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ABSTRACT: Wind-transported snow is a common phenomenon in mountainous and polar regions. 
Wind erodes snow from high wind speed areas and deposits it in low wind speed areas, thereby forming 
snowdrifts, cornices and wind slabs which may contribute significantly to avalanche releases. In this con-
text, numerical simulation of drifting snow appears as a potential tool to support avalanche hazard fore-
casting.  Part of the deposited snow is transported in the suspension layer and models simulate the 
vertical profile of blowing snow density in this layer. Our study focuses on the time evolution of this vertic-
al profile during blowing snow events in order to detect the change in the snow particles shape during 
blowing snow events.  
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1. INTRODUCTION 

During a blowing snow event, snow particles are 
broken down and abraded when they impact the 
snow surface. Snowflakes are gradually trans-
formed into  rounded grains. Only few data are 
available in the literature about this subject. A drag 
coefficient modification between dendritic and 
rounded particles may result in a modification of 
settling velocity. The vertical profile of the blowing 
snow concentration in the suspension layer, gen-
erally represented by a power law, depends on the 
settling velocity. Hence we can expect that the 
study of vertical profile of blowing snow concentra-
tion will give us some information about the 
change in the snow particles’ shape during blow-
ing snow events.  

This idea is the basis of the preliminary experi-
mental studies carried out at Lac Blanc pass (2700 
a.s.l.) in the French Alps and presented in this pa-
per. 

2. THEORETICAL BACKGROUND 

According to Gordon et al. (2009), the vertical pro-
file of blowing snow density, C(z,r) (kg m-3), for a 
given particle radius r at height z  is governed by a 

turbulent diffusion equation including upward tur-
bulent diffusion and downward gravitational set-
tling. A power law profile is an analytical solution 
of this equation under equilibrium conditions   and 
is written: 
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where C(zref,r) is a reference blowing snow density 
for a given particle radius r at height zref, UF,r is the 
average particle settling velocity for a given radius, 
К  is the von Karman constant and σs is the 
Schmidt number. The underlying assumption is 
that a suspended particle travels downstream at a 
speed approximately equal to the wind velocity 
(particles horizontal speed = wind horizontal speed 
U(z)). The Schmidt number is the ratio between 
eddy viscosity (Ks0) and eddy diffusivity (Ks) (Dery 
et al., 1998). 

Equation 1 is sometimes modified to give 
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(2)            

where C(zref) is the concentration for all particles 
sizes at the reference level zref, u* is the friction 
velocity, UF is the mean particle fall speed 
representing all particles sizes, and σs is the 
Schmidt number. The underlying assumption is 
that the size distribution does not change signifi-
cantly with height.   
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3. EXPERIMENTAL SITE AND RELATED 
SENSORS 

The experimental site (Guyomarc’h et al., 2014) is 
located at Lac Blanc pass (2700 a.s.l.) in the 
French Alps (figure 1). This large north–south-
oriented pass has been dedicated to the study of 
blowing snow in high mountainous regions since 
1989 by Irstea – previously Cemagref  and Meteo 
France. 

Due to surrounding topography, 90% of observed 
winds blow from the northeast or the south. Snow 
transport is observed during 10% of the time in 
winter and occurs with concurrent falling snow 
37% of the time (Vionnet et al., 2013). 

Three (or four depending on the winter season) 
snow particle counters  are mounted on a 3 m ver-
tical mast which aims at better investigating drift-
ing snow flux profiles (figure 2). A Jenoptik SHM30 
laser snow depth sensor measures the exact posi-
tion of the SPC above the snow pack and an 
heated ultrasonic anemometer Snow Particle Sen-
sor supplements these devices. In this paper, we 
focuses on drifting snow events during which no 
snow-fall occurred (Naaim-Bouvet et al., 2014). 

The Snow Particle Counter (SPC-S7, Niigata 
Electric) is an optical device (Nishimura and 
Nemoto, 2005). The diameter and the number of 
blowing snow particles are detected by their 
shadows on photodiodes. SPC detects particles 
between 40 and 500 µm in mean diameter divided 
into 32 classes and records the particle number 
every 1 s. Assuming spherical snow particles and 
a density of the drifting snow particles [kgm−3] 
equal to 917 kgm-3, the sensor is able to determine 
the horizontal snow mass flux [kgm−2s−1]. 
 

 
Fig. 1: The experimental test site at Lac Blanc 

Pass 

 

 

Fig. 2: a) the mast with 3 Snow Particles Coun-
ters, one snow depth sensor and an ultra-
sonic anemometer set up at Lac Blanc 
Pass 
b) Schematic diagram of the SPC7  

The joint use of ultrasonic anemometer (U(z), u*), 
snow depth sensor (z) and Snow particle Counter 
profiles (C(z).U(z)) allows determining σsUF from 
equations 1 or 2 presented earlier. 

4. RESULTS 

4.1 Relation between  σsUF and the friction 
velocity 

 Reminder of previous results 

Equation 2 (Naaim-Bouvet et al. (1996) Mann 
(1998), Mann et al. (2000), Gordon and Taylor 
(2009))  is generally used and the Schmidt number 
is considered equal to 1 (except in Naaim-Bouvet 
et al., 1996 and Naaim-Bouvet et al., 2013). 

It was found that increase in σsUF (or UF if we con-
sider σs =1) depends on friction velocity (σsUF 
=Au*) The value of A range  from 0.3 to 1 (Naaim-
Bouvet et al. (1996 – A=0,4), Mann et al (2000 – 

Snow depth sensor 
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anemometer 

Snow Particle Counter 
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A=0,29), Gordon et al. (2009 – A=0,39), Naaim-
Bouvet et al., (2013 – A=1.05)). 

In these studies, it was considered that the in-
crease in σsUF with friction velocity (σsUF =Au*) is 
due to the larger particles being carried aloft at 
higher wind speed 

 Results obtained in the present study 

We focused on drifting snow events without con-
current solid precipitation but occurring just after a 
snow fall (Naaim-Bouvet et al., 2014). Besides, we 
chose to determine σsUF for a given particle radius 
r (equation 1). It was shown that for a given di-
ameter, σsUF increases linearly with  u* (figure 3). 
This result was not expected. This trend was sys-
tematically observed in the studied events. 

 

Fig. 3: σsUF as function of friction velocity for spe-
cific diameters. 

It means that the previous explanation, generally 
accepted, is not sufficient. The increase in σsUF 
with friction velocity (observed when using blowing 
snow density for all particles size)  is not only due 
to the larger particles being carried aloft at higher 
wind speed. 

Other hypothesis may be suggested : 

- σs depends on u* (Rouault et al. (1991), 
Naaim-Bouvet et al. (2013)). 

- Particles horizontal speed differs signifi-
cantly from  wind horizontal speed. (Ni-
shimura et al., 2014) 

 

4.2 Change in the snow particles shape during 
blowing snow event 

Time evolution of the exponent γC for a blowing 
snow event without concurrent snowfall has been 
studied for a given particle diameter (figure 5). As 
σsUF depends on Au*, even for a given diameter 

(paragraph 4.1), it is necessary to select periods 
with a similar friction velocity (figure 4). The value 
u*=0.3  m.s-1 (+-0.02 m.s-1) was chosen for the 
drifting snow event presented in this paper. The 
Time series of the mean diameter of particles 
drifted 1.1 m above the snow surface have also 
been drawn (figure 6). 

 

Fig. 4: Selection of periods with similar friction 
velocity on 18th March 2011 (Seventy-
seventh day of the year)  

 

Fig. 5: Time series of the exponent γc for particles 
with a diameter of 171 µm for a blowing 
snow event without concurrent snowfall 

 

Fig. 6: Time series of the mean diameter of par-
ticles drifted 1.1 m above the snow surface 

Periods with similar friction velocity
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for a blowing snow event without concur-
rent snowfall  

It can be seen that : 

-  For a given diameter the settling velocity 
seems to increase (figure 5). 

- At a given height above the surface, the 
mean diameter of drifted particles seems 
to decrease (figure 6). 

These results are consistent with a decrease of 
aerodynamic drag when mechanical fragmentation 
causes shape evolution (from angular to more 
rounded grains).  

SPC profiles have been analyzed during two win-
ter seasons (2010-2011 / 2011-2012) but this 
trend has been observed only for one event ! For 
the others, no clear trend appears. 

It must be noted that the in-situ study of changes 
in the snow particles shape during blowing snow 
events based on the vertical profile of blowing 
snow density requires very specific conditions : a 
snow fall with dendritic snow flakes and a low wind 
speed (the dendricity and sphericity of falling snow 
grains are function of wind speed (Vionnet et al., 
2013)) immediately followed by a drifting snow 
event without concurrent snow fall and with small 
changes in wind speed.  

CONCLUSIONS AND PERSPECTIVES 

The time evolution of the vertical profile during 
blowing snow events was studied at Lac Blanc 
Pass (2700 a.s.l.) in the French Alps. It aimed at 
detecting the changes in the snow particles’ shape 
during blowing snow events. A profile of three (or 
four) Snow Particles Counters was used for the 
purpose. 

It was shown that : 

- For a given diameter, σsUF depends on 
the friction velocity. This trend was consis-
tent throughout the experiments. 

- For a given diameter, the settling velocity 
increases over time. This is consistent 
with a decrease of aerodynamic drag 
when mechanical fragmentation causes 
shape evolution. But this result cannot be 
generalized because this trend was ob-
served only for one event. 

Even if this methodology is interesting, experi-
ments in the field are highly variable and non-
reproducible. So they should not lead to definitive 
conclusions.  Experiments in a recirculating wind–
tunnel at a constant speed using fresh snow and 
the same methodology could be more appropriate. 
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