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ABSTRACT: Wet and powder snow avalanches can break, uproot and overturn trees, causing widespread damage
to forests. Mapping the extent of forest damage is a useful method to estimate and delineate the avalanche pressure
field and therefore a valuable tool in mitigation studies. The impact forces of avalanches on trees, however, depend
strongly on the avalanche flow regime. In this paper, we analyzed the flow dynamics of two characteristic avalanche
types with the goal of relating avalanche flow regime to forest damage. Powder avalanches are characterized by a
high velocity but low density suspension cloud. Evergreen trees oppose a large area to the powder blast and are prone
to overturning. The destructive force of powder clouds is governed primarily by their expansion velocity, height and
density. In comparison, wet snow avalanches have lower velocity and higher density. Plug-like wet snow avalanches
exert large quasi-static forces at lower stem heights. Using an avalanche dynamics model that simulates both powder
and wet snow avalanches, we studied two well-documented case studies. A critical impact force could be found for
specific tree types independent of the avalanche flow regime. We also found that the forces exerted by wet snow
avalanches cannot be calculated with velocity dependent drag laws. We propose a method to determine wet snow
avalanche pressures on trees by calculating the quasi-static forces which depend on the avalanche volume and terrain
features. Our work contributes to the general understanding of tree-avalanche interaction and enables the prediction
of forest damage in avalanche modeling.
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1. INTRODUCTION

Forest damage caused by avalanches reveals the
complex and highly variable nature of avalanche flow.
Avalanches cut through forests leaving paths of broken
and fractured tree stems, overturned root plates and
torn branches (de Quervain, 1979; Bartelt and Stöckli,
2001) (Fig. 1). The ground is covered with woody
debris interlaced with dirty avalanche snow. Powder
clouds often displace further than the avalanche core,
causing massive blow-downs, leaving the tree stems
pointing in the direction of the cloud velocity. The
reach of the powder clouds is visible by studying which
trees still have snow held in their branches. This
destruction (and non-destruction) provides important
information concerning the spatial distribution of the
impact pressures exerted by both the avalanche core
and powder cloud.

In recent years the problem of avalanche-forest
interaction has received renewed interest. This is due to
the ability of forests to hinder and stop small and frequent
avalanches (Feistl et al., 2014; Teich et al., 2012). These
studies have concentrated on the stopping effect of

* Corresponding author address: Thomas Feistl,
WSL Institute for Snow and Avalanche Research SLF,
Davos, Switzerland;
email: thomas.feistl@slf.ch

Fig. 1: Woody debris after avalanche cut through forest.

forests without damage. However, damaged protection
forests increase the risk for subsequent avalanches and
other natural hazards such as rockfalls and debris flows.
Natural disturbances such as bark beetle outbreaks,
forest fire or windthrow can alter forest structure and
therefore the protective capacity. Economic loss for
forest owners and negative ecologic implications are
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additional consequences of avalanche-forest interaction
(Bebi et al., 2009; Weir, 2002). Our primary interest,
however, is to exploit recent advances in modeling
avalanche flow regimes (Bartelt et al., 2011; Buser
and Bartelt, 2009; Vera et al., 2014) to predict forest
damage and therefore improve the inclusion of forests
in avalanche dynamics calculations. The protective
capacity of forests depends strongly on the ability
to survive avalanche loading, which depends on the
avalanche flow regime and impact intensities.

The degree of destruction depends on both the
avalanche loading and tree strength. Trees break if
(1) the bending stress exerted by the moving snow
exceeds the bending strength of the tree stem (Johnson,
1987; Peltola and Kellomäki, 1993; Peltola et al., 1999;
Mattheck and Breloer, 1994) or (2) if the applied torque
overcomes the strength of the root-soil plate, leading
to uprooting and overturning (Coutts, 1983; Peltola and
Kellomäki, 1993). Avalanche loading is more difficult
to define. It depends primarily on the avalanche flow
regime and the forest structure, which is not regular.
To define the avalanche loading, flow variables such as
avalanche density, velocity and height must be known.
These vary not only along the track but also in the
flow width and with flow height. The best example is
the structure of dry, mixed avalanche containing both a
flowing core and powder cloud. The core also varies
in the streamwise flow direction between the avalanche
head and tail.

Pressures from fast moving avalanches (Fr > 1) appear
to be well modeled by the equation

p = cdρ
u2

2
. (1)

This formula cannot be applied to predict quasi-static
wet snow avalanche pressures (Thibert et al., 2008;
Sovilla et al., 2010). Eq. 1 accounts for the local
momentum exchange between the avalanche and the
obstacle. It does not account for pressures arising from
the transfer of static pressures to the obstacle. This
is a mechanically indeterminate problem involving the
interplay between the gliding surface (controlling the
force transfer to the ground) and other terrain features
in the immediate vicinity of the obstacle. Wet snow
avalanche pressure resembles the static snow pressure
exerted on obstacles by snow gliding. Snow forces by
creep and glide have been studied by In der Gand and
Zupančič (1966); Margreth (2007b) and formulas have
been invented quantifying the mechanisms of gliding.

In this paper, we define four loading cases to represent
four different avalanche flow regimes. These are powder,
dry, intermittent and wet. The wet flow regime requires
an equation to describe the indeterminate, quasi-static

loading. We compare the loadings to tree strength to
find the critical flow properties (density, velocity, height)
for a particular flow regime to break trees. We assume
breaking is always in bending.

2. AVALANCHE LOADING

2.1 Moment and Stress

In the following we use the double prime superscript to
denote a pressure p′′; that is a loading per square meter.
A single prime p′ denotes a force per unit height of the
trees and a value without superscript denotes the total
force p acting on the tree. Because trees grow vertical
to the slope and the avalanche applies a pressure in the
slope parallel direction, the loading p is related to the
avalanche impact pressure p′′ by

p = p′′A cosα (2)

where A is the loading area of the tree, which depends
on the affected height and width of the tree. The angle α
defines the slope inclination (see Fig. 2).

Fig. 2: Schematic illustration of an avalanche with
velocity u on a slope with angle α hitting a tree. The
avalanche has three parts: 1. the powder cloud (Π),
2. the saltation layer (g) and 3. the wet- or dense flow
avalanche core (Φ). The density depends on the flow
regime and is denoted ρΠ for powder clouds, ρg for the
saltation layer, ρdΦ for dry snow avalanche cores and
ρwΦ for wet snow avalanches. Flow height is denoted
hΦ, stagnation depth hλ, the total flow height affecting
the tree h and the height of the tree ht. The diameter
of the stem is assumed to be constant d(z) = d. The
pressure force of the avalanche pΠ,Φ,g is acting parallel
to the slope and can be split in a vertical part due to
gravitation pn and a force acting perpendicular to the tree
p.
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The total force p with the moment arm defines the torque
M and therefore determines the bending stress σ within
the tree. The bending stress is related to the applied
moment by the relation:

σ =
Md

2I
(3)

where d is the diameter of the tree and I is the
cross-sectional moment of inertia. As we assume round
tree trunks, I = πd4

64 and therefore

σ = 32
M

πd3
. (4)

The bending stress is calculated from the maximum
torque, which is located at the stem base. In the analysis
we make use of Mattheck’s observation that the tree
grows in relation to the applied forces from the natural
environment, for example wind (Mattheck and Breloer,
1994). This implies that the tree strength σt in relation
to the applied moment is constant and must only be
determined at one point. We choose this point to be
the tree stem base. It also implies that the moments to
break the tree in bending and to overturn the tree are
similar (Bartelt and Stöckli, 2001). Trees do not always
break at the stem base, especially if loaded by wind or
powder clouds, but we assume the bending stress to
be independent of the breaking height. The initial snow
height before the avalanche is another factor which we
disregard in this article. We assume the avalanche to
flow close to the slope surface. An avalanche flowing
on a deep snow cover hits the tree higher up on the
stem and will exert a larger moment. Snow on branches
increases the self-weight of trees and can in addition to
bending increase the loading. The bending stresses we
calculate here are therefore minimum values, that can
be higher for deep snow covers and snow loading on
branches.

We define four avalanche impact pressures (p′′Π, p′′g , p′′dΦ,
p′′wΦ) depending on two avalanche type regimes, dry and
wet respectively, see Tbl. 1.

2.2 Dry, Mixed Avalanche Loading p′′Π, p′′g , p′′dΦ

A dry mixed flowing avalanche exerts three different
loadings, p′′ on a tree. These arise from the powder
cloud p′′Π, the flowing core p′′dΦ and the intermittent
loading from granules contained in saltation like layers
p′′g . The powder cloud has density ρΠ, height hΠ and
velocity uΠ whereas the flowing core has density ρdΦ,
height hΦ and velocity udΦ.

Powder Cloud Loading p′′Π
According to the Swiss guidelines on avalanche
dynamics (Salm et al., 1990) and the report from

the European commission on the design of avalanche
protection dams (Johannesson et al., 2009) the pressure
exerted on a narrow obstacle is calculated according to

p′′Π = ctρΠ
u2

Π

2
, (5)

where ct is the drag factor depending on the tree species
and wind speed (Mayhead, 1973). Mayhead (1973)
derived an average value of ct = 0.4 for different tree
species in Great Britain in wind tunnel experiments for
wind speeds of u = 25 m/s . We adopt this value for the
powder cloud loading. The total force is

p = p′′Πwtht cosα. (6)

The total force p depends on the powder cloud height hΠ

and on the tree height ht. We assume the powder cloud
to be larger than the tree height hΠ > ht. The quantity
wt is the loading width of the tree. In this first analysis
we assume the width to be constant over height wt(z) =
wt as indicated in Fig. 3. The loading width depends
on the location of the tree in the forest (Indermühle,
1978). Single trees in the avalanche path have a larger
loading width than trees in dense forest stands. Leafless
trees have smaller loading widths than evergreen trees
(Fig. 3). Larch and birch trees for example have smaller
loading widths than spruce or pine trees.

The total momentum that is applied on the tree by the
powder cloud is therefore

MΠ = ctρΠ
u2

Π

4
wth

2
t cosα. (7)

The bending stress of a powder cloud flowing over a tree
is

σΠ = 8ctρΠ
u2

Π

πd3
wth

2
t cosα. (8)

Intermittent Loading p′′g
According to Bozhinskiy and Losev (1998) is the
pressure exerted by a snow clod of the suspension layer
defined as

p′′c = ρc
4u2

g

3
. (9)

The impact pressure exerted by the saltation layer p′′g is
the sum of the point loads exerted by the clods

∑
p′′c

on the tree. The clod densities can be large (ρc > 300
kg/m3). The number of clods that hit the tree per unit
time depends on the speed of the avalanche and the
height and density of the intermittent layer. Assuming
an intermittent layer density of ρg = 30 kg/m3 only a few
clods will hit the stem at the same time. In this short
paper we will not consider the intermittent loading for the
bending stress analysis, although we recognize that the
forces from individual particles can be large.
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Tbl. 1: Denotation for the different flow regimes: ρ for density, h for the flow height, u for the velocity and p′′ for the
impact pressure per m2. The load is distributed linearly along the tree besides the intermittent loading by the saltation
layer which exerts the loading pointwise.

Flow regime Density Flow height Velocity Impact pressure Loading

dry, mixed
powder ρΠ hΠ uΠ dynamic, p′′Π linear distributed
intermittent ρg granule diameter udΦ granular impact, p′′g point
dense ρdΦ hΦ udΦ dynamic, p′′dΦ linear distributed

wet
creep and glide ρwΦ hΦ uwΦ quasi-static, p′′wΦ linear distributed
gliding block ρwΦ hΦ uwΦ quasi-static, p′′wΦ linear distributed

Figure 3: The loading width of the tree depends on the location in the forest. In dense forest stands tree crowns tend
to be narrower than if they stand alone. Additionally the loading width wt depends on the foliation of different tree
species.

Dry Flowing Core Loading p′′dΦ

The pressure per unit area that a dense flowing
avalanche exerts on a tree is calculated similarly to the
powder cloud loading except that now we consider the
avalanche core Φ:

p′′dΦ = ctρdΦ
u2
dΦ

2
. (10)

Fluidization leads to bulk avalanche flow densities ρΦ

that vary in the streamwise flow direction. Values for
ct for cylindrical obstacles (trees) are in range between
1 < ct < 2 depending on the literature (McClung and
Schaerer, 1985; Norem, 1991). For our analysis we
chose ct = 1.5 according to Johannesson et al. (2009) for
trees in dry flowing avalanches. We assume the fluidized
height hΦ of the avalanche to be located beneath the
tree crown and therefore the loading width is equal to the
stem diameter wt = d, therefore

σdΦ = ctρdΦ
8u2

dΦ

πd2

(
hΦ +

u2
dΦ

2gλ
f(d/hΦ)

)2

cosα. (11)

The loading is adjusted to account for the stagnation
height hλ

h = hΦ + hλ. (12)

The stagnation height is calculated according to the
Swiss guideline formula

hλ =
u2

Φ

2gλ
f(d/hΦ), (13)

where f(d/hΦ) = 0.1 Salm et al. (1990) for a flow height
hΦ >> d. Furthermore, λ = 1.5 for fluidized flows.

2.3 Wet Avalanche Loading p′′wΦ

The pressure formula Eq. 1 has been applied to
back-calculate measurements of pressure exerted by
wet snow avalanches on obstacles (Sovilla et al.,
2010). Application of this formula to the wet snow
avalanche problem assumes that the pressures arise
from a slow drag flow regime. However, to model
the measured pressures with the observed avalanche
velocities requires using unrealistic and non-physical
drag coefficients, ct > 2. This fact suggests that
the nature of the wet snow avalanche pressure is
not dynamic, but similar to quasi-static glide pressures
exerted on pylons and defense structures. In the
following we will assume that dynamic pressures are
small in comparison to the static pressure arising from
the weight of the snow that loads the tree. Our
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assumption is based on observations of wet snow
avalanche deposits and levees formation (Bartelt et al.,
2012; Feistl et al., 2014). Often wedges of snow
pile up behind an obstacle. The avalanche flows
around these stationary pile-ups; shear planes develop.
Any dynamic force must be transferred by frictional
mechanisms across the shear planes separating the
stationary and moving snow. We assume these dynamic
forces to be small and that the total force acting on
the obstacle depends on the distribution of static forces
behind the obstacle. This is an indeterminate problem
because it depends on the terrain and roughness in the
vicinity of the obstacles. Therefore, we assume that
the applied pressure cannot be represented by Eq. 1
which describes only the local transfer of momentum and
not the static weight of the avalanche pushing on the
obstacle.

We present the application of two possible alternative
calculation methods. The first is based on the Swiss
guidelines on avalanche protection measures (Margreth,
2007a) and the report of the European commission
(Johannesson et al., 2009). The second method
was used to investigate the formation of glide snow
avalanches, based on the failure of the stauchwall
(Bartelt et al., 2012; Feistl et al., 2014). In this model the
stauchwall is replaced by the tree. The model is similar
to the approach developed by In der Gand and Zupančič
(1966) to find glide-snow pressure acting on obstacles.

Glide Snow Pressure
We apply the snow pressure model developed by Salm
(1978) and Häfeli (1967), which is applied in the Swiss
Guidelines on avalanche prevention (Margreth, 2007a)
to calculate the snow pressure of snow gliding:

p′′wΦ = ρwΦgKNη
hΦ

2 cosα
(14)

where

K =

(
2.5
( ρwΦ

1000

)3

− 1.86
( ρwΦ

1000

)2

+ 1.06
( ρwΦ

1000

)
+ 0.54

)
sin(2α) (15)

is the creep factor, N the gliding factor and

η = 1 + c
hΦ cosα

d
(16)

the efficiency factor.

According to Eq. 4 the bending stress is calculated by

σwΦ = 8ρwΦgKNη
hΦ

πd2

(
hΦ +

u2
wΦ

2gλ
f(d/hΦ)

)2

, (17)

Gliding Block Model
A second method was also developed to calculate glide
snow pressure by In der Gand and Zupančič (1966). In
this method the snow exerts a static pressure on the
tree (Fig. 4). The magnitude of the static pressure
depends on the volume of snow captured. The pressure
will be highest before a wedge with shear planes
develops behind the tree. The angle γ and the length
l are used to define the volume, see Fig. 4. The
volume length γ depends on the location of the tree in
the forest and the forest structure, because pressure
can be distributed to other tree groups in the forest.
The volume length l depends on the terrain and the
avalanche length. It increases for open slopes and long
avalanches and decreases for rough, twisted avalanche
tracks where surface elements and channel sides take
up the avalanche pressure. Surface roughness is
parameterized with the Coulomb friction coefficient µ.

Fig. 4: Schematic illustration of a wet snow accumulation
behind a tree. The volume of the snow depends on the
volume angle γ, the volume length l and the width of the
tree d.

The quasi-static pressure of the avalanche in this case is
therefore

p′′wΦ = ρwΦghΦl(l tan γ + d) cosα(sinα− µ cosα). (18)

The bending stress of the avalanche on the tree is then

σwΦ =
16

πd2
ρwΦghΦl(d+ l tan γ)(sinα− µ cosα)(

hΦ +
u2
wΦ

2gλ
f(d/hΦ)

)2

cosα2. (19)
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Tbl. 2: Bending strength of different tree species according to Grosser and Teetz (1985). Note that these values are
average values and vary depending on the healthiness, the location in the forest and other stand characteristics.

Spruce Larch Scots Pine Maple Beech Birch
Bending strength σt [MN/m2] 66 - 78 93 - 99 80 - 100 95 - 112 105 - 123 120 - 147

2.4 Tree Breaking

Trees break if the bending stress exceeds the bending
strength of the tree σ > σt. The stability of a tree
depends on its position in the forest, on its healthiness
and on its species. Grosser and Teetz (1985) listed
the bending strengths σt of various tree species of the
European Alps (Tbl. 2). According to Tbl. 2 the
bending stress of avalanches to destroy mature trees
must exceed a minimum value of σ > 66 MN/m2. Spruce
is the species with lowest strength whereas birch is the
strongest species growing in alpine terrain in Europe.

3. EXAMPLES AND DISCUSSION

3.1 Wet snow avalanche Monbiel, 2008

A large wet snow avalanche released in winter 2008
near Monbiel, Switzerland and destroyed a small spruce
forest before it stopped in the river bed of the Landquart.
An approximation of the flow velocity and flow height was
possible by analyzing a movie documentation (Sovilla
et al., 2012). The deposition height was measured
using laser scan. Subsequently this avalanche was
simulated by Vera et al. (2014) with the avalanche
modeling software RAMMS, applying a new model
extension that accounts for random kinetic energy fluxes
and snow temperature. They compared the model
results with the data and Vera et al. (2014) found the
calculated velocities, flow heights and deposition heights
to resemble the real avalanche. These calculations
allowed us to determine the parameters necessary to
calculate the impact pressure, flow height hΦ = 3 m and
velocity uwΦ = 5 m/s. The slope angle at the location of
the spruce forest was α = 10◦. We assume the density
of the snow ρwΦ = 450 kg/m3 as the avalanche was wet.
The stem diameter was approximately d = 0.5 m.

3.2 Powder Snow Avalanche Täsch, 2014

A dry snow, powder avalanche released on March 4,
2014 in Täsch in Wallis, Switzerland. The road and
the rail tracks to Zermatt were buried in deep snow.
Pictures from a helicopter and our visit to the site
the next day allowed us to reconstruct the avalanche
volume, deposition patterns and forest damage along
the track. We used a DGPS device to measure the
deposition heights along the track. Velocities, flow

height and the powder cloud diffusion were modeled
with the extended RAMMS version. The simulations
enabled us to calculate bending stresses of the dry
flowing avalanche core σdΦ and the powder part σΠ. The
avalanche core was flowing with an approximate speed,
udΦ = 25 m/s, flow height hΦ = 3 m and a density of ρdΦ

= 300 kg/m3. The powder cloud had a density ρΠ = 5
kg/m3, velocity uΠ = 30 m/s and a flow height hΠ higher
than the trees it passed and destroyed. One larch that
broke had an approximate stem diameter d = 0.5 m and
its height was ht = 30 m.

3.3 Bending Stresses

We calculated the bending stresses exerted on the
destroyed trees for these two avalanches: σΠ, σg, σdΦ

and σwΦ. The constants N , c, ct, f(hΦ/d), λ were
chosen according to the Swiss guidelines (Margreth,
2007a) (Tbl. 3).

The avalanche in Monbiel consisted of wet snow and
therefore we tested the three applicable approaches to
calculate the impact pressure on the trees. 1. The
dynamic approach resulted in σdΦ = 5 MN/m2, assuming
ct = 5; 2. σwΦ = 15 MN/m2 for the creep and glide
approach assuming extreme gliding (N = 3, c = 2) and
σwΦ = 81 MN/m2 with the gliding block model, for a
volume length l = 30 m which is reasonable for the slope
above the first trees and γ = 25◦.

Bending stresses exerted on the larch tree in the
avalanche track in Täsch were calculated for the powder
cloud σΠ and the dense flowing part σdΦ. The powder
cloud was higher than the tree top and the width of the
tree was assumed to be small as the larch was leafless,
therefore wt = 3 m. We calculated bending stresses σΠ

= 93 MN/m2 exerted from the powder cloud and σdΦ = 71
MN/m2 for the dense flowing core.

3.4 Static Pressure vs. Dynamic Pressure

The dynamic pressure approach (Eq. 10) does not
predict avalanche pressures for wet snow avalanches
which are high enough to break trees (Tbl. 3). Even
for ct = 5, is σwΦ < 10 MN/m2 for velocities below 10
m/s. Wet snow avalanches hardly exceed velocities of
uwΦ = 10 m/s. Our calculations correspond to pressure
measurements captured in the Vallee de la Sionne test
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Tbl. 3: σ for constant slope angle α = 20◦ for the avalanche in Täsch and α = 10◦ for the avalanche in Monbiel, g =
9.81 m/s2, ct = 1.5 for the avalanche core (Φ) and ct = 0.4 for the powder snow avalanche (Π). For the snow pressure
model we assume c = 2, N = 3.0. To calculate the stagnation height hλ we chose λ = 1.5 and f(hΦ/d) = 0.1 according
to the Swiss guidelines (Margreth, 2007a). To calculate the pressure with the snow block model we assume a volume
length l = 30 m, γ = 25◦ and the friction on the ground or on the gliding surface µ = 0.1. For powder snow avalanches
we assume a tree of height ht = 30 m and wt = 2 m for the larch in Täsch (Indermühle, 1978).

Avalanche type ρ [kg/m3] hΦ,Π [m] u [m/s] d [m] σ [MN/m2] p′′ [kN/m2]
powder (dynamic) 5 30 > 30 0.5 93 1
dry (dynamic) 300 3 25 0.5 71 140
wet (dynamic) 450 3 5 0.5 5 28
wet (creep and glide, snow pressure model) 450 3 5 0.5 15 77
wet (glide, snow block model) 450 3 5 0.5 81 426

site (Sovilla et al., 2010), that could not been explained
with dynamic drag terms. The creep and glide model
(Salm, 1978) provides values σwΦ = 15 MN/m2. Bending
stresses above the bending strength of spruces are
calculated with the gliding block model σwΦ = 81 MN/m2.
Impact pressures of the powder cloud are high enough
to break the larch in Täsch σΠ = 93 MN/m2. The dense
core pressures are slightly below the bending strength of
larch σdΦ = 71 MN/m2.

4. CONCLUSIONS

To investigate how snow avalanches destroy forests, we
developed three flow regime dependent impact formulas.
These are powder, dry dense and wet dense. The
impact formulas were tested on two case studies Monbiel
and Täsch, involving a wet snow avalanche and a dry
mixed flowing avalanche with powder part.

Dry and powder snow avalanches exert dynamic
pressures on the tree stem and the crown. The
destructive potential of powder clouds depends on the
crown area that is affected by the snow blast and
the velocity of the avalanche. The crown area varies
with tree position in the forest and on the foliation.
Single, evergreen trees are exposed to the full avalanche
blast and bending stresses are higher than for leafless
trees sheltered in clustered forest stands. Destructive
pressures can easily be reached even if the density
of the snow-air mixture is low. For evergreen trees
such as spruce we calculated a powder cloud speed
uΠ > 20 m/s to be sufficient to break them whereas the
leafless larch requires uΠ > 30 m/s to be damaged. The
impact pressure from the fluidized core of a dry snow
avalanche can reach destructive values if the velocity is
high enough (udΦ > 20 m/s). Trees can break even if the
force is only applied on the stem.

Destructive pressures by wet snow avalanches

were back-calculated using two quasi-static modeling
approaches and the dynamic approach. The gliding
block model provided the highest bending stresses and
the most realistic results. The glide snow pressure model
underestimated the applied loading. Dynamic models
could not reproduce the bending stresses required for
tree breakage. The unknowns of the block model are
the volume length l and the volume angle λ, which
depend on the location of the tree in the forest, terrain
and avalanche dimensions.
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