
FUJGO - *- comment on critical habitat Little Colo. spinedsere. 7 - dote - 90 days-The - Grad . level ._ Oct. 24 2.4 - Mar def. - ovol 1947 - tece han - ano kroka Confield set when with poble - Prolose Esi - Ether - solf - evelibility - Pother - Symp - sudam sign - hogos - poth A Oct. rept. - put end. up. info Broghest Zranne Person Art 1918 he, information retrival to Documpster committe Edourt Know wor Gop Jaib Ken Pland Crk. Jaib Ken Pland Keep est h grund - types firth - squt hol. * Cortain company from the set irruer - Rice - model i reservoir pripet cuitral listis But great Brotends Cipatora brind and - A. G. SF. - notify cy. Westork Grozia S.R.P. all comment aller Ben arts - Res. spapau Aton that sail the re. ELOT. sp. -- Coop - ANZ. Goz the south of name new-goine dummy' -1stast uposte ?! westerne routin -solvin et - cert, habiti 1 T. * E. sp. ETP. Map. Rocation - Stalle Low timit intervies Indian lesch - Uncost of trus" 3 mills con minute rout have 25 no wind & sinable of the fall al - up . probles re Indian a

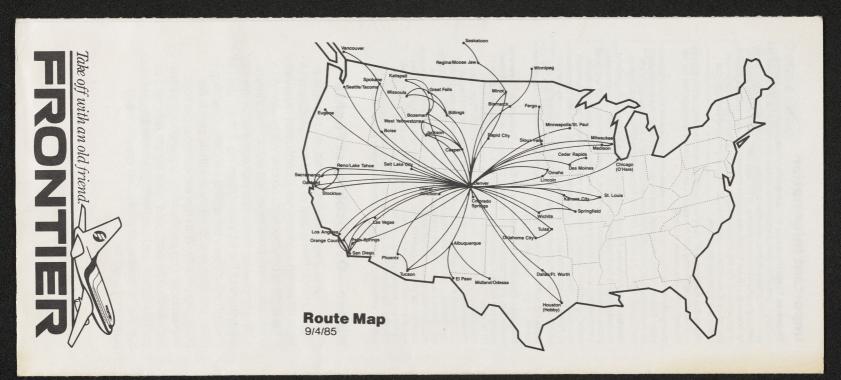
Connecting Information Inside

Important Information

Check-In Time Make sure that passports, visas, travel cards, tickets, baggage, and other details are in order before checking in at the boarding point. On domestic flights, you must purchase your ticket at least 60 minutes before departure time and check in at the ticket lifting point and be available for boarding at least 10 minutes prior to departure or your space is subject to cancellation. On international flights, check in at least one hour before departure. If you check in less than 30 minutes prior to departure, your space is subject to cancellation.

Carry-On Baggage All carry-on baggage must be placed under the seat for takeoff and landing and is limited to an amount of baggage that can be stowed under one passenger seat.

Carry-On Pets Pets carried in the cabin of the aircraft must be in a container that will fit beneath a seat, and the pet must remain in the container for the duration of the flight. Advance arrangements are required for the carriage of pets in the cabin. Call the Reservations Office for information.


Restricted Articles Articles such as the following shall not be carried in a passenger's baggage without prior consent of Frontier: compressed gases, corrosives, explosives, munitions, fireworks, matches (of any type) and other articles which are easily ignited, flammable liquids and solids, oxidizing material, poisons, radioactive materials and other articles such as mercury, magnetic material, offensive or irritating materials (tear gas or mace), or medicinal and toilet articles in excess of 75 ounces that can be classified as dangerous because of any one of the reasons above.

Note For further information regarding any of the above subjects, please contact any Frontier Airlines Office.

Baggage Liability Limitations and Excess Valuation Coverage Our liability for damage to or loss or delay of baggage is limited as follows unless you declare a higher value in advance and pay additional charges: (1) for most international travel (including domestic portions of international journeys) to approximately \$9.07 per pound (\$20.00 per kilo) for checked baggage and \$400.00 per passenger for unchecked baggage; (2) for travel wholly between U.S. points to \$1250.00 per passenger for checked baggage. You are not automatically entitled to \$1250.00 but you must prove the actual value of losses or damages. We will assume no responsibility for unchecked baggage. You may purchase excess valuation coverage for your baggage from us, up to a maximum of \$5,000.00. We assume no liability for certain items including money, jewelry, cameras, silverware, negotiable instruments, securities, business documents, samples, paintings, antiques, art objects, manuscripts, irreplaceable books or publications, photograph albums, or other similar valuables.

Notice—Overbooking of Flights

Airline flights may be overbooked, and there is a slight chance that a seat will not be available on a flight for which a person has a confirmed reservation. If the flight is overbooked, no one will be denied a seat until airline personnel first ask for volunteers willing to give up their reservation in exchange for a payment of the airline's choosing. If there are not enough volunteers the airline will deny boarding to other persons in accordance with its particular boarding priority. With few exceptions, persons, denied boarding involuntarily are entitled to compensation. The complete rules for the payment of compensation and each airline's boarding priorities are available at all airport ticket counters and boarding locations.

	BEF (303) 792-3333 00D, co. 80112	RY/KATE				
APPLEWOOD TECH CENTER 2801 YOUNGFIELD SUITE 121 GOLDEN COLO 80401	ITINERARY	HOURS PRIOR TO	ALL INTERNAT	FIRM YOUR RESE IONAL DEPARTUR RECHECK DEPART	ES, IT IS ALSO A	LEAST 72 DVISABLE
FROM FEB 05 1986	AIRLINE 28903	FLIGHT	DATE	DEPARTURE	ARRIVAL	STATUS
DENVER PHOENIX PHOENIX DENVER	FRONTIER	57K OPENK	6FEB	830P	1012P	OK
AIR TRANSPORTATION FARE	127.78 T	(10.22	TTL	138.	00
TOUR 6FEB-	FL FLT 57 SEAT	T 11E				
BERRY/KATE BA4717834922523	0280 74	52281322	26	BA	138.	00
		INVOICE	E TOTAL	-	138.	00

ROYAL TEMPE MOTOR LODGE 1020 EAST APACHE BLVD PHONE 602 967-8891 SINGLE/HOLDING RM FOR 4 NIGHTS/FEB 6 7 8 9 RATE OF 40.00 PER NIGHT CONFIRMED BY MR LOWRY 2/5/86 GUARANTEED FOR LATE ARRIVAL TO VISA CANCEL BY 6PM FEB 6 TO AVOID CHARGES

105 East Laurel Fort Collins, CO 80524 (303) 493-8511

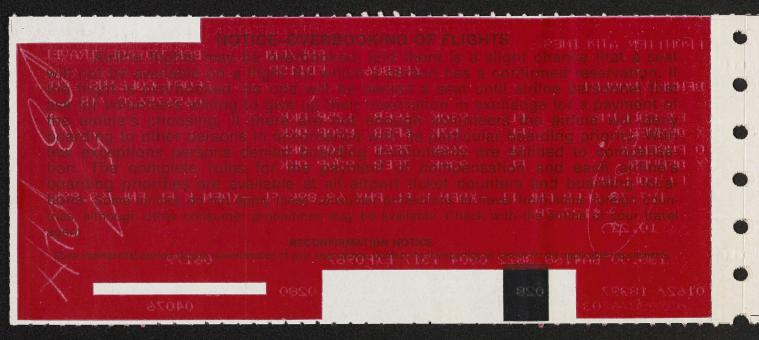
BEHNKE/ROBERT

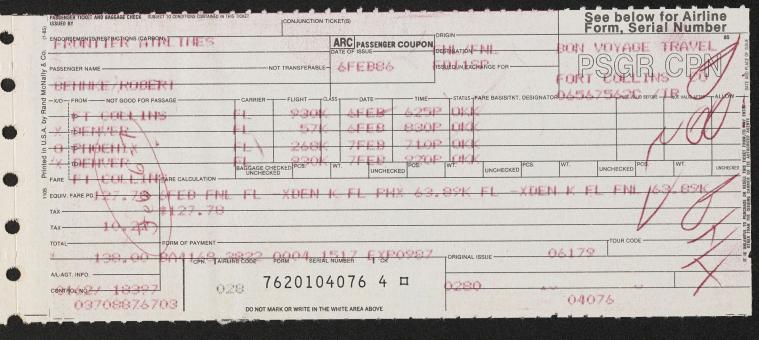
	FEB 06 1986	17370 INVOIO	CE HOURS PP PRIOR TO	IOR TO ALL INTE	RNATIONAL DEPART	VATIONS AT LEAST 72 URES AND 24 HOURS DP-OVERS IT IS ALSO
FROM	ТО	AIRLINE	FLIGHT	DATE	DEPARTURE	ARRIVAL
FT COLLIN	S DENVER PHOENIX	FRONTIER	930K 57K	6FEB 6FEB	625P 830P	740P OK 1012P OK
PHOENIX	DENVER	FRONTIER	268K DINNE	7FEB R	71ÓP	843P OK
DENVER	FT COLLINS	FRONTIER	930K	7FEB	920P	1035P OK
AIR TRA	NSPORTATION FAR	= 127.78	ТХ	10.22	TTL	138.00
TIGKET NU BEHNKE/RO	BERT /		76201040	76	BA	138.00
	BA416838220004		INVOIC			138.00
						15
			2		•	
Member						
ASTA American Society of Fravel Agents						

ALIGN HERE

ADVICE TO INTERNATIONAL PASSENGERS ON LIMITATION OF LIABILITY

Passengers on a journey involving an ultimate destination or a stop in a country other than the country of origin are advised that the provisions of a treaty known as the Warsaw Convention may be applicable to the entire journey, including any portion entirely within the country of origin or destination. For such passengers on a journey to, from, or with an agreed stopping place in the United States of America, the Convention and special contracts of carriage embodied in applicable tariffs provide that the liability of certain carriers, parties to such special contracts, for death of or personal injury to passengers is limited in most cases to proven damages not to exceed U.S. \$75,000 per passenger, and that this liability up to such limit shall not depend on negligence on the part of the carrier. The limit of liability of U.S. \$75,000 above is inclusive of legal fees and costs except that in case of a claim brought in a state where provision is made for


separate award of legal fees and costs, the limit shall be the sum of U.S. \$58,000 exclusive of legal fees and costs. For such passengers traveling by a carrier not a party to such special contracts or on a journey not to, from, or having an agreed stopping place in the United States of America, liability of the carrier for death or personal injury to passengers is limited in most cases to approximately U.S. \$10,000 or U.S. \$20,000.


The names of carriers, parties to such special contracts, are available at all ticket offices of such carriers and may be examined on request. Additional protection can usually be obtained by purchasing insurance from a private company. Such insurance is not affected by any limitation of the carrier's liability under the Warsaw Convention or such special contracts of carriage. For further information please consult your airline or insurance company representative.

NOTICE OF BAGGAGE LIABILITY LIMITATIONS

Liability for loss, delay, or damage to baggage is limited unless a higher value is declared in advance and additional charges are paid. For most international travel (including domestic portions of international journeys) the liability limit is approximately \$9.07 per pound for checked baggage and \$400 per passenger for unchecked baggage. For travel wholly between

U.S. points federal rules require any limit on an airline's baggage liability to be at least \$1250 per passenger. Excess valuation may be declared on certain types of articles. Some carriers assume no liability for fragile, valuable or perishable articles. Further information may be obtained from the carrier.

NOTICE

If the passenger's journey involves an ultimate destination or stop in a country other than the country of departure the Warsaw Convention may be applicable and the Convention governs and in most cases limits the liability of carriers for death or personal injury and in respect of loss of or damage to baggage. See also notice headed "Advice to International Passengers on Limitation of Liability"

CONDITIONS OF CONTRACT

As used in this contract "ticket" means this passenger ticket and baggage check, of which these conditions and the notices form part, "carriage" is equivalent to "transportation", "carrier" means all air carriers that carry or undertake to carry the passenger or his baggage hereunder or perform any other service incidental to such air carriage, "WARSAW CONVENTION" means the Convention for the Unification of Certain Rules Relating to International Carriage by Air signed at Warsaw 12th, October 1929, or that Convention as amended at The Hague, 28th September 1955, whichever may be applicable.

 Carriage hereducer is subject to the rules and limitations relating to liability established by the Warsaw Convention unless such carriage is not "international carriage" as defined by that Convantion.

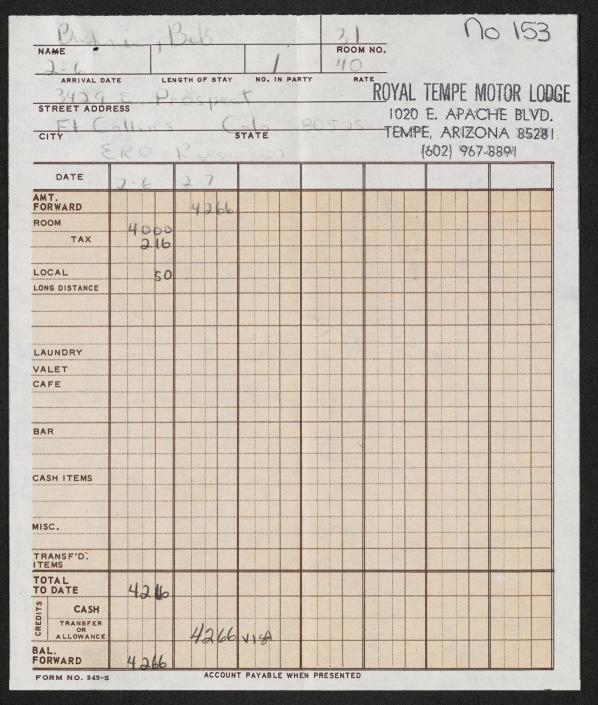
3. To the extent not in conflict with the foregoing carriage and other services performed by each carrier are subject to: (I) provisions contained in this ticket, (II) applicable tariffs, (III) carrier's conditions of carriage and related regulations which are made part hereof (and are available on application at the offices of carrier except in transportation between a place in the United States or Canada and any place outside thereof to which tariffs in force in those countries apply.

A Cartier's name has be abbreviated in the ticket, the full name and its abbreviation being set form in carrier's tariffs, conditions of carriage, regulations or timetales; carrier's address shall be the airport of departure shown opposite the first abbreviation of carrier's name in the ticket; the agreed stopping places are those places set forth in this ticket or as shown in carrier's timetables as scheduled stopping places on the passenger's route; carriage to be performed hereunder by several specessive carriers is regarded as a single operation.

5. An air carrier issuing a ticket for carriage over the lines of another air carrier does so only as its agent.

6. Any exclusion or limitation of liability of carrier shall apply to and be for the benefit of agents, servants and representatives of carrier and any person whose a alreraft is used by carrier for carriage and its agents, servants and representatives.

7. Checked baggage will be delivered to bearer of the baggage check. In case of [▶] damage to baggage moving in international transportation complaint must be made in writing to carrier forthwith after discovery of damage and, at the latest, within 7 days from receipt; in case of delay, complaint must be made within 21 days from date the baggage was delivered. See tariffs or conditions of carriage regarding non-international transportation.


8. This ticket is good for carriage for one year from date of issue, except as otherwise provided in this ticket, in carrier's tariffs, conditions of carriage, or related regulations. The fare for carriage hereunder is subject to change prior to commencement of carriage. Carrier may refuse transportation if the applicable fare has not been paid.

9. Carrier undertakes to use its best efforts to carry the passenger and baggage with reasonable dispatch. Times shown in timetable or elsewhere are not guaranteed and form no part of this contract. Carrier may without notice substitute alternate carriers or aircraft, and may alter or omit stopping places shown on the ticket in case of necessity. Schedules are subject to change without notice. Carrier assumes no responsibility for making connections.

10. Passenger shall comply with Government travel requirements, present exit, entry and other required documents and arrive at airport by time fixed by carrier or, if no time is fixed, early enough to complete departure procedures.

11. No agent, servant or representative of carrier has authority to alter, modify or waive any provision of this contract.

CARRIER RESERVES THE RIGHT TO REFUSE CARRIAGE TO ANY PERSON WHO HAS ACQUIRED A TICKET IN VIOLATION OF APPLICABLE LAW OR CARRIER'S TARIFFS, RULES OR REGULATIONS Issued by the Carrier whose name is in the "Issued By" section on the face of the Passenger Ticket and Baggage Check.

41P8 3855 0004 121J

0/

2+7 88

OR

MasterCard

DO NOT WRITE

68

Q

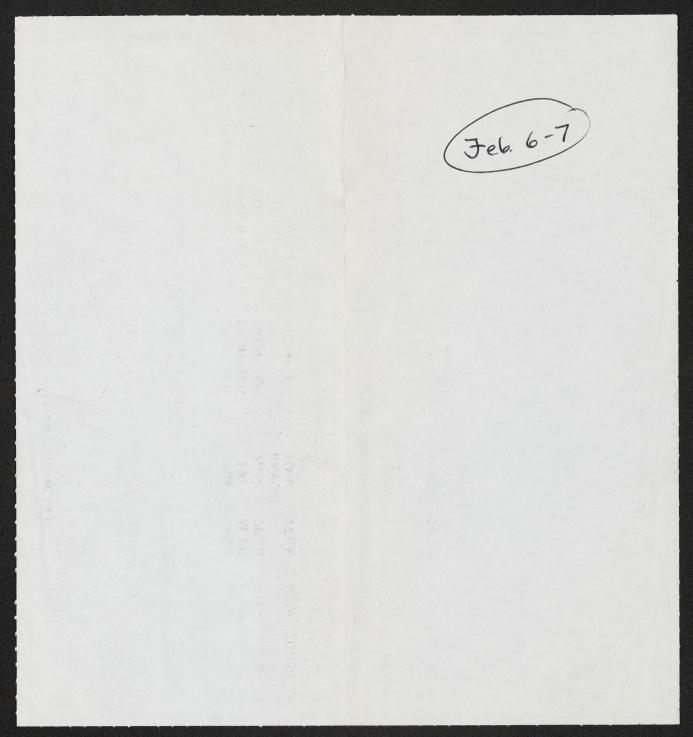
CONAL TEMPE

1014000 TEMPS 0020 08313 A2 2002000236

Check this box after verifying expiration date ("Good-Thru Date")

DO NOT WRITE BELOW THIS LINE

-


VISA'

ABOVE THIS LINE

SA	LES		DEPT. NO.	CHECK/	VEHICLE L	ICLE LICENSE NO. STATE	NO. STATE INIT		
	AFT	TAKE	Cherry I.						
QUAN. CLASS			DESCI	RIPTION	UNIT COST	АМО	UNT		
							42	66	COPY
									2
	and the second	Non-Coloring and the second		- Standal				S. S. Sta	au
a anti-									
				and the second			Section .		I
DATE			AUTI	ORIZATION	CODE	TAX			CARDHOI DER
I AGREE AMOUNT	TO PAY TO Shown Hei	THE BANK WHI REON, TOGETHER	CH ISSUED THE WITH THE FINAN	CARD USED BY I	ME THE TOTAL BY SUCH BANK,	TIPS			C
IN ACCOR	ADANCE WIT	TH THE CARDHOI	LDER AGREEMEN	GOVERNING US	E OF MY CARD.	TOTAL	42	.66	

IS COPY FOR VERIFICATION

STATEMENT V

American Society of Travel Agents 105 East Laurel Fort Collins, CO 80524 (303) 493-8511

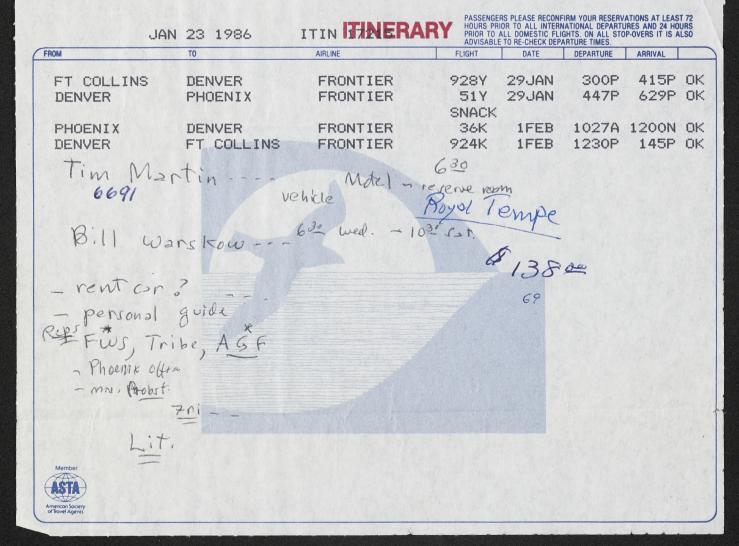
BEHNKE/ROBERT

PASSENGERS PLEASE RECONFIRM YOUR RESERVATIONS AT LEAST 72

FROM	EB 06 1986		ADVISABLE	TO RE-CHECK DEP	DEPARTURE TIMES.	JRES AND 24 HO DP-OVERS IT IS A	
	10	AIRLINE		UATE	DEPARTURE	ARRIVAL	
FT COLLINS	DENVER	FRONTIER	930K	6FEB	625P	740P	OI.
DENVER	PHOENIX	FRONTIER	57K	6FEB	830P	1012P	
PHOENIX	DENVER	FRONTIER	268K	7FEB	710P	843P	
		I I V Year' I 'I I alo Rece I V	DINNEF		1 1 01	w-rwi	
DENVER	FT COLLINS	FRONTIER	930K	7FEB	920P	1035P	OI
AIR TRANSF	PORTATION FARE	127.78	ТХ	10.22	TTL	138	. 0
TICKET NUMBE	ER(S):						
BEHNKE/ROBER	RT MAN	0280	762010407	16	BA	138.	.0
Bł	41683822000415	17					
			INVOICE	TOTAL		138.	. 0
			-				
			A. Martine Sec				
Member							

American Society of Travel Agents 105 East Laurel Fort Collins, CO 80524 (303) 493-8511

BEHNKE/ROBERT


ROM	TO	AIRLINE	FLIGHT	DATE	DEPARTURE	ARRIVAL	
TOUR 290	IAN-	SEAT ASSIGN:	130 FL51	9C FL	.36		
FT COLLINS DENVER	DENVER FHOENIX	FRONTIER	928K 51K SNACK	29JAN 29JAN	300P 447P	415P 629P	OI OI
PHOENIX DENVER	DENVER FT COLLINS	FRONTIER	36Q 924Q	1FEB 1FEB	1027A 1230P	1200N 145P	Oł Oł
TICKET NUME BEHNKE/ROBE		0280	76201039	79	1	138.	. 01
AIR TRANS	PORTATION FARE	127.78	TX	10,22	TTL	138.	. 0
			INVOIC	E TOTAL		138.	. 01
			BA4168	38220	0004 1.	517	

(

105 East Laurel Fort Collins, CO 80524 (303) 493-8511

BEHNKE/ROBERT

	573 Soul	CENNER .		
	Pris -	HOENIX DEVNEY		
	IIIN AND S	ERONTIER		
LEHWICE/ROBER T		5 Y828 51 Y 51 Y 51 Y 51 Y 51 Y 51 Y 51 Y 51 Y	X4 X	
τ. Γ		NALES		
		3005 4477		
D		415P 0K	TADE OX	

COLLEGE OF FORESTRY AND NATURAL RESOURCES

Executive Committee Meeting

A meeting of the Executive Committee of the College of Forestry and Natural Resources was held on Monday, January 27, 1986, at 10:15 a.m. in Room 100 NR Building. Present were R. Cook, D. Crews, D. Doehring, A. Dyer, B. Held, and R. Woodmansee. Dean Hughes presided.

HONOR FACULTY AND STUDENT SELECTION: Don Crews announced that the nominations for the outstanding faculty member, either assistant or associate professor, and the outstanding undergraduate student has to be in his hands by Friday, January 31, 1986. The nominees for outstanding faculty member were reviewed and selected. Each Department having a nominee for outstanding undergraduate student should get them to Don by Friday. They will be reviewed and selected at the February 3 Executive Committee meeting.

REVIEW STATUS OF GUIDES FOR PROMOTION AND TENURE: The response from faculty members to the Dean was discussed. Dean Hughes stated we did need to make sure the faculty understood that we would use the ideas in the document during the process this year. The document was carefully reviewed. The Dean will again review changes from the Department Heads. They will be discussed at the next Executive Committee Meeting and the document will then be finalized.

PROMOTION AND TENURE SCHEDULE: Each Department needs to have the documents in proper form by our next meeting. They are responsible for 8 copies needed for review. The decisions have to be made by the 10th as they need to be in the Academic Vice President's office by the 15th of February. A question was raised concerning the request for sabbatical leaves: do they follow the same process? Jay responded that those are handled by the Departments, not through the Executive Committee.

OTHER: Don Doehring announced that he had received information that was in error concerning the software he wanted to use on the Computers in the Learning Lab. He now believes it will work on the machines. Dr. Held also stated that his questions concerning the software his Department needed have been satisfactorily handled.

The Dean informed the Committee that Corrine will be contacting each Department to set up review meetings for the status of all 1-3 funds. The effect of an additional recision on our College was discussed.

Don Crews reminded the attendees of the information he distributed concerning Dean Jaros' request for a rewrite of the information concerning each department's graduate student programs. He needs this information by this Friday, January 31th.

The meeting was adjourned.

Respectfully submitted,

Corrine Johnson)

BON VOYAGE

tickets Phoenix

Won, home 834-6288 Dovies Aviz-Trut,

Feb. 6-7 \$138 - plan 42.60 room

180.66 t meshs

United States Department of the Interior

FISH AND WILDLIFE SERVICE POST OFFICE BOX 1306 ALBUQUERQUE, N.M. 87103

July 30, 1985

Dr. Robert Behnke Department of Fishery and Wildlife Biology Colorado State University Fort Collins, CO 80523

Dear Bob:

In response to your letter of July 13, 1985, I am enclosing a report entitled <u>Factors Affecting the Success of Gila Topminnow (Poeciliopsis</u> <u>o. occidentalis)</u> Introductions on Four Arizona National Forest.

Sincerely yours,

SE

Gerald Burton Endangered Species Biologist

Enclosure

FACTORS AFFECTING THE SUCCESS OF GILA TOPMINNOW (Poeciliopsis o. occidentalis) INTRODUCTIONS ON FOUR ARIZONA NATIONAL FORESTS

. .

Prepared for:

Office of Endangered Species U.S. Fish and Wildlife Service Post Office Box 1306 Albuquerque, New Mexico 87103

Prepared by:

James E. Brooks, Nongame Biologist Arizona Game and Fish Department 2222 West Greenway Road Phoenix, Arizona 85023

2,1

Acknowledgments

· 1 • • • •

> This study was funded through the Office of Endangered species, U.S. Fish and Wildlife Service, Albuquerque to the Arizona Game and Fish Department. Personnel involved in field work were numerous but involved primarily Phil Hines, AGF and Ken Byford, USFS. Their time and efforts are appreciated as is that of the Wildlife Managers in whose districts this study was conducted. Larry Riley assisted in statistical analysis and Ruth Patterson performed all word processing. This report was improved through reviews by Terry B. Johnson, Larry Riley, Bill Silvey, Jerry Burton, Paul C. Marsh and W. L. Minckley.

> > £ . 6

Table of Contents

	Page No.
List of Tables	i
List of Figures	ii
Introduction	1
Methods Stocking Monitoring Discriminant Analysis Results	2 2 9
Habitat. Cover. Substrate. Drainage Area. Elevation. Dissolved Oxygen. pH. Temperature. Conductivity. Discriminant Analysis.	10 12 24 24 25 25 25 25
Discussion General Discriminant Analysis Reasons for Introduction Failures Introduction Site Selection Criteria	30 34 34 35
Recommendations	37
Literature Cited	38
Appendix	42

....

••

1 1 . e . c 5

t.,*

List of Tables

and the second

		Page No.
Table I.	Gila topminnow introduction sites stocked during 1982	3
Table II.	Gila topminnow introduction sites stocked during 1983	7
Table III.	Status and habitat determinations for each introduction site stocked with Gila topminnow in 1982	14
Table IV.	Success of introductions by habitat type	21
Table V.	Success of introductions by cover type	22
Table VI.	Success of introductions by substrate type.	23
Table VII.	Habitat variable summary for successful and unsuccessful Gila topminnow introduction sites. Values are the mean + one standard error with range values in parenthesis and probability of difference derived from student's t-test	26
Table VIII.	Successful and unsuccessful Gila topminnow introduction sites classified by discriminant function	29
Table IX.	Recommended criteria for selecting suitable Gila topminnow introduction sites	36

i

۰,

List of Figures

.....

..

1

			Page No.
Fig.	1.	Historic (open circles), existing (solid circles) and 1982 (half circles) Gila topminnow populations in Arizona	11
Fig.	2.	Relative composition of all sites (a, n = 50) and successful sites (b, n = 30) stocked with Gila topminnow in 1982	13
Fig.	3	Correct and incorrect predictions of success for 1982 Gila topminnow introduction sites based on the discriminant score for each	28

ii

2,0

INTRODUCTION

This report summarizes data collected under U.S. Fish & Wildlife Service (FWS) contract No. 14-16-0002-82-216 for monitoring Sonoran topminnow (Gila subspecies, <u>Poeciliopsis o</u>. <u>occidentalis</u>) introduction sites on U.S. Forest Service (FS) lands. Endangered Gila topminnow were introduced into selected waters on four National Forests in Arizona under the auspices of a tripartite Memorandum of Understanding (MOU) between the FWS, FS and Arizona Game & Fish Department (AGF).

Selection of introduction sites was based upon qualitative assessments of habitats utilized by naturally occurring Gila topminnow populations. The site selection criteria were developed by FS biologists to assist non-fishery related field personnel in the selection process. As such, the criteria pertained primarily to abiotic factors (i.e., physical size, flow, depth, perennial water source, temperature, elevation, flooding, stream barriers, access). One biological criterion (presence of predator/competitor) was included.

Monitoring of introductions was the responsibility of the AGF as specified in the MOU and in a Management Plan outlining this recovery effort. Monitoring included assessment of both habitat and topminnow populations, including collection and identification of Gila topminnows.

This is the first annual report detailing status of introduced Gila topminnow populations. Site selection criteria presented here will be further refined into an ecosystem approach ' to identify suitable introduction sites. Included is an initial

set of refined site selection criteria, based upon information gained during first year of recovery, a literature review of Gila topminnow habitat, and field observations of introduced and naturally occurring topminnow populations.

METHODS

Stocking

Sixty-four sites on four Arizona National Forests were stocked with Gila topminnows from 17 May through 16 June 1982 (Table I). Gila topminnow from the Boyce Thompson Arboretum pond, Pinal County (original genetic stock from Monkey Springs, Santa Cruz County) and Dexter National Fish Hatchery, FWS, Dexter, New Mexico (transplanted from the Arboretum pond) were utilized. Twenty-four additional introductions of Gila topminnow from the Arboretum pond were conducted during 1983. These sites, stocked from 1 June through 28 June 1983 (Table II), are not included in the data analyses elsewhere in this report.

Monitoring

Fifty-eight 1982 introduction sites were monitored during June and July, 1983. An introduction was considered successful if topminnow were identified at the site and unsuccessful if none was collected or observed. Six sites were not monitored and thus are of unknown status.

£ . h

							Date	Number	
Site	La	titu	de	Lo	ngitu	de	Stocked	Stocked	Source
Holly Spring	34	45	35	111	50	00	17 May	200	Arboretum
Sheepshead Spring	34	44	27	111	55	40	17 May	200	Arboretum
Deep Spring	34	22	10	111	39	55	17 May	200	Arboretum
Chalk Tank	34	23	20	111	42	03	18 May	1,000	Arboretum
The Lake	32	19	35	110	37	15	14 June	200	Dexter NFH
Alambre Tank	32	18	08	110	36	20	14 June	200	Dexter NFH
White Tank	32	18	02	110	34	35	14 June	200	Dexter NFH
Yellowstone	32	17	25	110	38	00	14 June	200	Dexter NFH
Canada del Oro	32	33	15	110	42	15	15 June	2,000	Arboretum
Sabino Canyon	32	20	30	110	46	50	14 June	2,000	Arboretum
Buehman Canyon	32	25	05	110	32	00	16 June	2,000	Arboretum
Bear Canyon	31	22	50	110	21	45	17 June	2,000	Arboretum
El Pilar	31	40	36	110	45	50	17 June	2,000	Arboretum
Romero Canyon	32	24	00	110	51	00	15 June	2,000	Arboretum
Mansfield	31	37	10	110	49	53	17 June	2,000	Arboretum
Johnson's Wash Spring	34	32	58	112	02	25	18 May	200	Arboretum
Government Spring	34	27	40	112	01	45	17 May	500	Arboretum
Cedar Spring	34	29	45	112	00	15	17 May	200	Arboretum
Sheep Spring	34	28	35	112	02	05	17 May	200	Arboretum
Monkey Tank	34	26	10	111	47	40	18 May	1,000	Arboretum
Montezuma Tank	34	38	05	112	01	20	18 May	2,000	Arboretum

Table I. Gila topminnow introduction sites stocked during 1982 (Unn = un-named).

1. 1

. .

Table I Continued.

Site	La	ititu	<u>ide</u>		Longitude		Longitude		Longitude		Longitude			Date Stocked		Number Stocked		Source
Ox Bow Spring	34	42	10		112	03	50	1	8	May		500	Arboretum					
Hull Spring	34	35	25		111	57	42	1	8	May		500	Arboretum					
Squawpeak Spring	34	30	30		111	50	35	1	8	May		200	Arboretum					
Copper Canyon	34	36	33		111	55	00	1	8	May	2	,000	Arboretum					
Fig Spring	33	55	20		111	38	10	1	0	June		400	Arboretum					
Unn Spring (5N 7E 24)	33	46	05		111	35	20		9	June		200	Arboretum					
T. T. Spring	34	10	54		111	47	25		9	June		200	Arboretum					
Unn Spring																		
(9-1/2N 5E 24)	34	11	25		111	47	30		9	June		200	Arboretum					
Frog Spring	34	08	28		111	46	50		9	June		200	Arboretum					
Rock Spring	33	45	52		111	36	05		9	June		200	Arboretum					
Lime Cabin Spring	34	01	10		111	47	50	1	0	June		400	Arboretum					
Unn Spring Stream																		
(5N 7E 32)	33	44	15		111	34	35		9	June		200	Arboretum					
Unn Spring (10N 5E 34)	34	11	50		111	48	45		9	June		200	Arboretum					
Blue Mtn. Spring	33	50	46		111	42	22	1	0	June		200	Arboretum					
McCann Spring Tank	33	44	47		111	35	49		9	June		200	Arboretum					
White Rock Spring	34	07	55		111	47	20		9	June		200	Arboretum					
Horse Creek	34	03	35		111	40	45	1	0	June		400	Arboretum					
Spring Fed Tank											•							
(5N 13E 31)	33	. 44	03		111	03	49	1	0	June		200	Arboretum					

Table I Continued.

1.7

-

							D	ate	Number	
Site	La	titu	de	_Lor	gitu	lde	St	ocked	Stocked	Source
Artesian Well	33	44	08	111	00	27	10	June	200	Arboretum
Artesian Well #3	33	52	52	111	15	10	8	June	200	Arboretum
Artesian Well #4	33	52	50	111	15	05	8	June	200	Arboretum
Corner Artesian	33	50	50	111	15	25	8	June	200	Arboretum
Kayler Spring	33	56	35	111	18	05	4	June	200	Arboretum
Unn Spring Tank #498	33	48	40	111	18	30	8	June	200	Arboretum
Reed Spring	33	59	20	111	19	42	4	June	200	Arboretum
Buckhorn Spring	33	39	33	111	13	13	4	June	200	Arboretum
Packard Spring	33	51	30	111	21	00	8	June	200	Arboretum
Mesquite Flat Spring	33	49	03	111	19	03	8	June	200	Arboretum
Tucker Box	33	46	05	111	02	35	10	June	600	Arboretum
Cottonwood Creek	33	37	50	111	08	15	3	June	800	Arboretum
Unn Spring Dr.										
(4N 11E 2)	33	42	49	111	12	23	3	June	200	Arboretum
Indian Spring	33	35	17	111	16	45	11	June	500	Arboretum
Little Mud Spring	33	35	38	110	48	07	3	June	1,000	Arboretum
Grapevine Spring	33	37	15	110	46	30	3	June	200	Arboretum
Happy Camp Spring	33	18	34	111	08	24	3	June	400	Arboretum
Chalky Butte Well Tank	33	33	31	110	38	28	3	June	1,000	Arboretum
Little Nob Well	33	33	24	110	38	53	3	June	1,000	Arboretum
Walnut Spring	33	53	51	111	31	18	4	June	1,000	Arboretum
Mesquite Tank	33	32	31	111	22	50	3	June	1,000	Arboretum

Table I Continued.

1.7

1

• •

Site	Latitude	Longitude	Date Stocked	Number Stocked	Source
Unn Tank (6N 9E 21)	33 51 20	111 26 45	4 June	600	Arboretum
Mud Spring	33 44 55	111 29 20	9 June	200	Arboretum
Unn Spring (6N 9E 21) Unn Spring Fed Tank	33 51 20	111 26 58	4 June	200	Arboretum
(6N 9E 21)	33 51 20	111 26 35	4 June	300	Arboretum

Site	Latit	ude	_Longitude			Date <u>Stocked</u>	Number Stocked	Source
Middle Mesa Tank	34 19	34	112	12	39	l June	1,000	Arboretum
White Tank	34 18	21	112	13	03	l June	1,000	Arboretum
Unn Spring (llN lE 2)	34 18	51	112	12	53	l June	200	Arboretum
Lower Mine Spring	34 29	03	111	51	07	l June	200	Arboretum
Unn Spring Pond								
(15N 3E 16)	34 41	22	112	02	09	l June	200	Arboretum
Copper Canyon ¹	34 32	08	111	54	38	l June	100	Arboretum
Pilot Tank	33 18	25	111	10	53	l June	1,000	Arboretum
Mesquite Tank	33 24	30	111	11	45	l June	1,000	Arboretum
Rock Springs	33 36	50	110	36	30	l June	200	Arboretum
Indian Spring	34 14	00	112	27	50	l June	200	Arboretum
Bain Spring	34 14	39	112	30	12	l June	500	Arboretum
Campbell Flat Spring	34 10	58	112	30	58	l June	200	Arboretum
Charlebois Spring	33 27	05	111	20	32	2 June	200	Arboretum
Rock Tank Spring	33 54	45	111	54	45	2 June	200	Arboretum
Mud Spring Tank	34 11	13	111	51	48	2 June	1,000	Arboretum
Unn Spring Dr.								
(9-1/2N 5E 32)	34 09	45	111	52	15	2 June	500	Arboretum

Table II. Gila topminnow introduction sites stocked during 1983 (Unn = un-named).

¹Restocked from 1982.

in the

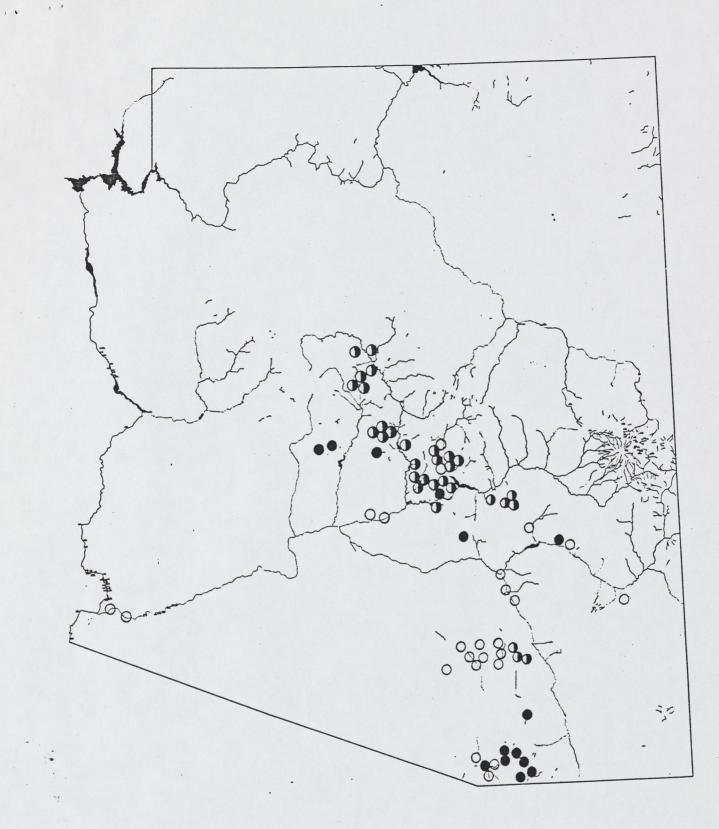
Table II Continued.

							D	ate	Number	
Site	La	titu	de	Lon	gitu	de	Ste	ocked	Stocked	Source
Bronco Canyon Spring										
Tank	33	55	45	111	51	15	24	August	1,000	Arboretum
Unn Spring										
(7N 10E 4 and 5)	33	59	00	111	20	45	3	June	200	Arboretum
Upper Horrel Spring	33	31	27	111	05	15	3	June	200	Arboretum
Thicket Spring	34	11	46	111	48	18	. 3	June	1,000	Arboretum
2 Mile Spring	34	05	17	111	44	13	3	June	200	Arboretum
Dutchman's Grave Spring	34	06	56	111	38	32	3	June	1,000	Arboretum
Bench Well	34	11	14	112	13	23	28	June	100	Arboretum
					-					

Qualitative assessments were made for cover availability (4 categories), substrate (5 categories) and habitat types (5 categories) at each introduction site (Table III). Substrate was classified according to Herrington & Dunham (1967) with additions of concrete (trough) and metal (stock waterer) substrate types. Dissolved oxygen, pH, temperature and conductivity were measured at 50 sites. Drainage area and elevation for each site were from USGS topographical maps. Topminnow population size was visually estimated for successful introductions.

Discriminant Analysis

Linear discriminant analysis was used to identify factors contributing to the success of an introduction. A stepwise analysis was used that incorporated variables one at a time on the basis of their discriminating power (Klecka, 1975). This method formulates a reduced set of variables that explains most variance as well or better than the full set. A classification table was constructed to identify the suitability or unsuitability of a potential introduction site. The program used habitat parameters of 50 sites to develop the discriminant function, which was then used to classify those sites as successful or unsuccessful.


RESULTS

Thirty-one (48.4%) sites monitored in June-July 1983 were classified as successful (Fig. 1). Unsuccessful sites numbered twenty-seven (42.2%) and six (9.4%) were not monitored (unknown).

Unevaluated sites included Romero Canyon and Mansfield Tank (Coronado National Forest) and McCann Spring Tank and Mesquite Flat Spring (Tonto National Forest). One site, Copper Canyon (Prescott National Forest), was surveyed and restocked during 1983 in a stream section with perennial flow since the initial plant was in a reach that proved not to be perennial. Kayler Spring (Tonto National Forest) was also surveyed but no topminnow were collected for taxonomic verification. Kayler maintained a population of Gambusia affinis at the time of the original topminnow stocking, and it is possible that observed fish were the former species. Mesquite Spring Stream (Tonto National Forest) was not surveyed due to site misidentification. It was thought unsuccessful, but a recent survey by Pollock (1984) indicated that it held topminnow. Mesquite Spring Stream is included in the total number of successful sites but not in 1983 habitat analyses.

Habitat

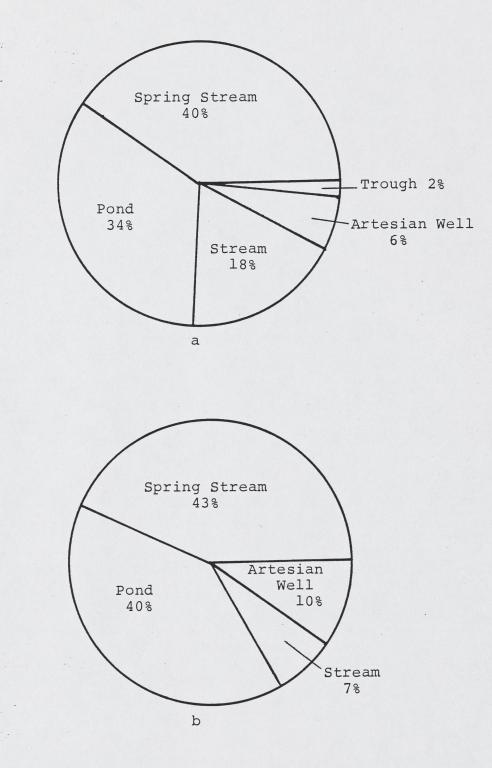
Five basic habitat types describe the introduction sites: 1) spring fed or overland flow fed pond, 2) spring fed trough, 3) artesian well fed habitat (marsh/pond), 4) spring stream and 5) stream (spring and runoff fed). Seven introduction sites were

.

Fig. 1. Historic (open circles), existing (solid circles) and 1982 (half circles) Gila topminnow populations in Arizona.

.

not included due to desiccation at the time of monitoring (Table III). Success of introductions into each habitat type is shown in Table IV.


Spring streams, the most common habitat stocked, represented 26.0% of the total number of sites analyzed (Fig. 2). Of these sites, 65.0% were successful introductions. Seventeen spring fed or runoff fed tanks were stocked and twelve (70.6%) were successful. Nine streams and three artesian well fed sites had success rates of 22.2% (2 sites) and 100%, respectively.

Cover

Introduction success differed between the four general cover types present at the 50 successful stocking sites (Table V). Of the 32 sites classified as aquatic plant habitat types, 23 (71.8%) were successful. Success rates decreased for each of the less common cover types, from 50.0% (1 of 2 sites) for terrestrial vegetation to 44.4% (4 of 9 sites) for the abiotic cover type to 14.3% (2 of 7 sites) for sites with no cover available.

Substrate

Substrate types dominating the 50 introduction sites were silt, sand, gravel, bedrock, concrete (stock watering trough) and metal (above ground stock tank). Introduction success varied according to substrate type (Table VI). Success rate was highest for sites with a silt substrate (65.2%). Sites with sand, bedrock and gravel were similarly successful with rates of 61.5%, 60.0% and 50%, respectively. The two sites with concrete or metal substrate both failed.

с с л. м. – д. ж.

-

32 No. 1

Fig. 2. Relative composition (a, n = 50) and success rate (b, n = 30) for sites stocked with Gila topminnow in 1982.

13

2,5

Table III. Status and habitat determinations for each introduction site stocked with Gila topminnow in 1982.

1

2 · · · * ·

.

<u>Site</u>	Latilong 0 1 11	Drainage Area km ² (mi ²)	Elevation (ft)	Habitat ¹ Type	Cover ²	Substrate ³	Other Flshes	D0 mg/1	pH	Temp. O _C	Cond. umho/ cm	Status ⁴	Popula- tion Size
Holly Spring	34 45 33 111 50 00	0.02 (0.007)	1080 (3530)	4	1	1	No	0.8	7.3	15,5	625	0	0
Sheepshead													
Spring	34 44 27 111 55 40	0	1058 (3460)	4	1	2	No	5,9	7.8	17.0	590	1	5000
Deep Spring	34 22 10 111 39 55											Dry	
Chalk Tank	34 23 20 111 42 03											Dry	
The Lake	32 19 35 110 37 15	0.10 (0.04)	1223 (4000)	1	1	2	No	9.5	7.7	22.5	112	1	50
Alambre Tank	32 18 08 110 36 20	0.10 (0.04)	1284 (4200)	1	1	1	No	10.8	8.0	22.0	190	1	5000
White Tank	32 18 02 110 34 35	0.18 (0.07)	1321 (4320)	1	4	2	No	8.9	9.0	26.0	118	0	
Yellowstone	32 17 25 110 38 00	0.08 (0.03)	1223 (4000)	1	4	1	No	8,1	9.2	20.1	192	1	
Canada del Oro	32 33 15 110 42 15	15.67 (6.05)	1223 (4000)	5	3	3	No	8.8	7.1	13,5	105	0	
Sabino Canyon	32 20 30 110 46 50	15.72 (6.07)	979 (3200)	5	3	2	<u>Gila</u> Intermedia	7,8	7.1	21.5	75	0	
Buehman Can.	32 25 05 110 32 00	15,51 (5,99)	954 (3120)	5	3	2	<u>Agosla</u> chrysogaster	5.8	7.3	21.0	370	0	

.

Jable III Continued.

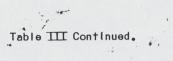
1

1.7

		Drainage											
		Area									Cond.		Popula-
	Latilong	km ²	Elevation	Habitat ¹			Other	DO		Temp.	umho/		tion
Site	0 1 11	(m1 ²)	m (ft)	Туре	Cover ²	Substrate ³	Fishes	mg/I	pН	⁰ c	cm	Status ⁴	Size
Bear Canyon	31 22 50	11.53	1682	5	3	2	Agosía	8.9	7.5	19.0	450	0	
	110 21 45	(4.45)	(5500)				chrysogaster						
El Pilar	31 40 36	1.68	1492	5	1	1	No	10.8	7.5	21.3	480	0	
	110 45 50	(0.65)	(4880)										
Romero Canyon	32 24 00	0.05	1835	5	3	3	No					Unk.	
	110 51 00	(0.02)	(6000)										
Mansfleld	31 37 10	0.60	1590	1	4	1	No					Unk.	
	110 49 53	(0.23)	(5200)										
Johnson's	34 32 58	0	1465	4	1	1	No	4.0	7.6	26.0	575	1	3000
Wash Spr.	112 02 25		(4790)										
Government	34 27 40	0.98	1300	4	1	5	No	7.9	7.9	23.0	450	1	500
Spring	112 01 45	(0.38)	(4250)										
Cedar Spring	34 29 45	0.85	1358	4	1	1	No	5.1	7.7	26.0	625	0	
	112 00 15	(0.33)	(4440)										
Sheep Spring	34 28 35	0.21	1312	4	1	1	No	8.6	7.9	27.0	400	1	1500
	112 02 05	(0.08)	(4290)										
s													
Monkey Tank	34 26 10											Dry	
	111 47 40												
	74 70 65		1000										
Montezuma	34 38 05	0	1220	1	1	1	No	12.6	9.7	33.0	880	0	
Tank	112 01 20		(3990)				•						
	74 42 10	0.10	1715										
Ox Bow Spring	34 42 10	0.10	1315	1	1	1	No	7.2	7.7	26.0	710	1	100
	112 03 50	(0.04)	(4300)										
Unit Conto	74 75 05	0	1110										
Hull Spring	34 35 25	0	1110	1	1	1	No	9.7	8.2	22.0	475	1	5000
	111 57 42		(3630)										

....

		Dralnage											
<u>S(te</u>	Latilong	Area km ² (ml ²)	Elevation _m (ft)	Habitat ¹ Type	Cover ²	Substrate ³	Other Fishes	DO mg/l	_pH	Temp. ^O C	Cond. umho/ cm	Status ⁴	Popula- tion Size
Squawpeak Spr.	34 30 30 111 50 35	0	982 (3210)	1	1	1	No	9.2	7.7	24.0	1090	0	
Copper Canyon	34 36 33 111 55 00	1.48 (0.57)	1162 (3800)	5	3	2	No					Unk. Restoc	ked 1983
Fig Spring	33 55 20 111 38 10	0	587 (1920)	4	2	1	No	6.0	7.3	27.0	350	0	
Unn Spring 5N 7E 24	33 46 05 111 35 20	0.60 (0.23)	832 (2720)	4	2	1	No	8.8	7.8	27.0	425	1	5000
T. T. Spring	34 10 54 111 47 25	0.16 (0.06)	878 (2870)	4	1	2	No	8.5	7.8	23.0	425	1	5000
Unn Spring 9-1/2N 5E 24	34 11 25 111 47 30	0	869 (2840)	4	1	2	No	7.6	8.1	21.5	375	1 Restoc	1 ked 1983
Frog Spring	34 08 28 111 46 50	0.16 (0.06)	853 (2790)	4	1	5	No	5.0	7.9	29.5	500	1	25
Rock Spring	33 45 52 111 36 05	0.88 (0.34)	755 (2470)	4	1	5	No	7.5	7.8	23.5	900	1	50
Lime Cabin Spring	34 01 10 111 47 50		789 (2580)	5	4	5	No	8.2	8.4	18.0	510	0	
Unn Spring Stream 5N 8E 32	33 44 15 111 34 35	0.6 (0.23)	801 (2620)									5	
Unn Spring 10N 5E 34	34 11 50 111 48 45	0.21 (0.08)	942 (3080)	4	1	5	No	7.1	7.9	19.0	550	1	15


		Drainage									0		Desula
	Latilana	Area km_	Elevation	Habitat1			Other	DO		Temp.	Cond. umho/		Popula- tion
Site	Latilong	(m1 ²)	m (ft)	Туре	Cover ²	Substrate ³		mg/l	pН	0 _C	cm	Status ⁴	Size
<u></u>						000011010	110100	<u></u>					
Blue Mtn.	33 50 46	0.16	838	4	4	5	No	5.0	7.2	19.0	500	0	
Spring	111 42 22	(0.06)	(2740)										
McCann Spring	33 44 47	0	798									Unk.	
Tank	111 35 49		(2610)										
White Rock	34 07 55	0	862	1	1	7	No	4.0	7 1	20.0	600	0	
Spring	111 47 20	0	(2820)	•		'	NO	4.0	·• ·	20.0	000	U	
spring	111 47 20		(2020)										
Horse Creek	34 03 35	6.11	679	5	3	2	A.chrsogaster,	7.1	8.2	29.0	700	1	50
	111 40 45	(2.36)	(2220)				Notropis						
							lutrensis,						
							Lepomís						
							cyanellus						
Spring Fed	33 44 03											Dry	
Tank	111 03 49												
5N 13E 31													
Arteslan Well	33 44 08											Dry	
	111 00 27												
Arteslan Well	33 52 52	0	807	3	1	1	No	5.0	6.9	27.0	620	1	500
#3	111 15 10		(2640)										
Artesian Well	33 52 50	0	807	3	1	1	No	15+	10.0	28.0	360	1	200
#4	111 15 05		(2640)										
Corner	33 50 50	0	749	3	1	1	No			·		1	2000
Arteslan	111 15 25		(2450)										
		0.57			-	2				07 0	500		
Kayler Spring	33 56 35	0.57	749	4	2	2	A.chrsogaster	8.2	8.0	23.0	500	Unk.	
	111 18 05	(0.22)	(2450)				Gambusla						
							affinis						

D 1

48.

27

		Drainage											
<u>Síte</u>	Latilong	Area km ² (mi ²)	Elevation <u>m (ft)</u>	Habitat ¹ Type	Cover ²	Substrate ³	Other Fishes	D0 mg/1	рН_	Temp. ⁰ C	Cond. umho/ cm	Status ⁴	Popula- tion Size
Unn Spring	33 48 40 111 18 30	0.03 (0.01)	789 (2450)	1	1	2	No	15+	10.0	28.2	640	1	10000
Tank #498	00 01 111	(0.01)	(24)07										
Reed Spring	33 59 20	0.36	869	4	3	5	No	9.2	7.5	19.5	650	1	10
	111 19 42	(0.14)	(2840)										
Buckhorn	33 39 33	0.78	801	4	4	5	No	3.8	7.4	20.5	560	0	
Duoimorn	111 13 13	(0.30)	(2620)										
D 1	33 51 30	0.03	1003	4	4	1	No	8.6	8.0	19.0	275	0	
Packard Spring	111 21 00	(0.01)	(3280)	4	-	•	NO	0.0	0.0				
Mesquite	33 49 03	0	856	2	4	6	No					Unk.	
Flat Spring	111 19 03		(2800)										
Tucker Box	33 46 05	4.51	979	5	3	5	No	10.1	8.7	24.8	260	0	
	111 02 35	(1.74)	(3200)										
Cottonwood	33 37 50	2,02	893	5	3	2	No	8.9	7.1	20.0	600	1	100
Creek	111 08 15	(0.78)	(2920)										
	33 42 49	0.78	673	4	1	3	No	6.1	75	19.5	540	1	50
Unn Spring Dr.	111 12 23	(0.30)	(2200)	-		,	110				2.0		
4N 11E 2	111 12 23	(0,50)	(=====,										
Indian Spring	33 35 17	0,31	673	4	3	5	No	8.3	8.1	19.0	225	1	100
	111 16 45	(0.12)	(2200)										
Little Mud	33 35 38	0.21	1174	1	1	1	No	9.6	6.4	19.0	680	1	3000
Spring	110 48 07	(0.08)	(3840)										
Grapevine	33 37 15	0.47	917	4	1	2	No	7.2	7.3	24.0	850	0	
Spring	110 46 30	(0.18)	(3000)	-		-							
Spiring	110 40 50		(2000)										

		Drainage											
		Area km ²	Et	1			Other	DO		Temp.	Cond. umho/		Popula- tion
C1+-	Latilong	(m1 ²)	Elevation	Туре	Covor ²	Substrate ³	Fishes	mg/1	рН	OC.		Status ⁴	Size
Site		<u>(m()</u>	<u>m (ft)</u>	_туре	00001	Substrate	1131103	<u>mg/ r</u>	_ <u></u>			orarao	
Нарру Сатр	33 18 34											Dry	
Spring	111 08 24												
op:3													
Chalky Butte	33 33 31	0	1257	1	1	1	No	0.7	7.3	29.0	625	1	5000
Well Tank	110 38 28		(4110)										
Little Nob	33 33 24	0.16	1275	1	1	1	No	6.5	9.1	26.5	600	1	5000
Well	110 38 53	(0.06)	(4170)										
Walnut Spring	33 53 51	0	1122	1	4	1	No	9.6	6.5	21.5	425	1	5000
	111 31 18		(3670)										
											050		
Mesquite Tank	33 32 31	0.21	612	1	1	2	No	12.3	9.8	26.5	250	1	20000
	111 22 50	(0.08)	(2000)										
												David	
Unn Tank	33 51 20											Dry	
6N 9E 21	111 26 45												
Mud Castan	33 44 55	0	599	1 1	1	1	No	1.6	76	24.0	1000	1	50
Mud Spring	111 29 20	0	(1960)				NO	1.0	1.0	21.0	1000		
	111 29 20		(1900)										
Unn Spring	33 51 20	0	1028	2	1	6	No	6.2	7.7	13.0	560	0	
6N 9E 21	111 26 58	Ŭ	(3360										
			•										
Unn Spring	33 51 20	0	1055	1	1		No	15+	9.2	26.5	170	0	
Fed Tank	111 26 35		(3450)										
6N 9E 21			· .										

.

- ¹Habitat Type: 1 Tank/pond
 - 2 Trough
 - 3 Artesian well/pond
 - 4 Spring Stream
 - 5 Stream

²Cover:

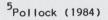
1 - Aquatic plants

2 - Terrestrial Vegetation Overhang/submerged

3 - Undercut bank, instream boulders, pools

4 - None

³Substrate: 1 - SIIt


- 2 Sand
 - 3 Gravel
 - 4 Rubble
 - 5 Bedrock
 - 6 Concrete

7 - Metal

⁴Status:

.

0 - Unsuccessful 1 - Successful

.. ..

....

.,

ł.

•

<u>Habitat Type</u>	N	Successful Sites	% Success	% Success of Total N
Pond	17	12	70.6	24.0
Trough	1	0	0	0
Artesian Well	3	3	100.0	6.0
Spring Stream	20	13	65.0	26.0
Stream	9	_2	_22.2	4.0
Total	50	30	60.0	60.0

21

.. ..

> :

Cover Type	N	Successful Sites	% Success	% Success of Total N
Aquatic Plants	32	23	71.8	46.0
Terr. Veg.	2	1	50.0	2.0
Abiotic	9	4	44.4	8.0
None	7	_2	14.3	2.0
Total	50	30	60.0	60.0

t.,+

.. ..

..

*

Substrate Type	N	Successful Sites	% Success	% Success of Total N
Silt	23	15	65.2	30.0
Sand	13	8	61.5	16.0
Gravel	2	1	50.0	2.0
Bedrock	10	6	60.0	12.0
Concrete	1	0	0	0
Metal	_1	0	_0	0
Total	50	30	60.0	60.0

t. ,5

.

Drainage Area

Drainage area for successful introduction sites had a mean of $0.8 \pm 0.5 \text{ km}^2$ and ranged from trace (< 0.1 km^2) to 6.1 km^2 (Table VII). Unsuccessful sites averaged $5.3 \pm 1.8 \text{ km}^2$ and ranged from trace to 17.5 km^2 . Thirteen successful and four unsuccessful sites had a drainage area of 0 (artesian wells, windmill fed ponds, perched springs) and were not included in computer analyses. Mean drainage areas were significantly different (P < .001, Student's t-test) for successful and unsuccessful introduction sites.

Elevation

Successful introduction sites had a lower mean elevation than unsuccessful sites (Table VII). Elevational mean (range) was 971 ± 45 m (599-1465) and 1071 ± 60 m (587-1682), respectively. These mean elevations differ significantly (P < .001).

Dissolved Oxygen (D.O.)

Dissolved oxygen did not vary significantly between successful and unsuccessful introduction sites (P < .200, Table VII). Sites holding Gila topminnow had a mean D.O. of 8.4 ± 0.6 ppm (range 6.4 to 10.0). Mean D.O. at unsuccessful introduction sites was 7.0 + 0.5 ppm (range 0.8 to 10.8 ppm). Hydrogen ion concentrations (pH) in successful and unsuccessful introduction sites did not appear to differ significantly (Table VII). The pH at successful sites ranged from 6.4 to 10.0. Recorded pH values for unsuccessful sites ranged from 7.1 to 9.2.

Temperature

Water temperature differed significantly (P < .001) and was higher at successful introduction sites than unsuccessful sites (Table VII). Mean water temperature at successful sites was 24.1 \pm 0.7 ^OC (range 17.0 to 33.0 ^OC). The mean at unsuccessful sites was 21.0 + 0.9 ^OC (13.0-27.0 ^OC).

Conductivity

Electrical conductance showed the least amount of difference (P < .50) between successful and unsuccessful introduction sites (Table VII). Mean conductivity for successful introduction sites was 514 ± 39 umho/cm (112.0-1000.0). Unsuccessful sites ranged from 75.0-1090.0 umho/cm with a mean of 465 ± 58 .

Discriminant Analysis

A single discriminant function accounted for variance between successful and unsuccessful sites (Cannonical Correllation = 0.73). The stepwise procedure selected four variables (drainage area, elevation, cover type, D.O.) which adequately discriminated between successful and unsuccessful

pН

Table VII. Habitat variable summary for successful and unsuccessful Gila topminnow introduction sites. Values are the mean + one standard error with range values in parenthesis and probability of difference derived from a student's t-test.

Variable	Successful (N = 31)	Unsuccessful (N = 19)	Significance Level
Drainage (sq km)	$\binom{0.8}{\text{tr.}^{d}} + \binom{0.5}{6.1}^{a}$	$5.3 + 1.8^{b}$ (tr 17.5)	P < .001
Elevation (m)	971 <u>+</u> 45 (599 <u>-</u> 1465)	$\begin{array}{rrrr} 1071 + & 60 \\ (587 - & 1682) \end{array}$	P < .001
D.O. (ppm)	$\begin{array}{r} 8.4 + 0.6 \\ (0.7 - 15.0) \end{array}$	$\begin{array}{c} 7.0 + 0.5 \\ (0.8 - 10.8) \end{array}$	NS
рН	$8.0 + 0.2^{\circ}$ (6.4 - 10.0)	$\begin{array}{ccc} 7.7 + & 0.1 \\ (7.1 - & 9.2) \end{array}$	NS
Temp. (⁰ C)	$\begin{array}{r} 24.1 + 0.7 \\ (17.0 - 33.0) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P < .001
Cond. (umho/cm)	514 + 39 (112 - 1000)	465 <u>+</u> 60 (75 - 1090)	NS

a 13 missing values (sites w/ o drainage area)
b 4 missing values (sites w/ o drainage area)
c 1 missing value (pH not recorded), log mean not computed
d Trace, < 0.1</pre>

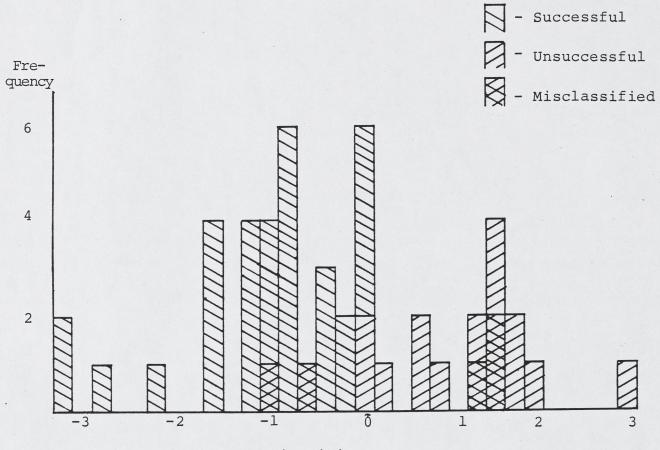
y . 11 44

4.

sites. A plot of the discriminant scores (Fig. 3) shows that the two groups (successful and unsuccessful) could be separated based upon the four criteria. The following classification functions were derived to aid in the selection of future sites.

.....

Successful = -15.4765 - .0979 (Drainage) + .0173 (Elevation) + 2.6106 (Cover type) + 1.1243 (D.0.)


Unsuccessful = -22.2359 + .0629 (Drainage) + .0236 (Elevation) + 4.06 (Cover type) + .69 (D.0.)

The first number in each function is a constant and the following numbers are derived coefficients for the respective variables. The classification functions are evaluated for each site to predict success based upon its scores on those functions. The function that generated the highest score classified the site.

The classification functions were then used to classify the original set of introduction sites (Table VIII). Overall, 80% of all sites were correctly classified by discriminant analysis.

27

£ , s

Discriminant Score

Fig. 3. Correct and incorrect predictions of success for 1982 Gila topminnow introduction sites based on the discriminant score for each.

 Table VIII.

Successful and unsuccessful Gila topminnow introduction sites classified by discriminant function (N = 50).

Suc. Unsuc. Suc. 26 4 30 Actual Unsuc. 6 14 20 32 18 50

Classified

DISCUSSION

General

Both qualitative and quantitative data were collected during monitoring. Those presented for habitat, cover, and substrate types are qualitative and identify dominant types at each introduction site. Quantitative data are those for drainage area, elevation, dissolved oxygen, pH, temperature and conductivity. These two data sets are discussed somewhat differently below. Qualitative data are related to success rate in each general type while quantitative data are discussed in terms of absolute numbers related to introduction successes.

Environments formerly and/or presently occupied by Gila topminnows have been described by several authors (Collins et al. 1981; Constantz 1976; Johnson and Kobetich 1970; Meffe et al. 1982; McNatt 1979; Minckley 1969, 1973; Minckley et al. 1977; Rinne et al. 1980; Schoenherr 1974). Minckley (1973) stated that topminnows "...lived in, or lateral to, almost all kinds of aquatic habitat present in southern Arizona." More recently, Meffe et al. (1983) reviewed environmental conditions experienced by extant, naturally occurring topminnow populations in Arizona. Gila topminnow were demonstrated to occur in highly variable environments, and Meffe et al. (1983) felt that ranges in environmental condition in present habitats were a minimum of what they historically inhabited. This suggested that a wide tolerance to habitat type would be documented in the recovery effort and this in fact has occurred.

The more stable habitat present in small spring streams and ponds had the highest introduction success rate. Stream habitat experienced the least introduction success apparently due to its propensity for floods. However, stability of habitat consists of many variables other than physical size of the system and is evaluated in more detail with the drainage area discussion below.

Aquatic plants, present at most introduction sites, appear to be an important aspect of habitats with successful introductions. Aquatic vegetation, including algal mats, has been cited as a common component of topminnow habitat (Meffe et al. 1983, Minckley 1973). Terrestrial vegetation and abiotic cover constituted the remaining cover types monitored but did not contribute significantly to the total number of successful sites. No cover was present at seven sites and only two of those contained topminnow.

Minckley (1973) stated that topminnow were characteristic of sandy-bottomed streams but did not place any significance on substrate type. Since the topminnow is a livebearer (family Poeciliidae) spawning substrate is not a consideration. However, detritus is a major food of the omnivorous topminnow and is likely more common in silt bottoms. Substrate, then, may actually heavily influence introduction success through food availability. Most of the introduction sites had substrate composed primarily of silt, but their contribution to the total number of successful sites (15 of 30) did not differ significantly from their representation in the total number of introduction sites (23 of 50).

31

*

Physicochemical parameters (D.O., pH, Temp., Cond.) varied widely in both successful and unsuccessful Gila topminnow introduction sites and were similar to those reported by Meffe et al. (1983), Minckley (1969), Rinne et al. (1980) and Schoenherr (1974) for other topminnow populations. For these parameters, significant differences (T-test, P < .001) were demonstrated between successful and unsuccessful sites only for mean temperatures However, since thermal tolerance appears to be wide for topminnow in the introduction sites as well as in naturally occurring populations (Meffe et al. 1983) and since single point sampling was utilized in this study, these temperature data should be used conservatively.

Mean elevations for successful and unsuccessful introduction sites were significantly different (T-test, P < .001). Mean elevation for successful introduction sites was 970 ± 45 m with a range of 599 to 1465 m compared to a mean of 1071 ± 60 m (587 to 1682 m) for unsuccessful sites. Both of these means, however, are within the elevational range of 695 to 1600 m (1318 \pm 76 m) recorded by Meffe et al. (1983) for other introduced and natural topminnow populations. Considering this, elevation may not be highly correlated to suitable habitat for a topminnow introduction but should have a recommended maximum similar to that observed by Meffe et al. (1983).

Drainage area unequivocally exhibited the greatest difference between successful and unsuccessful introduction sites. Mean drainage area for successful sites was significantly less than that recorded for unsuccessful sites. That large

drainage areas (greater than 5.0 km^2) yield correspondingly high amounts of runoff was evidenced at the introduction sites by piling of debris, scouring and bank instability. Sites with smaller drainage areas (and a higher success rate) rarely demonstrated similar evidence of severe flooding.

.......

The ability of Arizona's native ichthyofauna to withstand flooding has been previously documented (Minckley 1981, Siebert 1980). Cienega Creek, with a relatively large drainage and seasonally frequent flash flooding, currently harbors a natural Gila topminnow population (Minckley 1973, Meffe et al. 1983, USFWS 1983). Meffe (1984) documented the topminnows ability to withstand a series of flash floods that eliminated the non-native <u>Gambusia affinis</u>. However, Collins et al. (1981) documented the loss of an introduced topminnow population in Tule Creek due to flooding 10 years after an apparently successful introduction. Additionally, an introduced population in Seven Springs is maintained primarily by escape habitat, an irrigation diversion channel (AGF files), that provides a refuge from flooding.

In light of the aforementioned topminnow populations it is apparent that drainage area should not be used as the sole factor in determining the suitability of a potential site. Interrelationships of factors such as stream gradient, topography, habitat complexity and watershed use, as well as drainage area, affect the success of a topminnow introduction.

Discriminant Analysis

.....

The use of discriminant analysis may prove to be a valuable tool in explaining inter-relationships that determine successful and unsuccessful sites. Based upon classification functions derived from the discriminant function, data pertaining to drainage area, elevation, cover type and dissolved oxygen can be utilized to predict probability of success or failure of an introduction at a given site. The reliability of these functions will need refinement for accuracy by evaluating future sites, however, due to the inherent biases present in discriminant analysis (Frank et al. 1965; Morrison 1969). Also of concern is the nature of data used in classification of sites (cover = qualitative; drainage, elevation and D.O. = quantitative). For example, D.O. may not be a reliable variable since it represents a single collection at each site and wide ranges of D.O. have been observed at natural topminnow habitats (Meffe et al. 1983). Future classifications of potential sites will give a more reliable test of the discriminant function developed here.

Reasons for Introduction Failures

Failure of an introduction is attributable to many factors. Absolute evidence for causes is based on field observations after the fact and interpretations from data in the literature. Flooding appears to be the major cause for failure in larger stream habitats with large drainage areas. Desiccation also contributed to failure of many introductions. In most cases complete drying occurred but some sites failed due to dwindling

amounts of water during summer months. Other reasons for failure include water development (vegetation removal, deepening, etc.), trampling by livestock at times when water availability was low and the presence of predatory non-native fishes (pond habitat, primarily).

Introduction Site Selection Criteria

.

Revised criteria for selection of suitable Gila topminnow introduction sites (Table IX) were developed from data collected during monitoring, literature review, and initial site selection criteria. Future selection criteria will be refined from those listed in Table IX based on continued monitoring of introduction sites. The degree of refinement will depend upon data needs for reliably predicting success or failure of an introduction. Practicality must be a consideration in regard to effort expended for types and amounts of data collected. However, one major purpose of this recovery effort should be to increase our knowledge of the biology of Gila topminnow through collection of more detailed monitoring data.

Criterion	Comments
Drainage Area	< 1.0 km ²
Elevation	< 1600 m
Stream Flow	< .l m ^{3/sec}
Stream Gradient	< 3%
Pond Surface Area	< 2 ha.
Pond Depth	< 2 m
Channelization	Little or None
Habitat Composition	Complex, heterogeneous
Cover	Present, Aquatic vegetation
Other Fishes	Native, Nonpredatory
Water Quality	ADHS Surface Water Quality Standards
Water Source	Perennial; Presence of <u>Physella</u> , <u>Planorbella</u> and/or Hydrobiids
Developmental Potential	Low or none
Location	Gila River drainage

Table IX. Recommended criteria for selecting suitable Gila topminnow introduction sites.

.

17. 19. 19. E. 10

RECOMMENDATIONS

....

1.

- 1. Criteria based on initial observations are listed in Table IX and should be used to identify future suitable Gila topminnow introduction sites and re-evaluate unsuccessful sites.
- Continue annual monitoring and collect quantitative data pertaining to habitat and fish populations as shown in the Appendix A.
- 3. Monitor all other introduced and natural topminnow populations and collect data specified on the data sheet in Appendix A.
- 4. Evaluate unsuccessful and potential introduction sites for suitability based on the suitability criteria developed from monitoring (Table IX).
- 5. Recommend and stock (or restock) approved sites meeting the suitability criteria.
- 6. Do not stock topminnow into sites that do not count toward recovery according to the approved FWS Recovery Plan.

LITERATURE CITED

.

**

- Collins, J. P., C. Young, J. Howell, and W. L. Minckley. 1981. Elimination of a Gila topminnow (<u>Poeciliopsis</u> <u>o</u>. <u>occidentalis</u>, Poeciliidae) population and other impacts of flooding in a Sonoran desert stream. Southwest. Nat. 26(4):415-423.
- Constantz, G. D. 1976. Life history strategy of the Gila topminnow <u>Poeciliopsis occidentalis</u>: A field evaluation of theory on the evolution of life histories. Ph.D. Dissertation, Arizona State University, Tempe.
- Frank, R. E., W. F. Massy, and D. G. Morrison. 1965. Bias in Multiple Discriminant Analysis. Journal of Marketing Research 2:250-258.
- Herrington, R. B. and D. K. Dunham. 1967. A technique for sampling general fish habitat characteristics of streams. USDA For. Ser. Res. Pap. INT-41, 12 p.

Johnson, J. E. and G. Kobetich. 1970. A new locality for the Gila topminnow, <u>Poeciliopsis</u> <u>occidentalis</u> (Poeciliidae). Southwest. Nat. 14(3):368.

2.1

Klecka, W. R. 1975. Discriminant analysis, p. 434-467. In: Statistical package for the social sciences. Nie et al. (eds.). McGraw-Hill, New York.

. . .

. . . . *

- McNatt, R. 1979. Discovery and loss of a new locality for the Gila topminnow, <u>Poeciliopsis</u> <u>occidentalis</u> <u>occidentalis</u> (Poeciliidae). Southwest. Nat. 24(3):555-556.
- Meffe, G. K. 1984. Effects of abiotic disturbance on coexistence of predator-prey fish species. Ecology 65(5):1525-1534.

_____, D. A. Hendrickson, and J. N. Rinne. 1982. Description of a new topminnow population in Arizona, with observations on topminnow/mosquitofish co-occurrence. Southwest. Nat. 27(2):226-228.

, D. A. Hendrickson, W. L. Minckley, and J. N. Rinne. 1983. Factors resulting in the decline of the endangered Sonoran topminnow (Atheriniformes:Poecilliidae) in the United States. Biol. Conser. 25(2):135-159.

Minckley, W. L. 1969. Aquatic biota of the Sonoita Creek basin,
 Santa Cruz County, Arizona. Ecol. Stud. Leafl. 15:1-8.

_____. 1973. Fishes of Arizona. Ariz. Game and Fish Dept., Phoenix, Arizona.

_____. 1981. Ecological studies of Aravaipa Creek, central Arizona, relative to past, present and future uses. Final Report. U.S.B.L.M., Safford, Arizona.

, 1 Y E

. . . . *

- _____, J. N. Rinne, and J. E. Johnson. 1977. Status of the Gila topminnow and its co-occurrence with mosquitofish. USDA For. Serv. Res. Pap. RM 198:1-8.
- Morrison, D. G. 1969. On the interpretation of discriminant analysis. Journal of Marketing 6:156-163.
- Pollock, D. 1984. Gila topminnow transplant sites, 1984 summary, Cave Creek and Mesa Ranger Districts. USDA For. Ser. Interoffice Memorandum, 5 p.
- Rinne, J. N., B. Rickel, and D. Hendrickson. 1980. A new Gila topminnow locality in southern Arizona. USDA For. Serv. Res. Note RM-382:1-4.
- Schoenherr, A. A. 1974. Life history of the topminnow (<u>Poeciliopsis occidentalis</u> (Baird and Girard) in Arizona and an analysis of its interaction with the mosquitofish <u>Gambusia affinis</u> (Baird and Girard). Unpub. Ph.D. Dissert. Arizona State Univ., Tempe, Arizona.

Siebert, D. J. 1980. Movements of fishes in Aravaipa Creek, Arizona. Thesis. Arizona State University, Tempe, Arizona.

U. S. Fish and Wildlife Service. 1983. Gila and Yaqui topminnow recovery plan. U. S. Fish and Wildlife Service, Albuquerque, New Mexico. 56 pp.

s f ' s , was b ♥

....

. . .

-181-

 £ . .

Appendix A

a 7.3 5

*

...

A CONTRACT OF A

5. Ja

GILA TOPMINNOW SURVEY FORM

3

*

Water:		I	Date:	Time:
Observers:				
Location:		E	Elev (m):	Dr.(km ²):
Water Source: Bank Stability	Cut	Bank Veg.: Depth:	None Sparse Moderate Dense	Canopy: None Sparse Moderate Dense Width:
Gradient: 	Uncut	Velocity:	Length:	Water Quality: D.OT ^O C pHCond
Substrate: Silt Sand Gravel Rubble Bedrock	%	Cover: None Aq Veg-Em Aq Veg-Sub Fil. Att. Fil. Unatt Terr Veg.	% 	Habitat Type: 9 Spring Stream Stream Pond Marsh Art. Well
Fish Collectic Species Comments:	on:	<u>N</u>	Area Samj	<u>pled</u>

Memorandum

SALT RIVER PROJECT

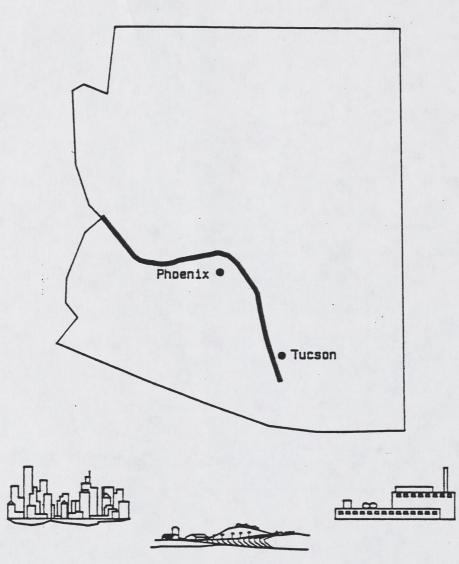
DateNovember 20, 1986

TO Distribution

FROM Bill Warskow

RE: CAP MAY 1986 WATER SUPPLY STUDY

The Water Rights Division has acquired a copy of the subject study for the WRA library. Copies of the Title Page, Table of contents, List of Tables and List of Figures are attached for your information.


Bill Warskow

BW:njs Attachments

DISTRIBUTION:

Fritz Beeson Steve Noggle-Doncaster M. Byron Lewis John Weldon Mikel Moore Dave Roberts Jim Mitchell Larry Beddome Karen Smith Craig Sommers Ed Harvey Lee Rozaklis Glenn Tarbox Allan D. Halderman Gregg Ten Eyck Bob Behnke Chuck Stockton

CENTRAL ARIZONA PROJECT MAY 1986 WATER SUPPLY STUDY

U.S. Department of the Interior Bureau of Reclamation Lower Colorado Region Arizona Projects Office

TABLE OF CONTENTS

Deee

		Page
Intr	roduction	1
CAP	Overview	1
	Aqueducts	1 1
Use	of Computer Models in the Study	2
	CAPSIM	2 2
Wat	er Resources	2
	Colorado River Supply	2 2 3 3 3 3 3 3
	Colorado River Supply Used in the May 1986 CAP Water Supply Study	4 4 7 7 8
Wat	er Requirements	9
	User Demands	9 9 9 13 13
	Losses	16 16 16 18
Wa	ter Utilization	18
	Central Arizona Project Simulation Model	18 18 20

1.11

Landsteinel

. Anna ann an Anna

Laura and

-

Annual I

1

Turning and

Tratement of

TABLE OF CONTENTS (Continued)

Reservoir Operations Agua Fria River Gila River Salt and Verde Rivers	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20 21 21 22
CAP Power Features Navajo Generating Station Pumping Plants New Waddell Pump-Generator	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23 23 24 24
Power Management	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
Normal Water Supply Years Surplus Water Supply Years . Results	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28 28 29
Water	•	•	•	•	•	•	•	•	•	•	•	•	•	•	29 29 29 30

Appendix A - Reservoir Inflows Appendix B - Documentation of CRSS Study Appendix C - 16 Trace Water Summary from CAPSIM Appendix D - 16 Trace Energy Summary from CAPSIM

4

A - manual

Lanna

Lance and Lat

1.....

Langerand A

Lunssel

Louisvie 1

Land

In out

LIST OF TABLES

No.	Title	Page
1	Equivalent Historic Year by Hydrologic Trace Number	5
2	Colorado River Water Available for the Central Arizona Project	6
3	Annual Indian Allocations	10
4	Municipal and Industrial User's Estimated Demands	11-12
5	Non-Indian Agriculture Allocations of CAP Water	14
6	Non-Indian Agriculture Acreages and Water Duties	15
7	Monthly Reservoir Evaporation Rates	17
8	Pumping Plant Characteristics	25-27
9	Water Diversion and Delivery - 16 Trace Summary	
10	Energy Distribution Schedule - 16 Trace Summary	
11	Average Annual Yields and Deliveries - 80 Trace Summary	
12	Average Annual CAP Quantities - 1986 Study vs. 1985 Study	37

LIST OF FIGURES

No.	Title	Following
1	Central Arizona Project General Location Map	Page
2	Colorado River Natural Flow at Lat	• Title
3	Colorado River Natural Flow at Lee's Ferry, Arizona	• 2
	Turnouts, User Locations, and CAPSIM Control Points	• 13
4	Reservoir Storage Breakdown	. 23
5	Central Arizona Project Deliveries	• 25
6	Typical CAP Deliveries and Frank	• 32
7	Typical CAP Deliveries and Energy Consumption	• 34
'	CAP Average Annual Deliveries - 80 Traces	36

•••