al. submitted). A review of 
BN based HRA methods is provided by Mkrtchyan 
et al. (2015). 

In the field of natural hazard risk management 
mental models to graphically capture relevant 
cognitive tasks have been proposed in the context 
of flash flood or hurricane warning processes 
(Bostrom et al. 2015; Morss et al. 2015). In line 
with Morgen (2002) these models are elicited on 
structured interviews. Such mental models can be 
represented in BNs. In the present contribution we 
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demonstrate how human factors can be consid-
ered in BNs when evaluating EWS.   

2. RESEARCH APPROACH  

Our approach is based on the outcomes of struc-
tured interviews with five avalanche experts. All 
experts work in the field of avalanche safety in 
Switzerland and have been assessing avalanche 
danger for between 13 and 25 years. Each inter-
view was conducted following the same procedure 
and took approximately 2 h. Initially interviewees 
were explained the background of the project and 
the overall aim. It was then illustrated how we 
want to achieve this goal and how they could con-
tribute (10 min). Next, we asked them predefined 
questions regarding their person (responsibility, 
experience, risk perception) and the organizational 
context of their work (procedures, safety concepts, 
documentation, and training) (20min). 

The majority of the time (~1 h) was used to con-
duct a detailed task analysis and graphically 
summarize results in a mental model. The model 
comprises all tasks conducted by the experts 
when they evaluate the avalanche danger. To en-
sure that all mental models become comparable 
and could be integrated into one generic mental 
model, we asked similar questions (details see 
Section 3.1). Expected answers were preprinted 
on sticky notes and blank notes were available to 
add new thoughts/ideas. Whenever an expert 
mentioned a task, it was added to the mental 
models and rated according to a scale: very im-
portant, important and less important. By picking 
those tasks which had been selected by all five 
experts and rated by at least three experts as very 
important, the generic mental model was ar-
ranged.  

The interviews were also used to identify the hu-
man factors that strongly influence the EWS relia-
bility. In the last 30 min we stimulated an open-
ended discussion by asking them to talk about 
their experience, past incidents and to name fac-
tors that influence their performance. We summa-
rized all answers in a list to identify factors 
mentioned several times. In doing so, we were 
able to identify EWS specific PSFs (personal and 
organizational). The interview results provided a 
powerful basis to establish a BN representing the 
mental model and factors that have major influ-
ence on the EWS reliability. We use an extended 
BN to demonstrate how human factors can be in-
corporated in a quantitative reliability assessment 
of EWS.  

3. RESULTS 

3.1 Task analysis: Mental model approach 

From the structured interviews we could identify 
and rate activities and cognitive tasks, which are 
regularly conducted by avalanche experts and 
should be integrated in our generic mental model. 
In Tbls.1-5 we summarize the answers selected by 
the experts for each question (no. answer) and 
indicate how often an answer is rated as very im-
portant (+++) important (++) or less important (+).  

Question 1: Which information sources do you use 
to evaluate the avalanche danger in extreme situa-
tions? As expected, all experts consider infor-
mation from weather forecasts, data from weather 
radars and data regularly measured by automated 
snow and weather stations as very important   
(Tbl. 1). Besides that, they strongly rely on regular 
measurements from local observers. Some also 
profit from information derived from an informal 
network. Information from the national avalanche 
bulletin is important for evaluating the general sit-
uation. While being in touch with experts from the 
national warning service is considered to be im-
portant by three experts, exchange with experts 
from the national meteorological warning service 
as well as online available snow profiles are con-
sidered less important. 

Tbl. 1: Data sources used 

Question 2: Which activities do you conduct in or-
der to evaluate the avalanche danger? Interesting-
ly activities or own measurements are rated 
comparatively low (Tbl. 2). Experts justify lower 
ratings because they are often not able to conduct 
own measurements or observations in extreme 
situations.  

 

 

 

 

 No. +++ ++ + 
Weather forecast 
Automated stations 
Radar data 
Observer measurements 

5 
5 
5 
5 

5 
5 
4 
3 

 
 
1 
1 

 
 
 
1 

Informal network  
Bulletin 
Expert SLF 
Expert MeteoSwiss 
Available snow profiles 

5 
5 
3 
3 
3 

1 
 
2 

3 
5 
1 
2 
2 

1 
 
 
1 
1 
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Tbl. 2: Own measurements/actions conducted 

 No. +++ ++ + 

Own observations 4 2 2  
Amount new snow (top) 
Amount new snow (valley) 
Make snow profile 

2 
3 
1 

2 
1 
 

 
1 
1 

 
1 
 

Question 3: Please name important hints given by 
avalanches. Experts consider information on re-
cent avalanche activity as especially important 
(Tbl. 3). The importance of results from explosive 
control varies depending on locations and the 
availability of such temporary avalanche control 
measures. Some also consider the avalanche his-
tory and indicator avalanches as an important 
source of information.   

Tbl. 3: Hints given by avalanches 
 No. +++ ++ + 
Recent avalanche activity 5 4 1  
Result explosive control 
Avalanche history (winter) 
Indicator avalanches 

5 
4 
2 

2 
2 
 

2 
2 
2 

1 
 
 

Question 4: Which snow and weather parameters 
do you evaluate? Experts mainly consult the 
amount of new snow and wind related snowdrift 
(Tbl. 4). The snow temperature and radiation are 
only important during spring. The snow height is 
important, while the air humidity is not of interest 
to most experts. 

Tbl. 4: Snow and weather parameters evaluated 
 No. +++ ++ + 
Amount fresh snow 5 5   
Wind/snowdrift 5 4 1  
Air temperature 
Radiation/sunshine 
Snow height 
Snowpack temperature 
Air humidity 

5 
5 
5 
4 
1 

1 
 
 
 

2 
4 
4 
3 
1 

2 
1 
1 
1 

Question 5: Which other relevant parameters do 
you evaluate? The stability of the snowpack and 
the endangered aspect are very important for all 
(Tbl. 5). Ratings for other parameters, such as 
avalanche type and the condition of structural ava-
lanche protection measures vary strongly. 

Question 6: How do you define the final danger 
level? All experts assess the likelihood of an ava-
lanche and conditional on this its size. Therefore 
the avalanche danger is only high, if an expected 
event has the potential to reach infrastructures.   

Tbl. 5: Other parameters evaluated 
 No. +++ ++ + 
Endangered aspect  
Stability snowpack 

5 
5 

5 
4 

 
1 

 

Surface roughness 
Avalanche type  
Similar situation  
Fracture depth  
Condition perm. structures 
Avalanche time  
Endangered elevation 
Steepness release area 
No of prone-locations 

5 
5 
5 
4 
4 
4 
3 
3 
3 

1 
1 
1 
3 
1 
 
1 
1 
2 

3 
2 
2 
1 
3 
4 
1 
2 

1 
2 
2 
 
 
 
1 
 
1 

Fig. 1 shows our generic mental model, in which 
all very important tasks (+++) are summarized. 

 
Fig. 1: Generic mental model "evaluate danger". 

3.2 Relevant human factors: EWS specific PSF  

In the course of discussions at the end of the in-
terviews, the participants shared their opinions on 
possible human errors in the context of avalanche 
EWS and personal as well as organizational fac-
tors influencing them. 

According to the interviewees, deadly incidents 
occurred not more than once in their area and 
term of office. In one case an avalanche event 
was missed, because defense structures failed 
under heavy snow loads. Here, experts misinter-
preted the conditions of snow supporting struc-
tures due to missing observations. In another 
case, experts assumed to have triggered an ava-
lanche using explosive control. Again due to an 
inability to conduct field observations, experts in-
correctly assumed that the measure was success-
ful. Our interviews revealed that omitting certain 
tasks is not critical in their work but incomplete 
data sets are often misinterpreted. The ability of 
the experts to compensate missing or wrong in-
formation strongly depends on their personal 
characteristics. All interviewed experts estimated 
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that their decision making ability strongly depends 
on: 

• Passion/ fascination for mountains/ snow 
• Mountaineering abilities 
• Daily contact with avalanches 
• Familiarity with the area 
• Knowledge of physical snow processes  
• Experience 

Moreover, experts mentioned certain characteris-
tics, which they think help them to make good de-
cisions:  

• Risk type 
• Gut feeling/intuition,  
• Self-confidence  
• Current physical condition 
• Stress tolerance 

All experts also stated that the organization-
al/external context is just as important as the per-
sonal background. Important external factors are: 

• Data availability and uncertainty 
• Team composition/ two man rule  
• Decision-making power/ competencies 
• Management structures/ failure culture  
• Bias/ pressure  
• Training facilities 
• Work hours (24 h service) 
• Procedures documented and trained  
• Availability of decision aids/ checklists 
• Temporal flexibility to set up measures  
• Explosive control available 

3.3 Human Reliability EWS: Quantification in BN  

The influence of human factors on the EWS’s reli-
ability is modeled quantitatively in a decision graph 
(DG), which is a BN augmented with decision 
(grey, rectangular) and utility nodes (grey, dia-
mond-shaped); see Fig. 2. 

Green nodes in the DG represent critical parame-
ters, which influence the probability of a “hazard 
event” (top node).  The same parameters build the 
basis for the expert decision, whether to warn or 
not (lowest node). Three states (low, medium, 
high) are assigned to the parameters "danger", 
"size", "new snow", "snow drift" and "stability", 
while for the nodes "likelihood" and "aspect" two 
states (yes, no) are sufficient i.e. an event can ei-
ther occur or not and the endangered aspect is 
either identified correctly or not. 

In the conditional probability tables (CPTs), which 
are assigned to the nodes, the probability distribu-
tion of the respective node conditional on its par-

ents is defined. In Fig. 3 the CPT of the node 
"hazard event" conditional on the avalanche "dan-
ger" is illustrated. 

 
Fig. 2: Decision graph to model the influence of 
human factors on the EWS reliability. 

danger low medium high 
hazard 
event 

yes 0.2 0.5 0.8 
no 0.8 0.5 0.2 

Fig. 3: CPT of the node “hazard event” includes 
estimated conditional probabilities (best-guess). 

Red nodes in the DG represent the perception of 
the expert when evaluating critical parameters. To 
account for varying information sources (bottom 
line of the generic model in Fig. 1) considered by 
the experts when evaluating one certain parame-
ter, several red child nodes were added (Fig. 4). 
For example, when an expert evaluates the 
amount of "new snow" information (possibly at 
different points in time) from the weather forecast 
(“new snow forecasted”), from radar images (“new 
snow measured”) and from the observer network 
(“new snow observed”) is considered. 

 
Fig. 4: For the evaluation of the parameter “new 
snow” experts consider varying information 
sources.  

The perception of the expert and his/her ability to 
correctly evaluate the actual state of a critical pa-
rameter (blue nodes) is strongly influenced by per-
sonal and organizational factors, which are added 
in form of blue nodes in the DG. In Fig. 5 the node 

new	  
snow 

event 

snow-‐
drift 

utility 

size 

stabilty	   

exper-‐
tise 

aspect 

danger 

hazard	  
event 

risk	  ty-‐
pe 

-‐-‐-‐-‐ -‐-‐-‐-‐ -‐-‐-‐-‐ -‐-‐-‐-‐ 
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"new snow forecasted" is shown together with its 
parent nodes; and an extract of the corresponding 
CPT is displayed below. The red node represents 
the ability of the expert to forecast the amount of 
new snow conditional on his/her expertise and the 
accuracy of the forecast model. If the expertise 
and the uncertainty involved in the weather fore-
cast model are low, the probability of the expert to 
select the correct state (low, medium, high) is high 
(0.7); however, if an expert is inexperienced and 
the model uncertainty high, the experts will choose 
the forecasted new snow amount randomly.   

 
expertise low … 
model error low high … 
new snow low med high low med high … 

new snow 
forecasted 

low  0.7 0.15 0.1 0.33 0.33 0.33 … 
med 0.2 0.7 0.2 0.33 0.33 0.33 … 
high 0.1 0.15 0.7 0.33 0.33 0.33 … 

Fig. 5: Parent nodes and CPT of the node "new 
snow forecasted” with probabilities (best-guess).  

The diamond-shaped utility node is added in the 
DG to represent the subjective costs and not nec-
essarily monetary costs, associated to a decision 
scenario (Fig. 6). In this context, values for four 
scenarios are specified: hit (warning: yes; event: 
yes), false (warning: yes; event: no), miss (warn-
ing: no; event: yes) and neutral situation (warning: 
no; event: no). Moreover, the risk perception of the 
avalanche expert has an influence on these sub-
jective costs i.e. a risk taking person considers a 
false alarm worse than a risk averse person.  

By computing the DG one can assess the reliabil-
ity of an EWS with respect to personal and human 
factors. The reliability is quantified in terms of the 
POD and PFA. The average POD (respectively 
PFA) is thereby defined as the probability of issu-
ing a warning conditional on (not) having a hazard 
event. The assumption behind this is that the ex-
pert makes an optimal decision (warning/no warn-
ing) meaning that conditional on his/her state of 
knowledge at that particular point in time, the deci-
sion which maximizes the expected utility is cho-
sen.  

 
risk type taking averse 
warning yes no yes no 
event yes no yes no yes no yes no 
utility 0 -10 -1000 0 0 -5 -1000 0 

Fig. 6: The utility is defined conditionally on the 
risk type and the decision scenario. 

4. DISCUSSION 

In this contribution we present a structured ap-
proach to include human factors in the reliability 
assessment of EWS. First we develop a mental 
model in which all relevant tasks are summarized. 
Then we identify the factors determining success-
ful completion of a task; finally we summarize both 
results in a DG to demonstrate the reliability as-
sessment. Accounting for human factors is essen-
tial for a comprehensive EWS evaluation. In the 
majority of cases, the final warning decision is 
made by experts, who are increasingly exposed to 
external pressure. The reliability of EWS not only 
depends on the detection of hazard events, but 
also on the avoidance of false alarms. 

Our contribution is a first step towards a compre-
hensive evaluation of EWS and the proposed DG 
has been proven to be a powerful tool for a struc-
tured assessment of human factors. We can com-
bine the DG with our existing approach, see 
introduction, which can be applied to address both 
qualitative and quantitative of an EWS evaluation. 

From a qualitative perspective, the DG clearly 
shows the role of experts in the EWS as well as 
the interaction of human factors and between hu-
mans and technical system components. The DG 
is derived from a mental model developed from 
five structured interviews conducted with ava-
lanche experts. To provide a more sophisticated 
model a greater number of interviews with interna-
tional experts should be conducted. The Swiss 
experts presented herein are closely connected 
and have all undergone a similar education, thus a 
degree of unity in the results can be anticipated. 
However, the framework recently published by 
Statham et al. (in review) reveals that Canadian 

Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016

227



 

and US avalanche experts assess similar parame-
ters to determine the avalanche danger. Further-
more, our model is flexible enough to account for 
additional needs.  

Additionally the presented DG facilitates a quanti-
tative reliability assessment, wherein the influence 
of varying human and organizational factors on the 
reliability of the EWS and optimal decision strate-
gies can be identified. In order to demonstrate op-
portunities associated with a DG, we used 
numbers based on best guesses. To be able to 
identify more sophisticated data for the CPTs, e.g. 
to quantify the value of an experienced avalanche 
expert, further studies need to be conducted. As 
suggested by Rheinberger (2013), a collective da-
tabase, in which decisions (warning yes/no) and 
final outcomes (event yes/no) are stored and eval-
uated, should be made available in the future. A 
more efficient way to gain quantitative data regard-
ing personal and external factors could be to test 
both experts and less experienced forecasters in 
simulators. Such  an approach is common in HRA, 
whereby experts receive selected data, and are 
confronted with varying scenarios; during which 
their decisions are recorded. Results from data-
bases or simulators could then be used to en-
hance our DG.  

5. CONCLUSION 

This contribution presents a first step towards a 
comprehensive method to evaluate the EWS ef-
fectiveness. We show that BNs are a powerful tool 
to quantitatively assess the human influence on 
the reliability of EWS. In the BN the reliability 
(POD/PFA) can be modeled conditional on per-
sonal and external influence factors. This is the 
expert’s expertise, their risk propensity and the 
underlying model uncertainties. Our results look 
promising and we believe that further studies 
should be initiated to facilitate a comprehensive 
evaluation of EWS in the context of an integrated 
risk management approach. 
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