H. VERN PAYNE

HAROLD A. RANQUIST*
ROBERT E. POULSON ROBERT M. HALL ** NEILS L.THOMPSON STACEY A. JOHNSON MARCIA E. LUBAR
also admitted in utah \& idaho
*ALSO ADMITTED IN ARIZONA

PAYNE \& RANQUIST, P. C.
ATTORNEYS AT LAW
UNITED NEW MEXICO BANK BUILDING
200 LOMAS BLVD. N. W., SUITE 1020
POST OFFICE BOX 25204
ALBUQUERQUE, NEW MEXICO 87I25-5204
(505) 247-1144

January 27, 1987

Dr. Robert Behnke
Dept. of Fishery \& Wildife Biology Fort Collins, CO 80523

RE: $\quad \frac{\text { The Pueblo of Acoma } v . ~ C i t y ~ o f ~ G r a n t s ~ e t ~ a l ., ~}{\text { CIV } 82-1540 \mathrm{M}}$

Dear Dr. Behnke:
Enclosed please find a copy of Neal Armstrong's deposition recently recieved by our office.

Please review this in preparation for trial in the above entitled case.

Thank you for your continued assistance.

SAJ:cjw
Enclosure

THE PUEBLO

OF
THE PUEBLO OF LAGUNA, each on its
own behalf and each on behalf of
its repsective members,

Plaintiffs,
vs.

THE CITY OF GRANTS, et al.,

Defendants.

DEPOSITION_OF NEAL_ARMSTONG

BE IT REMEMBERED that on Friday, the $5 t h$ day of December, l986, at 9:30 a.m., this matter came on for the continuation of the taking of the deposition of NEAL ARMSTRONG on behalf of the Plaintiff Pueblo of Acoma; at the offices of Civerolo, Hansen \& Wolf, PA, 500 Marquette, NW, Suite 1400 , Albuquerque, New Mexico; before DONALD A. HILLAND, a Certified Shorthand Reporter and Notary Public.

$$
\underline{A}-\underline{P}-\underline{E} _\underline{A} _\underline{R} _\underline{N} \subset \underline{E}
$$

FOR THE PLAINTIFF PUEBLO OF ACOMA:

FOR THE DEFENDANT NM WATER QUALITY COMMISSION:

PAYNE \& RANQUIST, PC
Attorneys at Law
200 Lomas Blvd., NW
Suite 1020
Albuquerque, New Mexico 87102
BY: MR. HAROLD A. RANQUIST

CIVEROLO, HANSEN \& WOLF, PA
Attorneys at Law
500 Marquette, NW
Suite 1400
Albuquerque, New Mexico
BY: MR. PETER DOMENICI, JR.
(Continued)

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., $N W$ SUITE 1008 ALBUQUERQUE, NM 87102

FOR THE DEFENDANT CITY OF GRANTS:

ALSO PRESENT:

POOLE, TINNIN \& MARTIN, PC Attorneys at Law 219 Central Ave.. NW Suite 700
Albuquerque, New Mexico BY: MS. KATHLEEN PRICE WATSON

WALTER HINES

AFTERNOON SESSION
 (Exhibit 3 marked for identification.)

 NEAL_ARMSTRONG

 NEAL_ARMSTRONG}
was called as a witness by the Plaintiff Pueblo of Acoma and, having been previously duly sworn, continued testifying upon his oath, as follows:

EXAMINATION

BY_MR. RANQUIST:

Q. I hand you what's been marked Exhibit 3 to your deposition, and I would like to know: Where was the information obtained that's contained in that exhibit?
A. Where was it obtained?
Q. Yes, where was it obtained?
A. Where did I obtain it?
Q. Yes.
A. I obtained the document -- it was sent to me by the law firm.
Q. Do you know where it was obtained besides that?
A. No, sir. I believe this appears as an exhibit in Dr. Behnke's deposition, however.
Q. This one?
A. This information. Yes, I simply reversed the pages. It's Exhibit Number -- what is it? B-46?

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
Q. That's supposed to be on the front?
A. Well, the pages were in reverse order chronologically, and he simply, for my purposes, reversed them, chronological order.
Q. Have you analyzed the information contained in Exhibit Number 3?
A. I have looked through that and have processed some of the data in there, but I'm not through with it. There is an immense amount of information in those pages.
Q. And you say you're not through with it. What remains to be done?
A. I'm pulling out on a day-by-day basis the information on temperature, water discharge, water quality data, fishermen observed, fish catch, information of that nature, so I can get a better understanding of what's been done to the lake over the years.
Q. So you're cataloging all of the information - -
A. Yes.
Q. -- in that?
A. Yes.
Q. Based upon the information you have analyzed to date, have you found anything in there that's pertinent to the fishery claim in this case?
A. A great deal.
Q. Like what?
A. Well, those are records of observations made by Fish \& Wildlife Service personnel on the condition of the water at the time of observation, the fishermen, the fish being caught, the condition of the fish, information on creel census as being done, on gill netting, estimates of population in the lake, things of that nature. All of that is pertinent to the fisheries question.
Q. Now, have you found anything in there that in your opinion in any way would justify decreasing the fishery claim?
A. The economic claim?
Q. Yes.
A. Can you be more specific? Because the claim encompasses a number of things.
Q. I'm talking about the economic claim associated with the loss of the fishery.
A. Well, that claim, as I understand it, relates to loss of fishing opportunity in the lake, based on what is anticipated to be expected from the lake now and in the future. And what I have found, I believe, indicates that that claim is way overestimated.

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM
Q. Why do you say that?
A. I think for fishing opportunity to exist in the lake, the lake has to be managed in such a way that that's possible. And it's not clear from that document and from others, from Mr. Halfmoon's document, for example, that there has been a consistent overall plan for managing the lake as a fishery, that it's been somewhat haphazard. Various things have been tried here and there. And it's just not, to me, something that's been done in a very organized fashion.
Q. Did you analyze by what percentage you believe this document, Mr. Halfmoon's document, would reduce the amount of any claim?
A. No, I'm not prepared to say at this point.
Q. Are there any particular parts of this document upon which you rely in order to come to your conclusion about the overstatement of the fishery claim?
A. Well, that's a general conclusion at this point. The information in there relates to how the lake was operated. For example, drawdown periods, how water was released from the lake, was it on a regular basis, on an as-needed basis, how much was released, stocking program, what was the basis for
the stocking being done?

There is a lot of miscellaneous pieces of information that, as you begin to pull those together, begin to paint a picture that just indicates that the management of the lake was not done, in my estimation, in a very coherent way and organized way.
Q. In your analysis, was the damage claim based upon the income that had been done, realized prior to the decline of the lake?
A. Well, I'm not that familiar with the damage claim and the details of how it was calculated. That's embodied, I believe, in Mr. Ward's deposition. And I have only had a cursory chance to review that.

But I do know from conversations with Dr. Snyder, who is looking at this, and discussing it with him, that the estimates of income from the fishery, in the future at least, appear to me to be beyond what the lake could possibly support.

And some analyses were looked at this morning on use of the lake for a fishery and its fishing rate. Fishing measure would indicate to me that that needs to be looked at very hard to see whether that would even be possible to fish the lake at the rate that he, Mr. Ward, estimates.
Q. I see. Do you know whether or not the damage claim is based upon the same management practices that occurred in the past?
A. Not exactly. I need to look at that further to be able to answer that question. I simply know it's based on historic data that was used to make a forecast into the future of revenues gained from operating the lake as a fishery and that supposedly being lost, lost. revenues.
Q. Have you been able to identify any other data other than that that was provided by Dr. Behnke, Mr. Halfmoon, that reflects upon the fishery claim?
A. Well, there are several documents that Mr. Halfmoon has produced that relate to the lake. Besides. those and Dr. Behnke's report, and this Exhibit Number 3, and, of course, everything we've talked about relative to eutrophication, which relates to fisheries, I don't know of any other data that's available.
Q. In your opinion, in Acomita Lake, is the controlling nutrient the phosphorus or the nitrogen?
A. At this point, I don't. think either one of them is controlling. They are both at such high levels that biological processes dependent upon those nutrients are not limited by either one.
Q. Did you believe that was true prior to the time the lake was drained?
A. It's been true in my opinion since the lake was created. The nutrient level was high enough to produce, high enough to have been considered to phytoplankton in a lake system.
Q. Earlier, you testified that you had utilized the data provided by Mr. Tague concerning nutrients in the water in the stream of the Rio San Jose upstream from the sewage treatment plant.
A. Yes.
Q. Do you know what the dissolved orthophosphorous concentrations were in those samples?
A. I recall several milligrams per liter.
Q. No, is this design both the phosphorus or --
A. I'd have to look at the table and refresh my memory.
Q. Okay. To refresh your memory, was it 0.ll to 0.04 milligrams per liter?
A. Those numbers sound way too low, but, again, I would need to look at the table to refresh my memory.
Q. Will you please explain for us the difference between total phosphorus and
orthophosphorus in a water dam?
A. Total is an analysis that includes all forms of analysis in a water sample. It includes particulate phosphorus, or phosphorus attached to particulates or embodied in particulates, as well as dissolved forms.

It also include complex molecules of phosphorus. The orthophosphorus is a dissolved phosphate form. It's considered to be the form available to algae. The forms of phosphorus that are analyzed for the total phosphorus form do decompose to orthophosphorus.
Q. Over what period of time?
A. Well, it's the K-rate. The conversion rate is probably 20 percent per day. So, over a four- or five-day period, you would expect pretty much total conversion of one form to the other.
Q. Would you describe the biological availability of each form with respect to aqua growth?
A. Of phosphorus?
Q. Yes.
A. I just did that.
Q. If I understand you correctly at the moment, then, you're saying that it becomes biologically
available as orthophosphorus, regardless of its form in the beginning, over a four-or five-day period?
A. Yes. The orthophosphorus form is the form considered to be available to the algae.
Q. Do you believe that, in quotes, "dry flux," f-1-u-x, makes a significant impact on Acomita Lake in terms of nutrient loading as compared to other sources?
A. The nutrient budget that I have put together, which includes that flux, shows that the flux of nitrogen into the lake is but a small component of the total nutrient budget.
Q. How small?
A. But it cannot be ignored.
Q. How small?
A. Well, it's in the table that we looked at this morning.
Q. Okay. What is the potency factor utilized in calculating nutrient and phosphorus loading at the Acomita Lake?
A. The potency factor is a number that relates the nitrogen and phosphorus concentrations in runoff to the total suspended solids concentrations in runoff.
Q. Okay. We'd like for you now at present to BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
go through the description for us here of the Acomita Lake nutrient budget taken from Exhibit Number 2. And I know that you started on this earlier right before the benefit of our expert Mr. Hines. I would appreciate it if you would begin at the beginning and take us through the chart.
A. The nutrient budget that I put together is in two parts: One budget has been developed for the lake from the time it was created and began operating in 1938 up until 1954 and ojo del Gallo stopped flowing into the river.
Q. And you calculated that as of 1954 ?
A. Well, through 19 -- it's calculated on a per-year basis, but the conditions that I have used for the budget were those that would exist from 1938 to 1954, or maybe a year or two before that when the flow from the spring stopped reaching the river. I simply used 54 as a cutoff date because that was the date I believe that's been agreed upon as the date the spring stopped flowing into the river.
Q. From what source did you gather that that was the date that was agreed upon?
A. From the Aquascience Report.
Q. Go ahead.
A. The other part of the budget is one
prepared for the present time without the Ojo del Gallo contribution but with the contribution from the Grants treatment plant. So we have two budgets to look at, the conditions at the time the lake was created to the present time.

Within that budget, I have looked at some of the same sources that Mr. Hines looked at; namely, runoff to the lake directly, the contribution coming from the diversion, and the contribution coming from atmospheric sources.

I've, however, divided the contribution of the diversion into the contribution from water. diverted from the river directly to the lake as well as the runoff into the ditches as it moves from the river to the lake.
Q. How did you calculate that?
A. Again, I used a potency factor, the total suspended solids concentrations in runoff to the ditch that Mr. Hines used in his sedimentation balance for Lake Acomita. When he developed that budget for sediments in the lake, he estimated that so much reached the lake through the ditch from runoff in the hills into the ditch and then into the lake.

And so in trying to estimate the

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
contributing nutrients from that source, I used the potency factors, nitrogen, phosphorus, related those to the total suspended solids concentrations that he specified would exist in that runoff.
Q. Okay. What are the potency factors?
A. The definition again?
Q. Yes, I'm having trouble focusing on that.
A. The potency factor, again, is a way to relate nitrogen and phosphorus concentrations in runoff to the total suspended solids concentrations.

Once you know the total suspended solids concentrations in the runoff then you apply the potency factor. It's simply a ratio of milligrams nitrogen to milligrams TSS or milligrams phosphorus to milligrams TSS, except you multiply the potency factor times the TSS factor to come up with the milligrams phosphorus or milligrams per liter. That's the general relationship.

There are other ways to express that.
There are some log function relationships between TSS and nutrient concentrations. And these have been developed and compiled by contracts for the USEPA. And that's where I obtained the potency factors from that document.
Q. Does the source of the suspended solids
make any difference in the amount of the loading?
A. Oh, it would, yes.
Q. I see. How did you calculate what the loading was in the source? The $n i t r o g e n$ and phosphorus? Did you just take Mr. Hines' calculation, or did you develop your own?
A. Well, Mr. Hines didn't develop nitrogen and phosphorus content of the suspended sediments. He simply estimated the amount of sediments getting to the lake from runoff and to the Sandoval ditch and from it into the lake. But I used his TSS concentrations in these various sources and applied the potency factor to obtain the nutrient concentration.
Q. Tell me, are you familiar with the recent literature of G. Fred Lee in which he discounts the role of nutrient cycling from bottom sediments in terms of availability for later aqua growth?
A. I don't know the specific paper to which he refers.

MR. HINES: It was a series in
Environmental_Technology_and_Science a couple years ago.

THE WITNESS: I've seen that article, but I don't recall that it includes that discussion.

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM

That's generally recognized as being an important source. I would think he wouldn't discount that.
Q. (BY MR. RANQUIST) Now, have you seen any data for the potency factors for rural New Mexico streams?
A. No, I have not.
Q. What potency factors did you use? Where did you acquire them?
A. I acquired them from a contractor's report to the USEPA. The individual's name is $Z-i-s-o-n$, and these were factors obtained from various parts of the US.
Q. And what part of the US factor did you use?
A. The ones I settled on using were from the Seattle area.
Q. Why Seattle?
A. They represented the rural environment. That's where the analyses were made. And they yielded the lowest concentrations of any of those in the tables to be conservative.
Q. Was there any part of those tables that applied to the southwest?
A. No.
Q. Is Mr. Zison an environmental chemist?
A. I do not know his background.

BADAR \& ASSOCIATES, INC. (505) 242-7233
Q. Over what period of time did you use the runoff calculation in your budget?
A. Over what period of time?
Q. Yes.
A. The runoff to the lake directly?
Q. Yes.
A. The number I used for the flow is the one that was in Mr. Hines' report on the water budget.
Q. In your calculation, did you calculate that that runoff flow was a constant flow?
A. Well, in Mr. Hines' budget, it was expressed as so many acre-feet per year, as an average figure of acre-feet per year.

From other documents that I've seen, that figure is probably low. It's been estimated to be as much as 400 to 460 acre-feet per year. So, if anything, this number is low.
Q. So we're talking about the same thing, let's talk about the runoff factor contained under diversion --
A. Yes.
Q. - in the Rio San Jose and your runoff factor at the 2.2 to the fourth?
A. To the sixth? Oh, that's for the superscript. It explains the footnote.

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM
Q. Oh, I see. In calculating that factor, did you consider that to be a continuous flow?
A. Yes. Again, using the same flows that he used in the diversion and using the four milligrams per liter concentration storm water runoff that he used in his sedimentation survey.
Q. And you did consider that to be a continuous flow instead of an intermittent one that may have come --
A. Oh, no. This runoff is -- the value is one that is used in combination with the flow in the diversion. That is, the assumption is -- at least my assumption was - that the total amount of runoff flow coming to the lake would be the runoff that reaches the ditch as it's flowing, as it's carrying irrigation water or diversion water into the lake. So the sediments that reach the lake, may reach the ditch, are going to be transported into the lake. The same assumption that he made.
Q. I see. Is it the same in amount?
A. I'm sorry?
Q. Is your calculation the same in amount as his?
A. I believe we used the same flows, yes.
Q. Are you aware that the mean suspended

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
sediment concentration during the irrigation season is less than 100 milligrams per year?
A. No, I'm not aware of that, if that's an average or -- I don't know what that number is. I don't know where it comes from.
Q. If that's true, would that make your calculation of this amount inaccurate?
A. No. It would simply say that the runoff that reaches the ditch has a TSS concentration of 400. What happens to the solids after they reach the ditch is, I assume, the same as he did, that they reach the lake being transported at a lower concentration, maybe at 100 , but into the lake still. They still get there. We still made the same assumption, that the solids that come into the ditch reach the same point.
Q. Reach the lake?
A. If that's going to be true for the sedimentation budget, it's got to be true for the nutrient budget also.
Q. Let's go ahead with your explanation. Let's turn to page 2 of the Lake Acomita nutrient budget.
A. With the treatment plant?
Q. Would you explain that chart?
A. Well, the only thing that's changed on this chart compared to the previous chart is the contribution of nutrients from the Rio San Jose. That diversion now includes nutrients in the river contributed by the treatment plant.

What we did was to estimate the nutrient concentrations at the North McCartys diversion with contributions from the treatment plant, Horace Springs, and Anzac Springs.

We've, of course, omitted Ojo del Gallo. We assumed that based on the kind of decreases in concentration of nutrients that Mr. Hines observed in his study that the concentration of maximum phosphorus being discharged from the treatment plant would be approximately 50 percent at North McCartys diversion of what they were in the treatment plant. With that assumption, and using the concentration nitrogen phosphorus in the spring water again that appear in Mr. Hine's report, we estimated the nutrient concentration at North McCartys diversion and assumed that those nutrient concentrations would be in the water being diverted to the lake.
Q. The entry of the figures on that last paragraph where it says Grants STP - -
A. Yes.

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
Q. -- the quality l. 7 CSF --
A. Yes.
Q. -- and total nitrogen equals 9 milligrams per liter, is that at Acomita Lake, or is that at the plant?
A. That's at the diversion. That's after it came from the plant. We assumed the concentrations are 18 for total nitrogen and 18 for total phosphorus.
Q. Okay. Now, over lunch I asked you to make the calculation as to what percent of the total - -
A. Yes.
Q. - nutrients had their source in the sewage treatment plant?
A. Yes.
Q. What is that?
A. For nitrogen, it's 10.8 percent. And for phosphorus, 35.8 percent. Those are preliminary estimates because, which I mentioned also this morning, this budget does not include some sources that are yet to be accounted for.
Q. Such as?
A. Such as the erosion of soil from the dam in the shores of the lake that Mr. Hines included in his sedimentation budget. Those will contribute
nutrients also. The storm water runoff that gets to the river as it makes its course from the treatment plant down North McCarty diversion. Those are at least two important sources that need to be added to this.
Q. Do you have that calculation? May I see that?

Is this calculation valid for the
biologically available nutrients?
A. It's -- yes.
Q. Would that be the same as the total nutrient?
A. Well, it includes both.
Q. I see. Then --
A. One can be converted to the other, eventually.
Q. Eventually. Over four or five days?
A. Or faster in the summertime or slower in the wintertime. It just depends. It's a biological process, which means the rate is the function of temperature.
(Plaintiffs' Exhibit 4 marked for identification.)
Q. (BY MR. RANQUIST) Now, I show you what's been marked as Exhibit Number 4 to your deposition. That is the calculation of the total nutrient
loading that you've made for us?
A. Well, this is the calculation of the contribution from the Grants treatment plant --
Q. Yes.
A. - to the lake following the format of this budget.
Q. Right. Okay. You have various charts that you have used and have attached to that Acomita Lake nutrient budgets?
A. Yes.
Q. We'd like for you to explain the charts.
A. All right. These are called nutrient loading diagrams. They have been developed over the years as an attempt to relate the nutrient loading to a lake to its trophic status, whether it's eutrophic or oligotrophic or whether a lake is in danger of becoming -- having that status.

The first diagram was compiled by a Dr. Vollenweider. This work was done or published in 1968 and relates a morphometric feature of the lake, meaning depth, on area loading phosphorus.

What he did was to examine a number of
lakes in Europe and North America, primarily in
Europe, based on water quality and biological
characteristics of the lake and how they were

BADAR \& ASSUCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
characterized by researchers working on those lakes as being oligotrophic, mesotrophic, or eutrophic; compiled or plotted those lakes as points on the graph; that is, based on their mean depth and nutrient loading rate, plotted them on the graph; and discovered that oligotrophic lakes tend to group in an area in the lower part of the photographic graph, eutrophic in the upper part of the graph, and there were some in the middle that were in a mesotrophic state. That is a change in productivity. Eutrophic means high productivity. Oligo means low productivity.

On that basis, he then estimated the lines in the graph which would indicate in one case permissible loading; that is, a lake could receive that much nutrient loading and still retain its Oligotrophic state; another line that's called excessive loading, or in some cases dangerous loading, which means that lakes that fall above that line are experiencing a rate which will cause eutrophic symptoms and problems.

This first diagram is simply the same diagram that appears in Mr. Hines' report. And what I've done is to plot on the diagram the loading rates to Lake Acomita that I've calculated from the
past and the present. And the point $P A$ here simply means that this is the historical loading before the treatment plant began discharging. And it indicates for Lake Acomita, with a mean depth of 3 meters, that the lake is in a very highly eutrophic state or loading rate on historic loading alone. Adding in the treatment plant, taking out Ojo del Gallo, boosts that rate for phosphorus a bit.

The other points on here relate to the areal loading that apply in the fertilizer we talked about this morning would have produced for those two years.

And then the last two points, the open circles, represent the nutrient loading from Hines' report. The upper point, the "H" with the with symbol indicates the Hines' budget with treatment plant. The lower points is the Hines budget without treatment plant.

And even his own budget indicates that at that loading rate with this diagram the lake would be experiencing a eutrophic loading, a eutrophic rate.
Q. And over what period would that reach such a point that it would be destructive of the fishery?
A. Well, if this is the loading rate without
the treatment plant and that represents, basically, present and historic conditions without the plant, that means even with his budget and this diagram that the lake would be experiencing eutrophication problems within a few years of its creation.
Q. Okay. I understand. You explained to us in the beginning that every lake suffers that?
A. Yes.
Q. So, apparently, it's just a question of differences in rate?
A. How long, and the rate at which nutrients are deposited in the lake as opposed to sediments. Does the lake fillup with sediments faster than it begins to experience its problems?
Q. So if Mr. Hines' calculation is correct, by what factor has that changed that eutrophic life?
A. Oh, that's very difficult to say. The diagram simply says for lakes that have been observed, whatever their age, that they're experiencing those problems. It's hard to know from the data that's used to support this how long that took. But based on nutrient loading to recent lakes, like reservoirs, it's very clear that it doesn't take very long for those symptoms to be felt. And I studied those lakes myself.
Q. When you say "very clear that it doesn't take very long," what are you talking about?
A. The first year.
Q. You mean to make them unusable?
A. No, not unusable. But they show some of the symptoms of eutrophication: high algal
populations, lower concentrations of dissolved
oxygen in the hypolimnion. So it does that. So in
a new reservoir that we examined -- I examined or led a five-year research project in southeast Texas in the first year that the lake was in existence - those kind of problems were evident. And they've been evident ever since. Because the nutrient loading to the lake was far in excess of what would be allowable, based on diagrams such as this.
Q. I understand. Now, what I'd like to get at is for you to explain for me how much this would shorten the life of a lake if the nutrient loading exceeded the standard that you have described by the amount shown.
A. Oh, that has to be addressed in another way.
Q. Yes.
A. That is, this loading may produce - and that needs to be estimated, this loading, or the one I've estimated as a background, or without treatment

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM
plant, for the lake will produce certain
concentrations of nutrients in the lake. Those
concentrations are going to be functions of flow
through the lake. So the hydraulic balance is
important.
It's going to be a function of nutrient sediment within the lake through the sediments and the biomass within the lake. And if the
concentrations produced in the lake are high enough; that is, above what are considered critical nutrient levels to algae, then, the processes that depend on the nutrients, like growth of algae, will be growing as fast as they can grow; that is, nutrient concentrations are high enough for the plants to be growing at their maximum rate.

And it doesn't matter whether you add more nutrients, the plants are going as fast as they can go. When that happens, the processes that govern eutrophication problems and symptoms go at the same rate, basically. And it doesn't matter how much more you add. Once they're going as fast as they can go, they stay at that rate.
So there is not a linear relationship, or even nonlinear, between the life of the lake and the eutrophication problems.

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM
Q. So is the rate of the lake at which it can detrophicate -- is that the proper word?
A. Eutrophy.
Q. Eutrophy. Has it reached its maximum at this point, as indicated by Mr. Hines' data?
A. Well, I don't know. That's why I've had - I'll have to do the calculations based on Vollenweider's mass data and others to come up with nutrient concentrations in the lake to determine that. Generally, if we're above this line, then we're going to be at concentrations that will be at or above that level.

Now, we can go ahead and say that this diagram has been superseded by others. This is now obsolete, okay? And there have been other diagrams developed. The most recent ones in 1976 were in the literature when the work on this river - when the lake was done. And I have used those to come up with a more realistic idea of the status of the lake at the present time, based on the past and present loading estimates that I have developed.
Q. Okay. And let's discuss those.
A. The second one is a Vollenweider's diagram that incorporates the hydrodynamic balance in the lake; that is, he recognized that water flow out of
the lake transporting nutrients out was an important mechanism to rid the lake of nutrients. And because of that, it's possible for the lake to not
experience eutrophication problems with a given loading rate which on the previous diagram might have indicated that.

On the X axis we have the ratio of mean depth to hydrolic residence time. I used the water budget in Mr. Hines' report to estimate residence time for the lake and divided that into the mean depth of the lake, three feet, came up with the ratio of just over two for the ratio of mean depth to residence time.

Again, following up the graph, we see that the loading rates of phosphorus, in this case, past and present, are still well in the eutrophic zone.

So the bottom line hasn't changed. The picture is the same. It's just that this diagram represents a more realistic situation in the sense that not only is the shape of the lake taken into account but the hydraulic balance of the lake is taken into account.
Q. Okay. Now, have you ever been able to calculate with respect to that whether or not it has reached -- the nutrient loading has reached that

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
point at which it no longer increases the eutrophication problem?
A. No. It's the same calculation that would have to be done on that.
Q. Same way?
A. Yes.
Q. Okay. Next chart?
A. Next chart is Vollenweider's most recent diagram. And it now incorporates the loss of nutrients within the lake due to decay or uptake or sedimentation, whatever accounts for the loss of the phosphorus in the lake, and indicates that -- again, we have mean depth over residence time on the X axis, loading rate on the Y axis, and, again, here on this graph, the bottom line is still the past and present loadings are high enough to produce eutrophic conditions.
Q. And, again, the question of whether or not we've reached the maximum, you would have to do the other calculation on it?
A. Well, the equation I would be using in all of the cases is the one that represents this graph. It's the Vollenweider mass graphic equation that accounts for nutrients coming into the lake, leaving the lake, and lost in the system. It does not

BADAR \& ASSOCIATES, INC, (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM
account for internal loading, by the way.
Q. And internal loading is -- explain that.
A. Sediments release -- nutrients released from the sediment. The question that Mr. Hines was asking a minute ago, or alluding to a minute ago, from G. Fred Lee's article.
Q. So, tell me, from the creation of your chart, can you tell us whether or not the difference between Mr. Hines' calculation - I notice that doesn't happen to appear on your last two charts?
A. No. It only did on the first. We can plot it very easily, though.

It's 1.2 and 2.2. 1.2 is about right here, and 2.2 is about right there.

So even with his budget --
Q. Okay. Would you put a circle around those so they can be identified?
A. I'll mark it the same way I marked the first draft.

So it indicates that with this loading -and even the one without the plant - the first one is in the eutrophic zone, definitely. The second one is the upper part of the mesotrophic zone, which means that this lake is being loaded at the other rate, which would put it into the eutrophic zone at

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
some point.
Q. At some point?
A. Yes. It's in the transition stage between oligotrophic and eutrophic.
Q. Is it possible for you, using the methods you're discussing, to determine the difference in time over which the useful life of the lake for a fishery would be as between the lowest point on Mr. Hines' calculation and his highest point?
A. Not from this analysis, no.
Q. Would it be possible for you to determine the difference in the useful life of the lake as a fishery between the points in your calculation between your historical loading, as you call it, and that loading in which the --
A. No, that's not possible.
Q. That's not possible?
A. Not with this kind of analysis, no.
Q. It is possible to do, though?
A. It's possible to get a handle on that using a time dependent nutrient model to lakes.
Q. And that's a rather involved --
A. It's a rather involved process, yes.
Q. Would you go on and let's discuss your next chart?

BADAR \& ASSOCIATES, INC.
(505) 242-7233

200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM

A. The next chart is one prepared by a worker

 named Dillon. Dillon was a student of Vollenweider, worked with the same data base that Vollenweider had. He felt, however, that nutrient retention in the lake was the important parameter that should be embodied in the analysis of the lake.And so by looking at the phosphorus budgets for a number of the lakes that Vollenweider studied, he calculated the phosphorus retained in the lake, expressed that as retention coefficient R, related this loading parameter - it's not the same loading rate as in the previous graphs, but it's a loading rate that incorporates the effects of retention and the flushing effects of water going through the lake -related that to mean depth of the lake and found that by replotting Vollenweider's data on this graph he got much the same story represented by the previous graph but he simply incorporated a more realistic situation of what happens to phosphorus nutrients in the lake. The bottom line doesn't change.

And I have not plotted the data on this graph because it's not possible to construct or calculate a retention coefficient for phosphorus at Acomita Lake. We don't know enough about the

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
outflows from the lake, number one. And we don't know enough about the nutrient concentrations in the outflows to be able to do that.

So there are ways to estimate, based on
experience from other lakes. I have not had a
chance to decide whether Lake Acomita falls into the range of the data used to calculate those retention coefficients. I have not done that analysis and not plotted that point.
Q. All right. Let's --
A. My experience is, however, that plotting data on this graph does not change from this graph enough to worry about. I mean, it helps to corroborate the data and the final conclusion, but it's not different enough to think that that's going to tell a different story.
Q. All right. Now, let's take the next chart. And this is a graph chart? It says mean depth, in parentheses, "M," and then nutrient loading versus mean depth?
A. Well, this is nitrogen loading versus mean depth.
Q. Yes.
A. For many lakes --
Q. Excuse me. That's nitrogen loading, and

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
not nutrient.
A. Nitrogen loading, and not nutrient.
Q. Sure.
A. For many lakes in the southwest, and we have a number of these in Texas, in particular, and I should say reserviors, not lakes, we find that nitrogen is tending to be more limiting a nutrient than phosphorus. And as a result, the loading diagrams for phosphorus don't have any relevance in terms of using them to suggest treatment needs or whatever to limit nutrients reaching the lake and to reduce the loading so that we get down into the mesotrophic or especially oligotrophic part of the graph.

There was some work done in Florida in relationship to a nutrient evaluation of Lake Okeechobee to try to come up with relationships of nitrogen, relationship to the lake, and their relationship to eutrophic symptoms in the lake.
Q. Is what you've just explained indicating that $n i t r o g e n$ is the limiting nutrient?
A. No. I'm saying that what I've seen in Lake Acomita, that the concentrations are so high now that neither is limiting. I'm saying that -- I'm giving a paper in San Francisco next week on six
lakes that exhibit these conditions.
These kinds of loading diagrams enable us then to make some judgment about allowable nutrient nitrogen loading for those kinds of lakes.

To date, these diagrams have never appeared in press or any report. The equations that are used to describe them are contained in this report I've submitted to the State of Texas, the Texas Water Commission, that you've requested a copy of.
Q. Yes.
A. And the tables are, I believe, in the folder that you have labeled as one of the exhibits. So the information used to compile these graphs is already in a draft report form. And they're the same equations in the Lake Okeechobee report which has been in press - available for the public for about six years.
Q. Okay. Now, in the nutrient loading, as demonstrated by Walter Hines' report, where would they fall with respect to this chart?
A. That, I don't know. I don't have those numbers calculated.
Q. You can't add that up just like you did on the --
A. Well, this is for nitrogen, and the other
is for phosphorus.
Q. Right.
A. And I don't have those calculated.
Q. You don't have the numbers calculated. All right. Let's go to the next chart.
A. Okay. The series of charts here are exactly the same as they were for phosphorus. Loading versus mean depth, loading versus mean depth over residence time. Loading versus mean depth over residence time but now modified, and then loading parameter of Dillon versus mean depth. So it's the same parallel graphs to the phosphorus graphs.
Q. All right. Now, would you explain for me, what is the pertinence of your calculations in your charts with respect to Acomita Lake and Acoma's fishery claim?
A. The purpose was to see whether the lake at the time it was created was experiencing a nutrient loading which would produce some of the eutrophication symptoms: high algal concentrations, low DO in the bottom waters, highly organic sediments, anaerobic sediments, things of that nature, whether those conditions would be produced by the loading to the lake, the nitrogen and phosphorus at the time it was created. If that was
the case, then the lake would have been in danger of exhibiting those symptoms soon after it was created and would have been doing so throughout its life.
Q. Do you know whether that was true?
A. No, I don't. I don't have the information on periods way back then to know.
Q. If that were true, why would the Fish and Wildiffe be recommending to Acoma and actually applying that nutrient loading that was applied in the 60's?
A. Well, it was a nationally used process for fertilizing the lake. I mean, if this lake were exhibiting -- were showing algae in the lake, showing rooted plants along the shoreline, all of those are considered important attributes to a lake to support a fishery. The plants provide cover for the fishlings. The algae provides a food base for the food chain that eventually supports the sport fish. So my guess is the service would have seen the lake as being attractive from that point of view.
Q. But if they already had sufficient nutrient loading, wouldn't that have been apparent?
A. Well, it should have been apparent in the fact that there was the algal growth and the vegetation already there.

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM
Q. Okay. Now, assuming that they know their business, then if your calculation is accurate, then would not an experienced Fish and Wildife person have known that nutrient loading was not needed?
A. Well, the general practice was, in starting a fishery like this, since they didn't know what kind of fish were in there -- or maybe they did but didn't want those fish -- the general practice is to drain the lake and to poison the rest of the fish in the water that remains in the lake to get rid of all of the fish that are in the lake and to start over.
Q. Did they do that?
A. They drained the lake in l96l. The lake was filled up, fertilized in 64,64 and 65 . Stocking began about that time. Everything that was done at that time was following cookbook procedures for lake management for supporting of the fishery. So even though the water coming in had produced good conditions in the lake and those were expected to continue once the water came back into the lake, the practice was to drain, poison, and restock --
Q. And fertilize?
A. -- and fertilize to be sure --
Q. Fertilize?
A. -- to be sure that you had the food

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
organisms there to support the fishery.
Q. I see. And having done that in this case, what effect did that have on Lake Acomita for the period 61 to 65? Or 63 to 85? What effect did the nutrient loading applied in 63 have?
A. The fertilizer?
Q. Yes.
A. It would add to the nutrients already in the lake. But since the purpose was to produce large populations of algae to support the food chain, basically, the intent is to make the lake trophic to support the fishery. That's the general intent of that kind of activity.

And, in fact, if anything, the lake was underfertilized, based on recommendations in a Texas A \& M publication on pond management. They recommend that application of $n i t r o g e n ~ a n d$ phosphorus initially followed up in successive weeks by smaller applications. So, in essence, they didn't have enough.
Q. Okay. Now, once that's done, what would you anticipate the life of the lake would be? They make it eutrophic, and so that means that it's in a mode in which it's going to die someday.
A. Yes.

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
Q. What would be the life?
A. That's -- the life, if we're talking about how long until the lake fills up, that depends on the sedimentation rate, as well as the magnitude of organic biomass being produced and dying and contributing to the sediment. That's very hard to estimate.
Q. Well, let's assume at the moment that they're able to control the depth of the lake by controlling the sediment inflow. How long will the lake last under the conditions that actually occurred out there that you've analyzed? That includes everything that's gone in. How long would that last?
A. Again, it would require analysis of how rapidly the sediment builds up with the production of organic biomass.
Q. We're controlling the sediments so sediments no longer build up.
A. I understand you're controlling the sediments so sediments no longer builds up coming in with the inflow, but there is still sediment being generated by the death of plants and fish in the lake that contributes to the sediment.
Q. Okay. Then what's a range usually for a

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
lake like this? You know, is it three years or 20 years or 100 years or can you tell me?
A. No, I can't tell you offhand. It should be
a long time, but I couldn't tell you offhand without knowing more about the magnitudes or productivity in the lake and rate of generation.
Q. Okay. Now, then, have you examined the lake to determine whether or not their statements by Mr. Halfmoon about the fish developing stress were accurate?
A. You mean have I sampled the lake for that purpose?
Q. No, have you looked at the data, all of the data that's available, to determine whether or not that is an accurate assessment?
A. I've looked at as much data as I could find in the periodic observations in Exhibit 3 .
Q. Yes.
A. And from the special survey that he did. it's still not possible to relate exactly the water quality conditions that were present at the time that fish stress was noted here.

In some cases, there were some mitigating circumstances. For example, in some cases fish kills are reported, but it's due to known loading
that's been done along the shore of the lake or application of herbicides for root or plant control.

In other cases, kills have been reported
when the lake is being drawn down and the water quality is naturally poor because of the mixing up of the bottom and the water there being poor quality
simply because of the organic sediments being
disturbed in the draining process.
Q. What is the significance of unionized ammonia concentrations as calculated in your exhibit?
A. I don't think I've calculated those in my exhibit.

MR. RANQUIST: Let's take a break for a moment.
(Recess taken.)
Q. (BY MR. RANQUIST) If the Acoma Pueblo were to construct a sediment pond that captured between 70 and 80 percent of the sediment load at Acomita Lake, how would that reduce the nutrient load you've calculated?
A. Reduce the sediment by how much?
Q. 70 to 80 percent.
A. It would reduce a nutrient load to the extent that nutrients were trapped with those sediments. I do not believe it would change the
nitrogen contribution much at all because nitrogen tends to stay in solution. It's not attached to the sediment. So even though the sediments drop out, they stay in the water that would pass on over a spillway into the lake. Because phosphorus tends to attach to solids, they would tend to settle out. But only a portion of those would stay with the sediments.

To the extent that the clays and silts did not settle out and passed on over the spillway, the phosphorus would tend to be attached to those particles and pass on into the reservoir.

So a sedimentation pond would capture the heavier particles, which would be the sands, and heavy silts would pass on, I believe, the clays and light silts which would contain most of the phosphorus.

So in terms of nutrient removal, I think it would be fairly small. Very small for the nitrogen, and only a small fraction of the phosphorus.
Q. You think the phosphorus would travel with the clays?
A. With the clays and very light particles that are typically the materials that cause the turbidity in the water. And those would pass, I

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM
believe, right on out of the siltation pond.
Q. What is it that remains for you to do to be able to prepare your final conclusions with respect to the information contained in the Halfmoon and Behnke studies?
A. What remains is to complete the analysis of the Fish \& Wildife Service data, their periodic observations in the lake, to analyze --
Q. There you're talking about Exhibit Number 3?
A. Yes, that exhibit also, the special survey made of the lake by Mr. Halfmoon back in 1982 at the request of the pueblo.

Also to get explanations from Mr. Halfmoon of the extensive tables in the back of his report on catch rate, use of the lake by fishermen, other information that's contained back there.

It would also require my looking at the environmental requirements of the specific fish that have been stocked and make a judgment of whether the environment that's in Lake Acomita will continue to be one that would support that fishery as a put-and-take fishery.
Q. Over what period of time?
A. I'm sorry?
Q. Over what period of time?
A. Well, the future. There is no set period of time.
Q. Okay. Now, would you repeat your last sentence? I guess I'm not sure I followed you.
A. Well, in order to determine whether water quality conditions or environmental conditions are suitable for an organism, one has to look at the environmental requirements of the organism, temperature tolerances and preferences, dissolved oxygen tolerances and preferences, things of that nature, to make a determination whether or not things are suitable for that organism and its food organisms.

And for the specific species being stocked; that is, the various species of trout, catfish, I simply need to examine the literature to pull that information out; and then to make my judgment of the suitability of the Acomita Lake environment to support those fish.
Q. And when you do that, will you be able to put a time frame on it? Say it would be suitable for, you know, an estimated period of so many years? Is that possible?
A. Well, the assumption would be that the fishery could continue as long as the lake is
managed properly. And managed properly means managed in terms of hydraulic flow through the lake, to ensure that there is an exchange of water through the lake, to flush out nutrients in the bottom and the poor water quality conditions that occur in the bottom of any lake, to make sure that those are passed on through, to be sure that the stocking being done in the lake is in accordance with good fisheries management.

It's not clear to me from what I've seen that the Fish \& Wildife Service has a good plan for stocking. Numbers change from year to year, the proportion of efficiency changes from year to year. What's the Service's plan for that lake? What do they recommend should be done to keep that fishery best for those who are using that fishery? That's not clear to me that that kind of plan is available or has ever been available.
Q. All right. What impact would that have on Acoma's fishery claim?
A. Well, number one, again, with the information I've already mentioned earlier about fishing measure versus fishing catch; it would indicate whether or not the kinds of catch rates or success of fishermen catching fish out of that lake
would ever be achievable. I mean, there is just so many fish you can catch out of a lake like that. And yet you can't arbitrarily say if you put more fish in you're going to get more fish out. At some point, the lake cannot support that number of fish. The question is: How many is that?

There are good guidelines in lake management books on how many fish ought to be stocked per lake -- I mean per acre of lake surface. The stocking rates in this lake far exceed these numbers, but they're not the same species. I mean, they may be bass or catfish versus the trout. But I simply want to see for this kind of fishery for the Fish \& Wildife Service what their guidelines are for stocking fish in a put-and-take fishery, particularly trout. And that information is not evident.
Q. All right. Turning to Mr. Halfmoon's report, as contained in the back of the Hines' report, Mr. Halfmoon has stated on page 6 of his report in Appendix A - Appendix B that angler success in Lake Acomita has decreased since the late 60's. Then he quotes figure 8 to establish that: "Catch rate peaked in 1966 and generally declined to a point where it took an angler 3.85 hours to catch

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
a trout in 1982." Do you have any information that causes you to disagree with that?
A. No.
Q. Do you have any information to disagree with his statement contained in the summary on paragraph -- or excuse me -- on page 8 , second paragraph of the summary, in which he states --
A. Excuse me. That's page 7, is it not?
Q. Yes, page 7. I twisted my tongue. It's on page 7 , second paragraph of the summary on page 7 , of his report, in which he states, "Fluctuating water levels brought about by irrigation have extended aquatic vegetation zone to greater depths within the lake." Based upon your examination of the information, is that accurate?
A. The information that's in the records does not document that spreading of the plants. The drawdowns, however, would produce that effect.
Q. All right. Now, he said, "As a result, fish have less living stratum area available, and the fishermen had more difficulty reaching the areas containing the fish."

Then he states, "In recent years, however, the lake was no longer used for irrigation purposes and a more stable water level maintained."

Then he states, "But the nutrients in the water and in the sediments caused the nuisance vegetation to continue." Do you agree?
A. Well, the nutrients are coming from the sources we've talked about, the natural inflow to the lake, as well as being recycled from the sediments.
Q. Yes, I understand that you disagree as to the proportion that each of those contribute to the total involved in the lake.
A. Yes.
Q. Now, Mr. Hines has estimated that only 30 percent of the adverse impact created by the nutrients is attributable to the sewage treatment plant. Do you disagree with that?
A. Yes, I would.
Q. In what way?
A. I don't think that there is a proper foundation been laid for that assumption. The assumption is, as I understand it, that is in proportion to the contribution of nutrients to the lake.

And as I've stated before, the natural loading of the nutrients to the lake from the time it was created have produced the kinds of water

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
quality conditions that are seen there now.
And the addition of nutrients from the treatment plant, or any other source, for that matter, would not have worsened those conditions, again, because the biology of the system, the plants in the system, are producing organic material at the maximum rate they can, based on nutrients available. And I don't see that adding more nutrients to the treatment plant or any other source could change that.
Q. Have you done a calculation to determine whether or not the nutrients in the lake are at present producing to their maximum?
A. Well, I've seen concentrations of nutrients in the lake, and they are for nitrogen phosphorus. My recollection is that they are above the levels considered critical for growth of the plants. There has been precious little of that work done, however.
Q. Now, we discussed orthophosphorous, and we discussed sediments. And you stated that over a four- or five-day period the nitrogen and phosphorus in - or excuse me - the phosphorus in the sediments converts to orthophosphorus?
A. Well, $I^{\prime} m$ sorry. You are not talking in reference to sediments at that point. My

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM
understanding was it was simply phosphorus in the water, not in the sediments.
Q. Okay. The total phosphorus in the water.
A. Yes.
Q. Okay. If part of those total phosphorus are in the sediments, and if I understand correctly here at the moment, your calculation of total load for the phosphorus in the lake includes that?

That's included in the sediments?
A. No, it does not.
Q. It does not include that. Then that's transported in with the sediment?
A. Oh, we're getting several things confused. MR. DOMENICI: I'm going to object to the question, Harold. It's vague, overbroad, and it's compound.
Q. (BY MR. RANQUIST) Now, I understood you to say that the total phosphorus including that in the sediments converts to orthophosphorus; is that accurate?
A. Okay. You're talking about sediments that would be carried in with inflow as opposed to sediments in the bottom of the lake?
Q. Yes.
A. I thought you referred to the bottom of the BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
lake a minute ago, and I was still thinking about those sediments.
Q. Okay. So does the total phosphorus in the sediments convert to orthophosphorus over that fouror five-day period?
A. Well, the phosphorus that often attached to the sediments will be in basically one of two forms: It can be an organic particle that contains the phosphorus, a decaying piece of life or a dead fly or something. It's going to show up as a suspended solids particle in that analysis, but the phosphorus will be contained in the carcass or piece of organic material.

There could also be phosphorus attached to a sediment particle, like a piece of clay or a silt particle. That would tend to be in the ortho form and be transported with that sediment into the lake.
Q. I understand that. But then when you take the total phosphorus load that comes in with the sediment, there is a portion of that phosphorus then that is not in the ortho form, correct?
A. Yes. Oh, yes.
Q. And you were telling us that it takes four or five days to convert that to the ortho form?
A. At a decay rate of about ten percent per

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
day, 20 percent of the mass being converted per day, about five days.
Q. What happens to that rate if the sediment then settles to the bottom of the lake? Does the rate change?
A. Well, first, not all of those particles are going to settle to the bottom. Many of the organic particles will stay in suspension. And the conversion process occurs in the water column. Sediments that go into the bottom will immediately be on the water surface -- I mean, the settlement surface. There still is the opportunity for exchange of that phosphorus with the overlying water column.
Q. Have you done any study out there to determine at what rate that occurs?
A. No. No, I don't think at Lake Acomita, no.
Q. So with respect to the total phosphorus entering the lake, that's not all converted within four or five days to orthophosphorus, is it?
A. Not in the sediments, no. I mean, their anaerobic processes dominate, and it's a slower process.
Q. In the conclusion of his report, Mr. Halfmoon states, "In my opinion, discharges from the

Grants sewage treatment. plant have contributed to rainbow trout habitat loss in Lake Acomita and the Rio San Jose stream. The stream system appears to be loaded to or near its carrying capacity with nutrients and sediments."

Now, taking the second statement first, "The stream system appears to be loaded to or near its carrying capacity with nutrients and sediments," do you agree with the statement?
A. I can't make a judgment. I don't know what he means by carrying capacity of the stream.
Q. Now, the statement concerning, "In my opinion, discharges from the Grants STP have contributed to the rainbow trout habitat loss in the Rio San Jose," do you agree or disagree with that statement?
A. I have to disagree with it until complete my own analysis.
Q. Do you have anything at present that indicates that he is not accurate? Anything you know of?
A. No. As we discussed this morning, that's an area that I 'm just getting into.
Q. Okay. Next he states, "In my opinion, discharges from the Grants STP have contributed to BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
rainbow trout habitat loss in Lake Acomita." Do you agree or disagree?
A. I don't disagree with the statement because certainly any nutrients coming in that have caused water quality problems that would effect the trout have contributed to any water quality, including the trout. Certainly the magnitude has to be weighed against all of the other things that affect rainbow trout habitat and the fishery. And by that, I mean, primarily, the way the lake has been managed as a fishery system.
Q. It's stated, "In 1983, Lake Acomita reached a point which required corrective action." Based upon your examination of the data, do you agree or disagree?
A. It's hard to tell from the data why 83 was any different from the other four or five drawdowns that have occurred in the history of the lake. The first one, of course, was done to prepare the lake for use as a fishery. Others have been done because the outer works failed. They had to be repaired. But others have been done correctively to improve conditions in the lake. But there is never enough documentation then or in 83 to indicate why the lake had to be drained to improve that habitat.
Q. If that decision were made by the pueblo with the advice of the Fish \& Wildlife Service, do you have any information that indicates to you that that decision was improper or unnecessary?

MS. WATSON: Do you mean the decision to draw down the lake in 1983?

MR. RANQUIST: Yes, the decision that it required corrective action.
A. I have not seen information that would support that decision. The information I have seen on water quality in the lake, temperature, dissolved oxygen, and so forth, would indicate that the conditions in the lake for those parameters have not changed over a long time.

There is nothing about 83 that would have caused the lake to be drawn down that year as opposed to any other year. But the water quality conditions in the lake, temperature, and dissolved oxygen are very good. They're typical of that kind of a lake.
Q. (BY MR. RANQUIST) And that's up through 83 through the drainage?
A. Well, the lake data that we have from the field observations is 82.
Q. Yes.
$B A D A R \& A S S O C I A T E S, ~ I N C$.
(505) 242-7233

200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
A. And Mr. Halfmoon's special survey of the lake in 82 was done in October of 82 , I believe, and that's the last data point we have. I can only presume the decision was made sometime soon after that to drain it the next year.
Q. You have already commented about the creation of the charts by Mr. Halfmoon?
A. Yes.
Q. And you have commented that you have some difficulty with respect to how the information was gathered and amassed for his particular purpose. Do you have any other problem with respect to those charts?
A. Well, it's not really a difficulty, it's just a need for explanation of how those numbers came about. To understand the data base that's been produced, there is a need for explanation of how the data were gathered, how the calculations were made to come up with the numbers that were there. That information is simply lacking in his report.
Q. Okay. So are you prepared to make any further comment with respect to those charts or that data?
A. I can comment on specific points, if asked. I'll try to do my best.

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM
Q. Is there any other point in respect to Mr. Halfmoon's report with which you disagree that we haven't discussed?
A. I would have to go through it again to see. My general disagreement with the report is in the conclusion that the Grants plant has contributed to the decline of the fishery.

As I have stated several times, I think the management of the lake has produced perturbations and changes that affect that success as much or more - probably more than any effects of the plant.
Q. I show you what is entitled the abstract, by Dr. Robert Behnke, "The Assessment of Potential Fishery Values in Relation to the Water Quality Value in Acomita Lake, Acomita, New Mexico." You've examined that report?
A. Yes, I have.
Q. In discussion of the fishery in the Rio San Jose on page 4 of Dr. Behnke's report, where he is discussing the transplanting of fish into the Rio San Jose of 3,500 fish, he said, "I would estimate that the 3,500 trout stocked in 1980 suffered greater than 95 percent mortality over the 17 -month period, the most intense mortality probably coming soon after stocking before full acclimation to

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM

87102
degraded water quality was developed." If you have examined this report, do you agree or disagree with his assessment, as stated?
A. I disagree because there are other sources of mortality that he did not address, the primary one being the natural mortality that occurs to fish that are stocked. Any stocking program incurs the possible mechanical damage to fish from the time they're transported to the site and released to the site. And that mortality could occur simply because of the way they were handled. And he has not addressed that point in his document.
Q. Do you have any information that indicates that such was the case? That there was such damage to the fish?
A. No, I don't have any information about that. It's just a point that should have been addressed.
Q. Okay. If he didn't have any information that addressed it, could he address it any better than you can?
A. He could mention it in the report as a possible source of mortality. Any stocking program recognizes that that's one of the immediate sources of mortality that ought to be considered in any analysis of stocking.

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
Q. Do they have any figures that they calculate as an average?
A. I don't know of any for trout. I mean, I'm not familiar with any for trout. But I would guess those involved in stocking would have some estimate based on their own experience.
Q. Well, okay. Now, he states in here, "The question arises on the cause of this high mortality, habitat or food limitations, predation, chronic or acute manifestation of water quality problems," question mark.
"Now, my observations along the Rio San Jose revealed many sites with deep water and abundant cover. The invertebrates inhabiting this stream are low in diversity but high in numbers. Habitat and food can be ruled out as a cause of the high mortality."
A. Well, I think there is a characterization of high mortality that needs to be tempered with the realization that the sampling Mr. Halfmoon did to assess the population a year and a half later was on only 5 percent of the river in which the fish were stocked. And there is a real possibility that it was just inadequate sampling that failed to detect the bulk of the population. And that has not been
addressed either.
MR. DOMENICI: I want to stop for a second.
(Discussion held off the record.)
Q. (BY MR. RANQUIST) The basic question here in which I'm interested says, "Habitat and food limitations can be ruled out as a cause of the high mortality." Do you agree with that statement?
A. Since I have not looked at the river specifically as it is suitable as a habitat to the fish, I really can't comment one way or the other.
Q. Now, continuing on down two sentences later, after discussing the opaqueness of the water and cover for the fish he states, "The most likely cause of the high mortality is the water quality parameters to which the fish were exposed." Do you have any reason to disagree with that?
A. I do, because, as I recall, Dr. Behnke wrote that report with very little data in hand. He recognized that in his cover memorandum and indicated that his analysis had to be considered -I'm not sure what the word is, but taken with caution because it's based on so little data he had on hand. So I don't see how he has the basis for that statement without examining the water quality data.

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
Q. Okay. Now, then, the next year, there were some more intensive studies done of the Rio San Jose after he finished his report. Are you acquainted with the data that came from that?
A. Well, if you can be more specific about what those studies were, it would be more help.
Q. The study by Mr. Halfmoon and the Fish \& Wildlife Service --
A. The study --
Q. -- in which they were planted in the stream in enclosed cages?
A. Well, that's included in this report.
Q. Maybe my memory is tricking me as to date. Let's go on. Turning to page 5 of his report, he states, "The Grants sewage effluent is highly chlorinated. This creates a sterile zone downstream from the outfall free from bacteria that would digest the organic matter." When you observed the stream, did you observe such condition?
A. No, I did not.
Q. Did you observe organic matter in that area below the outfall of the sewage treatment plant?
A. No. As I described this morning, the water was very clear and the sediment has a grayish appearance, indicating to me good quality water

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
flowing through that area.
Q. But if I recall correctly, you did not examine for chlorine content?
A. No, I did not.
Q. Do you have any basic disagreement with the analysis as to the amount of organic and inorganic phosphates and nitrogen that is demonstrated to occur in the Rio San Jose in the Hines' report?
A. The question I have about that data primarily is a quality-assurance question; that is, the analyses were done, as I recall, at the Assaigai Laboratory in Albuquerque.
Q. Yes.
A. And I did not personally have knowledge of how well that laboratory performs in analyzing water samples for phosphorus. That information always must be available before one makes a good analysis of water quality data. It has to be information available on how good those analyses are.
Q. I see. Do you have any information indicating that the analyses with respect to phosphorus may not be accurate at the Assaigai Laboratory?
A. No. I don't have any information at hand to that effect, not personally. Or that they're

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
good.
Q. All right. Then, do you have any basis at present for disagreeing with the figures as shown on phosphorus and nitrogen?
A. In this report? Dr. Behnke's report?
Q. In the Hines' report.
A. No. But I hope to see the quality-assurance data from Assaigai Labs soon. That would help make a judgment on that.
Q. Dr. Behnke makes various statements concerning the presence of extremely low levels of unionized ammonia and oxygen uptake, being inhibited in the gill filaments of the trout which magnify the harmful effects of low oxygen in the Rio San Jose. Do you have any disagreement with his statements in that regard?
A. Again, it would take a review of the available data on ammonia and unionized ammonia to make that evaluation. Again, my recollection is he's making his analyses in the absence of hard data and looking at possible causes. It certainly is known, unionized ammonia is toxic to fish, but whether those concentrations exist or exist in high enough concentrations to cause that kind of effect, as far as I know, that's not been done to the river.

I don't think he had information available when he did his analyses.
Q. Do you have any disagreement as to whether or not the source of the cause of that condition emanates from the sewage treatment plant?
A. Oh, it could emanate from any source where ammonia is generated. Decomposition of organic material in general produces ammonia as a first step, releases the nitrogen as ammonia from the proteins.
Q. Do you have any indication that any such thing is happening along the Rio San Jose? Any evidence to that effect?
A. That ammonia is being released in decomposition?
Q. Anyplace other than the sewage treatment plant.
A. It's a natural process that occurs whenever inorganic material is decomposed.
Q. In amounts that would cause toxic conditions to fish?
A. Under the right $P h$ conditions and temperatures, it's possible.
Q. Do you have any information that that was occurring at any place in the Rio San Jose?
A. Not yet. Again, there is a data analysis

BADAR \& ASSOCIATES, INC. (505) 242-7233
200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102

I've not done yet with regard to the water quality issue in the river. And one of the areas I do plan to look at is water quality. It was by Dr. Behnke.
Q. And you are simply not prepared to testify to that at present?
A. Not today, no, sir.
Q. Dr. Behnke also states that, "I believe this same phenomenon of the effect of sublethal iodine is responsible for the problems of the Acomita Lake Fishery also." Have you done any study to have an opinion whether that's an accurate statement or not?
A. Well, I don't believe it is in terms of oxygen, because the major oxygen concentration levels in Lake Acomita are fairly high until you get down to the water just above the sediment, which you would expect in any lake receiving waste discharge or not to be low simply because of the cyst that occurs at that water interchange. But the measurements indicated otherwise, and Dr. Behnke assumed --
Q. These are the measurements you're talking about for 1983?
A. The ones for 82. There are also ones taken by the Service personnel reported in -- what is it, BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE LOO8 ALBUQUERQUE, INM 87102

Exhibit 2? Those notes from the field?
Q. Exhibit 3?
A. Exhibit 3. There are observations in those notes of oxygen levels at various depths.
Q. Does the time of year at which they were taken to turn over the water have any effect on that?
A. Well, I don't accept your term turnover in this case because turnover refers to the mixing of water in a lake following a cessation of stratification, temperature and density stratification.
Q. Yes.
A. The evidence in Lake Acomita is based on measurement that the lake does not stratify in terms of temperature or density. So turnover does not apply to Lake Acomita.

I've forgotten the rest of your question now. Can you restate it without the term turnover in it?
Q. I think you've answered it.
A. Okay.
Q. Is there anything else that's contained in either the Hines' report, the Halfmoon report, or Dr. Behnke's report on which you have presently reached your final decision that we haven't

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102
discussed?
A. Well, my conclusion about Dr. Behnke's report is that he was asked to prepare an analysis of water quality effects in the river and the lake without the benefit of having adequate data on which to base his analysis. And he says that himself. And I think because of that, the conclusions he's come to are ill-founded, certainly ill-based, and, in the light of hard data from the field, prove that many of the conclusions he's come to are in fact not the case.
Q. Okay. Now, what hard data do you refer to?
A. The temperature and dissolved oxygen data we've just talked about, he assumed stratification in the lake of temperature and density. And when turnovers would occur, it would bring low DO water up to the upper layers and cause fish mortality. That kind of stratification does not occur in the lake. Thus, conclusions based upon that kind of phenomenon are not applicable here.

MS. WATSON: I didn't get a chance to object, but I'll object to that question because it's overbroad. You need to ask him some specific things about those reports. He may disagree with a lot of things in the reports.

MR. RANQUIST: Okay. We're on the record.
Q. (BY MR. RANQUIST) Is there any other thing that you can recall at present that you've reached a final conclusion on that we haven't discussed?
A. Well, maybe if we can discuss some specifics, I can tell you.
Q. Well, at the moment, you see, I don't know what you've reached final conclusions on and what you haven't. But are you going to be writing a report?
A. Probably not. Most of my material will be tables, such as this, figures, graphs, that kind of thing, that would support my analyses.

MR. RANQUIST: Off the record. (Discussion held off the record.)

MR. RANQUIST: So with the understanding that I have at the moment, that I believe I have with your counsel, that I believe I have the right to submit a list of those witnesses that we may wish to depose at a later date, we will terminate at this point with the understanding that we will receive your information as part of a supplement of our answers to interrogatories, following which, if we need to undertake further deposing, we'll give
notice.
MR. DOMENICI: MY position on that, Harold, at this time is, as I stated earlier, we are going to supplement any work product which Mr. Armstrong does.

And with respect to continuing the
deposition, that is subject to the agreement you and Mr. Stein have worked out, and also subject to approval by the court.

MR. RANQUIST: Yes.
(Deposition proceedings concluded at 4:30 p.m.)

SIGNATURE OF WITNESS

I have read the foregoing transcript of my
deposition taken on the 5 th day of December, 1986,
and it is a true and correct record of my testimony
given at that time and place, except as to any
corrections I have listed on Page 162 herein.
$\bar{N} \bar{E} \bar{A} \bar{L}-\bar{A} \bar{R} \bar{M} \bar{S} \bar{T} \bar{R} \bar{O} \bar{N} \bar{G}$

STATE OF NEW MEXICO :
SS. REPORTER'S CERTIFICATE

COUNTY OF BERNALILLO :

I, the undersigned Court Reporter and
Notary Public, HEREBY CERTIFY that prior to the taking of the foregoing deposition, I administered the oath to the witness; that I later caused my notes to be transcribed under my personal
supervision; and that the foregoing is a true and accurate record, to the best of my ability, of the deposition of said witness.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

I FURTHER CERTIFY that the cost of the original of this deposition is \$ \qquad to the Plaintiff Pueblo of Acoma.

DATED this lith day of December, 1986. DONALD A. HILLAND, ESR

MY COMMISSION EXPIRES: February 22, 1989.

BADAR \& ASSOCIATES, INC. (505) 242-7233 200 LOMAS BLVD., NW SUITE 1008 ALBUQUERQUE, NM 87102

Yarch 9，－19́ó2－íse ice Iree．
Harch 20，190́2－Nater level 6：1 bilow the spilıuay．Surfiace tump ti• ：．ater grsenish color．Zooplarinton abunaart．Ducris presert．

M゙arch 26， 1962 －Surfece temp 54． 3 fishemen at 5：00 p．m．no fish． ICO＇s of ducks on the lake，iater greenish colcr． Zooplankion abundent．Iake to open to fishing lay．I Eermits at San Fidat P．C．，TİJs at ？anc Govemor．

Anril 27，1062－Surface temp 57，Secchidisc 11＇（ivater clear）Zoo：ianicon good．－ Viter level 11 below tine swillway．Set a 200＇sill net at 10：15 a．m．out at 2：30 p．m．Assited by Bluford Thorton．

Hay 10，Igć2－Minree Indians fishing at o：CO pom．Vic Eish．Surfiace temp ó？． ivater clear，weeds beginning to zrow．
？a：－14，I96́2－Surface temp 64．\：o fisinermen at 6；30 p．m． ：．tater clear，water milfoil besinning to gro：in isolatee ごきants．

July 31，19ó2－Surface temp 73．Seepage temp 64．ioo water beine discinezed． Sago and chara abundant alorg shore．Vater level 10 belo：the spillway．Fregs and mirnows abuncant．Lots of coontail ir the la：e． 21 fishermen at 1：00 p．m．Secchi disc 15＇．Zooplankion socd． Set a 125^{\prime} gill net at 3：45 p．m．Treated a small area or．the.i ． shore with 5 gals．of aquathol and Triton 3．iostly chara and sago． Treated the lake with 3 lbs of toxenhene to kili the minnows． At I5：pF．O．L and $\mathrm{Sc}^{2} 1.60$. స̄ecort fishing started going，strong in mid iaj，heavg in wine snd started tarerino off ir mid Juiy．Trout hari三 pirle meat．
 ：innows still present along shore．Anolied 2 lics．of toxachene to the storm mun－off goirg into the north end of the lake．

 Ueeds beginning to die．
 Zooclen！ton gocd．＇ii三ter Ievel 51 be？on the spillway．． ：！fishermen at 5：00 5．m．

冗̈cv．20，10ń2－？fisinemer at ？：00 p．m．

？	1	$9.7{ }^{\prime \prime}$	0.30	$0 \cdot 3$	41.5	
Paineow	1	3.0	0.21			5．3－5．21
Painios：	7	3．1＂	0.09			

Gill net ratio 21.6 trout $\operatorname{snc} 2.93$ libs．of trout．
Trout per acre 65 and los．per acre $8 . \hat{\text { ．}}$
Beleved gill net catch only I／Ltrax of actual copulation．
卫eでised estimate：
 260 trout per acre for 72 acres．and 35 lbs per acre．
Istimated firgerling growtin：：：ov． 27 to foril 27 is $3.4^{\prime \prime}$ or $0.7^{\prime \prime}$ per montr．

July 31， 1962 set a 125^{\prime} gixil net for 27 hours．

Gill net ratio 10.4 trout and 5 tatioss 3.06 lbs. Trout per acre 31 and 9.2 lbs ．of trout per acre．
Yay fingerlings no：v 5．9＂long，that is gro：th at $1.5^{\prime \prime}$ per ponth．rbout 16 per acre or 700 in the lake．
Took 4 water does in the gill net．Some trout fieding on snails．
Temps．

01	73
31	71
61	70
01	70
121	08
151	65
271	60

\qquad

 trash cans in İこce．

 sruaninc．Ėshinz better in Naj than in muril．ijifoiz，coonaig End ジ̇？に－e：tous aisae．
تain！o： 11 11．ல́＂
0.70 Ibs．＂C：＂42．5
$7.5^{11}-3^{n}$
\because ay 33，I？óz－3ó fishemen a亡 roon．
iray 29，1963－30 iishermen．
iune 3， 2063 －Surface temp Sc，dishcarge temp ó4，Surface pH 9．3，discharse ph 0．I． ．iater clear．Zooplankton good． 33 Eishermen at 10 E．．．． 3 Eisi．ミー．．en at 10：30 a．．．．：jater level 11 belcin the spilluay．iecent natan of minaons ここout 0．5＂lone．

vine 26，19セ̋－ 17 fishermen ani 13 cars at 1 ₹．m．

 the soillway．Discharge water smalles，Foosibir low in j＂．．i＝ess abundart．Treatec the ：recis mith 5 gais．of acuathol ant＝ins．os Đordrotha？．Treated minows with O． 5 Ealions 0i toxarnene． Set a i？ 5^{\prime} gill net at 7：ij por．Ji

そia亡eriogs 7 ？

 Reinjo:: 2 IU.9" I.19 ibs. "c! 30.3

 :io :e ?ds. :iater coming in. Trout apoezr to be in romal coneition.

 fírepiaces anc 三nproach roacis unier constmaction.
Nov. 21, 190́3-Surface temp 46, Secchi disc ajout 4-j1, zcoplankion fain=. 3 fishermen at $10: 30 \mathrm{a} . \mathrm{m}$. Cold and windy. Nater level 3.51 below spiliway. Nater going in. Head三ate leaks a little.

 Several hundred ducke present. Sio San jose at . 1 . Bouncy

Harch 20 - cuaface temp 45, nater clear, zocrianton erreniont. in Eisinemen
 corering the bottcm.
April 1 - Suriace temp 45, pH 8.7, Ec ${ }^{3}$ I.20, windy, water ciear. Z̈ooplan!eon excellent. 120 fishernen at 10:30 a.n. 73 cars (; 32 on \because. sicie, 22 in lot). Nater level l' below the spinlivay. Some fíiemintous algae. Fishing slow. Cä counter 22.

April 16 - Surface temp 56 on N . shore and 54 on E. shore. p:: 8.7, Ec ${ }^{3}$ 1.25. Car counter 221. Secchi iaisc about 9', water clear. Zoopiankion excellent. 24 fishemen Et 10 ق.m. and 24 fishermen at noon. Fishing slow, fingerlings present. Fater ievel $16 "$ belo:d spiziwaj. No water going in yet. Some zilamentous algəe. it noon 10 cars on E. Shome and 9 cars on \because. shore. Fishirg was zood about 5 in dej. Jerome Ortiz, Albert Iowden, Mrs. Chavez. Added 1,200 Ibs. 0-45-0 and 2,800 lbs. 33-0-0.

April 29,- Surface temp 53, pH 9.0. Secchi disc 121, water clear. Zoonisrkotn best Iv'e seen, mostly large white forms. 6 fisnemen at 6 c.r. (2 cers) Water level 1.5^{\prime} below the spillivay. No weeds yet. A few small chamel catifish being taken. A 23 " and 24 " rainbow caught last :ree!. Jerome Ortiz, Box 507, San Ficiel, Hew Lexico.
lay 1 - Surface temp 54, pH 9.0, water clear. Zooclanikton best I'va seen. 9 fishermen at 11 a.m. (6 cars). Fishing coor. đater leval 1.4 beion the spiilway. Filamentous algae becoing abund. along it. shore. 35,000 2" rainbow stocked yesterday. Aidded 1,200 Ibs. 0-46-0 and 2,800 Ibs. 33-0-0.

May 5 - Surface temp 52, discharge temp 52, started irrigating Kay 2. Secchi disc 6', light bloom. Zooplankton outstanding - mostly large white forms, some cyclops. 9 fishermen at 6:30 p.m. Cold and windy. Water level 1.6^{\prime} below spillway. Filamentous algae mod. abund. along N. sinore and $i=-$.
May 7 - Surface temp 53, pH 9.2, light bloom, zooplankton fairly good.
 Stocked today.

Nay 22 - Surface temp 65, discharge temp 57, pH surface 9.0, p. bottom ε.. Secchi disc 8^{\prime} light bloom. Zooplankton excellent, mostly large white forms. 23 fishermen at $9: 30 \mathrm{a} . \mathrm{m}$. Nater level 3.5^{\prime} belov the s:in2 $\equiv \because$. ileeds growing, fair ant or filamentous airae.

 6－7＇，lisint bloom．Zocplankton iair－aquaṫc insects ai̇ncint． Tribe has sold abold $\forall 0$, ，CCO in jermits so far tiis veser． 30 İsinemen at 4 p．m．Fishermen compiaining about ross．そeter loッsi 6＇below the spinlwaj，Coontain，filanentous alyae，hi三ier ミouatcia
 abund．recent repironucticn．Dain－j1． 30 ，season 5．co． Minron dealer taring minno：rs，j20 for 5 montins． Albert Iormen，P．O．Eox 278，Ean Diciel，ilew wexico Raミnbow 6 IO．3＂ 0.45 Ibs．＂C＂4？． 3 ミ．

June 25 － 40 fisinemer at 5 p．m．
July 8 －Surface temp 72 if．shore and 60 ．ミhore．Dミscharge temi 5 ． PH 9.7 on E．shore， 9.4 on Botton and 9．́́ on E．shore．

 Rainicen 6 9．9＂ 0.37 los．＂C＂ 30.7 E．9－2ב．シ＂

 Treated the ：veedy end of la！：with 0.6 gals． Young of jear crayĩish 0．ó－ユ．ご long．Srailis and irsects abund．in weeds at ！！．end oi laĩe．Fizhing slc：v Frogs abund．Rullirogs present ir small ruribers． Kinnow worse than last jear．

iug．μ_{4}－Surface temp 74 on E ．shore and 73 on \because ．shore．Discharye temr ju．

 Secchi disc about 2．－3＇，：ater muriey． 10 Eishemer at 10 E．．．．．

 A few 5 －？＂chuns heing taven．

 Fisherg excellent．：iater 3^{\prime} telow spilliaü，：ater zoin！in． Dicks still present．Jerry $\because:$ ．Valio，Jox 594 ，San Ficiel，$:$ ．：Ne：．：

 zoing in．No ：reecis．Lots oz̉ ducks．

 Saw one large school of small minows at seiliveテ．

Xarch 2．3， 1955 －Surîece temp 4ó，Secchi 3011 greenish．Zooplankton goor，mostir smain white farms，few large vhite ones．Ho fishermer：at noor．iatem l＇ below spilluay－ro water coing s．n．i：o weecis．Icts of snow on e． Slope of itt．Taylor．Saw hary minnows at srillway．Lots of divira ducks．

April 1， 19.55 －Surface temp 52，p：̈ 3．6，Secchi L．51 bloom．Zooplanston ezcellent， 211 small forms． 105 fishemen at 11：30 a．n．and 106 fishermen at 1：15 0．r7．：Water I＇belcw scililway．I：o weeds．Jerry Vallo and simor． Juarcio．Ditch to lake being renaired． Painbow fingerling plant：

cll	3	9.511	0.32 Its．	＂C： 27.3	\therefore
11＂	1	11．311	0.44	30.3	むrout caucrit toiou．
Rainbow legals					
6＂	？	8.3	0.27	47.2	
9 9＂	－	－	－	－	
10＂	3	10.5	0.45	38.8	
110	7	11.4	0.56	37.8	
12＂	4	12.1	0.72	40.6	
Av．	19	10.3^{11}	0．5．	30.0	

April 16， 1965 －Surface temp 55，pi 8．5，ic ${ }^{3}$ 1．37．Secchi 5＇lizint bloom．Eorilar：Gon
 11 below spillway．No weeds．Finizeriznes make up to\％ol cazen． ：2ainbow：

$8{ }^{\prime \prime}$	2	8．7＂	0.23 ごbs．	35.0	Fingerlings：	
91	5	9．2＂	0.30	35.5	0.211	Sept．St
101	1	$10.7{ }^{\prime \prime}$	0.48	20.2	9.2	Sers．
こミ＂	3	11．91	\therefore ，汭	河．	$\underline{1-7}$	
12＂	2	22．：＂	8.00	51．${ }^{\text {c }}$	こ． 7	
23：1	2	13．311	J． 56	$3 \dot{3} \cdot \mathrm{c}$	－2．7	
iv．	15	10．71	？．LE	30.2	23.0	

 Fỉshing good toċシy. Iots on minnows.

June 3, 1965 - Surface temp 63, discharge temp 59, pH ci.3 on surẽace, pl: 5.7 on botion. Zoopleriton fair, all small white forms. 35 fisher:en at 4 F.E. T:ater 3.5^{\prime} below soili\%aj. Lave been adeing :ater at nizit. :̇̇lfoil anc conntail groving as scattered plents. Jieeds no rajblam yet. Trout in beloit av. cond. Fishing excelient tociay. Crayizsh no rroiem. Fistermen catening lots of $5^{\prime \prime}$ chubs on cheese. Catching a few s-maii catfish. Fatheads abund. spamine uncer iexis rocks.

Jur. 22,1955 - Acced $1,360 \% 0-45-0$.
June 24, 1965 - Surface temp 69, discheree temp Si. pF. 9.5 or suriace, pi: 3.0 cn bottom, pH O.j on sureace in evening. Secchi 21,", good bloom. Zooplani:
 milfoil, scike musin ir water only 2^{\prime} deep around dar.. Deeper at $\because:$, end. Fishing fair, $18.5^{\prime \prime}-3$? , rainbow teken last wesk. Crajísti i/2" lons A few crawdads being taken by fishermen. Shrimp ard ianselrly larvae common in milfoil. Juite a few Rio Grande Chuos 6-7:1 being caight. T:out in below av. condition.

July 2, 1965 - Surfaci temp ós, di:scharge temp 61. Secchi 15: good bloc... Inoplart:ton fairly good, all mall forms. 32 fishernen at $10: 30 \mathrm{a} . \mathrm{m}$. Jater j^{\prime} belon spillway, hot much weeds at dam, abunc. at \because. erd. 1 reincen present. Fishing Eair. Gocd !o's ofó - 7" chuts veing taken. Jarge traut in good cond. - 10 " trout in below av. cond.

 all small forms. I4 fishermen at 4:30 p.m. "ajeer b' be icl: spillway, Water going in at night again this week. A litile coontail alone dam, no problem. Y of y crairdads 0.6-0.9" lons. Fishing poor past three weeks. I trout in distress along shore, probably from aien fli.
 at 5 pom . Fater 5.5' below spiliwey - water going in every nitht.
 I of y crawciads C.e - 1.3" ions. Fishing yoor, lots of arawiacis. Catfich still onizi ó - T" lors.

 going En. 「 fishemen ! ! L p.: .

こate - 1055	Surfize Temc
	40
$\because 1$	45
12y 15	53
June 1	60
Jurse 15	55
Jul\%	65
July 15	70
August 1	77
¢uร゙st?	8C.
Auçust 15	77
Septemien 1	70
September 15	68
Sctober 1	61
October 15	5 co
\:ovember 1	50
O:ovember 15	50
Secember 1	40
December 15	40
Secemicer 20	Frozen
Iecember 29	Frozen
Decmber 31	40


``` ココン：
```



``` shone．Vo va亡erajoine in． HCC 164 man ，CO 40 Fm ，Cl 122 rom．
```



``` Niti srinners and flies．ユロ．ジ trout tekiea クミst weer．
```



``` water going in．No \％eeds．Fishiñ slow．
Jan．13， 1966 －70\％of lake frozen．Ice \(1 / 2\)＂thick．Water level 0.1 below spillwa7． No water going in．
Feb．8， 1966 －Surface temp 38．Secchi 34＂，good bloom，looks rimen．Zooplankton good， 211 small forms．pH 9．3． \(80 \%\) of lake ice iree．Snowing today．
Feb．28， 1966 －Secchi 4－5＇light bloom．Zogplankton excellent，mostly small forms． Surface temp 40． \(\mathrm{pH} 8.7, E c^{3}\) 1．48．No fishermen 2t \(102 . \mathrm{m}\) ． Water level \(5^{\prime \prime}\) below the spillway，no water going in．Algao covering everything under the water．A little ice aling shore．
March 15，66－Secchi 5－6＇Iight bloom．Zooplankton excellent， 211 small forms． Surface temp 49．pH 8．9． 24 fishemen at \(102 . m\) ．and 16 fishermen at 4 p．m．Water level 0.71 below spillway，dtich being repaired． A lew coontail pieces floating along shore．Adult frogs and fathead minnows under rip－r2p．Fishing good，trout 9－17＂ 2 v ．or below 2 v ． \(\mathrm{ECl}_{\mathrm{Cl}}\) ． Picked up 3 male crayfish on rip－rap and 3 yearlings in mud in seepage area below dam．
```


April 4, 1960 - water clear, Zoopiankton good, 211 small =oms. Suriace =emp in. 12 Eishermen at $11: 30$ 2.m. (8 cars) fishing fair. Cold is wincu voizy. , Water level 10 " below the spillway. Some filamentcus zigae. ivo vater coming in. People conplaining zoout high permit prices anc limit. Picked up 5. crayfish on rip-r2p.

April 15, 1966 - Secchi 3011, good bloon. Zoopiankton good, small white forms. "Surface temp 57. 9 fishermen at 5 p.m. 'iater level l' below spiliway. Some filamentous 2lgae. State Game fiarden Present. No water has been added this spring. Largesttrout this spring 20" long, chubs starting to bite. 2 - 7" C. Cats taken last week. ph 8.7.
Rainbow 10 9.7" 0.31 2bs. "C" 34.1, 8.4-10.5"
Y2y 18, 1966 - Secchi about 3', good bloom, Zooplankton good, 211 small forms. Surface temp 64, discharge temp 56. pH 8.7. 11 fishermen at 10:30 2.r. Water level 2.5^{\prime} below spillway, tribe adding water about 3 d2ys 2 week. A little filamentous algae, weeds no problem. Fishing excellent. Fathead minnows spawning along dan. Chubs abund. at N.E. end of lake.

May 19, 1966 - pH 8.9, Heeds no problem. Fishing excellent. Largesttrout caught recently was 18.5" long. Cryyfish not bothering fishermer.

June 2, 1966 - Secchi 30" good bloom, pH 9.0. Surface temp 66 on E. shore and ó 7 on W. shore. Discharge temp 60, smells of rotten egzs. 20 fishemen at 10 2.m. fishing good, but trout small mostly recent stockers. Water level 4^{\prime} below spillway. Filamentous algae mod.abund, Sagg and milioil growing in shallow water. 3 seine hauls - several iCO 2duli fatinead minnows and 1 crayfish. Picked up 2 crayfish with young just ready to leave. Unable to find any small craypish. Fathead minnows spawning under the rocks. A few adult male fathead minnows have sores on their bodies.

June 18, 1966 - Secchi 26" good bloom. Zooplankton gcod, 211 small forms. pH 8.i. Disvharge temp 63. 30 fishermen at $10: 30$ 2.m. Don Garcia recorts that crayiish are abund. in shallow water on the dam about $4: 452$.m. each morming. Water level 5.3^{\prime} below spillway. Fishing excellent. Weeds becoming abundant in shallow water at N. end of lake. No weeds at S. end of lake. Quite 2 few shed crajfish skins found, 211 excent 1 from an adult female. Lots of young of year crayfish inder rocks in shallow water. Opened 8 stomachs of angler caught fish, no food only a little com in one stomach.
-1~! - $\because \because$
August 16, 66 - Secchi 24" good bloom. Surface temp 70, discharge temp 66. 5 fishermen at 4 p.m. Surface pH 9.4, Discharge pH 8.8. About 2 month ago fish and crayfish reportedly came to shore figlowing heavy winds - fish appeared in distress. Water level 71 below spillway. lake had been lower 2-3 233 weeks 2go. No weeds at S. end of lake. Some in N. end but getting smaller. Adult fathead minnow under every rock.

 5：40 ？．m．in waこきさ 3＇dee？．
 small form．Surf．temp i－dicut down by crayfish． 2 seine hauls－ 7＇below spillivay．Saso de＿no．Minnor dealer has been talifrg Eathead fair number of fatheadminno．Delled gill net at 3：30 a．m： minnows since July．Ree 10.00 ，Rainoow－ $49=147$ fisires．

Channel cats－12，Coubs 36 ，スainiow－ $4 \boldsymbol{y}=-47$－isies．
Aog．19， 1736 － 250^{\prime} gill ne $£ 50=13.33$ nours．

	no	さV．I	\therefore A．$\because 2$ ．	100	
Speries	40	$9.5 \times$	0.31	33.1	ち．1－－2．${ }^{\text {a }}$
Rainjow catfish	12	12.2	0.73	37.3	10．7－
Channel Catfis Rio Grande Chuds	56		0.14		\％．う－8．2
Waterdog	1	－－－－			$3.8-4.2$
Crayiish	2	4.0			

Largest chubs are all Eenales with eges in va：ious stages o三 jevelop－ ment．Hust have a long spawning season．Cne large cinub haci eaten a fathead minnow．

Per 50 acre lake there aeze 5,050 trout， 1,650 Channel cats ard 3，900 citubs．
Trout 3．0，Perch 12.5 ，sucker 3.5 ，Chubs 3.0 ，Channel cats i．C
Sept．20，1966－Secchi disc 14＂heavy unicelluler blocm．Surf．tamp 69．，Jischarge temp．62． 2 fishermen at 1 p．m．Nater level 7＇below spillwa\％．jume water still coming in．A few sago plants taking root in siallow waたミ．． Evidence of heavy rain past few days．Crayfish 5，1．8＇，Rarge 1．7－2．

Oct．19， 1966 －Secchi disc 12＇heavy bloom．Surf．temp．63．Disciarge teme 49. Heavy outflow 10 c．f．s．Heavy bloom．No small forms． 4 fishemen at 4 p．m．Fishing excellent，mostly trout，small．Water level S^{\prime} belot： spillway．None coming in．lic aquatic weeds seen，e：scept a littie milfoil in N．pool．Treatad N．pools with 1 gal．rotanore．Rip－rap honey－combed with crayfisi burrows－－Young and adult．Quite a fan cray－ fish burrows in N．pools，but no crayfish found．Soil heavy．Treateć watershed with 14 gals．＝otenone．

 foom burrows unde：rip－rap up to 10^{\prime} abo：e ：：ate：line．Luz 9 a＝a゙ー fizh out srom uncer 1 rocik：Leopard Erozs， 3 also in butrows．uizi crayミish．

 Killed l，C00 of fathead Minncws．Treatad ncol and straan at \because ． ．

 to be removed，co：ered＇up lets fishing line．A few large cra：ミisi ciawling about in wate＝ $1 / 2$ inch deep at $\%$ ．enc of laks．Eelow cian fatheads，crayfish，lauge waterdogs．Stccked 334 czaẏis！＝rct． outletin pool at N．end of lake．Small cravifit still in bur＝ois on dan 20^{\prime} above water line．

Nov．21，1966－Secchi disc moderate clear． 1 fishermen at ！？．．．．．iater levo！

 weeds．Cut trees with chain sa：on E．sise of lake．Ficied up iCO crayfish below outlet．i few dead trout and catミistin lake．Iloderate number dead crayfish killed fron rotenone．Crajíisin still alive ir． burrows， 10^{\prime} above present water line．
 in．

Jan．25， 1957 －iate $=$ goingin．

Iがin Quanico，ミ0：180，jun Fical
Elmer Cinino
Fue C．Ray，रubero

May 19，1967－Eecchi disc modezate clear． 15 Eishemen at 6 p．m．הata＝Ievel－－ no vater coming in．

Elmer Chino，Bo：297，San Fidel，Ne：Me：：ico

 on Memorial Day．

Iul：18，l957－Elmer Chino－－Secchi disc 32＂，good blocm．Zooplanicton poo：，all
 têmp 70 ．（Seems low in U^{2} ）． 20 fishemen at 3 p．m．Nater level 8° below spillway．Heavy growth of sago at N ．end．Only a light fisigge of chara，Eilamentous alzae anc sago at S ．end．No veeds on dan．

MESA MILI LAKE（Aconita）

July 18， 1967 （Continued）Crayfish keeping weeds at S ．end under control．Good reproduction of crayfish．Also good reproduction of fathead minncws．

Aug．10，1967－PH 8.8 next day．Secchi disc 40＂light tea colored．Zooplankton fairly good，all small forms．Surf．temp 69．EC 20.90 ．Pive ffisher－ men at 2 p．m．（Fishing poor）．Water level 4＂below spillway，heavy flood Firiday．A fers sago plants floating on the surface．This is the first tine since I＇ve been in Gallup that summer rains have filled the lake．

Sept．27，1967－Secchi disc about 5＇lizht bloon long algae．Ph3．6 Surf．Eemp ji． No fishemen at 4 F．m．Nater level $2^{\prime \prime}$ below spilirway．Iake EElled Aus． 4 and reEilled and spilled about 2 wee！ss ago．io acuatis wesds． Young of year czay干ish commong under rocles on dam．

Sept．30，10．87－Sechi disc clear． 20 fishermen at 10 a．m．Water levei 3＇belo：spill－ ：vay．No aquatic weeds．Ray Histie，Iribal Treasurez．\＄3，400 iumed in fron fishing program sofir．

	L	WT．	C^{\prime}
Rainbow－－5	9.6	0.39	44.1
	9.4	0.32	38.5
	11.6	0.57	36.5
	11.8	0.62	37.8
	10.3	0.38	34.9
AVG．Totals	10.5	0.46 \％	38.4

Cct．11， 1967 －Seechi clear，light bloon．Surf．temp 65． 3 fishemen at 3 p．m．
 aquatic weeds．Lots ó ，rganiz jebris and bluegreen algae Eioating on surface．Young crayfish are extremely abundant under rep－rap． Collected 150 yourg crayfisi on rip－rap．

Rainkow：	11.9	0.64	37.0
Fingerling	10.3	0.44	40.4
＂	10.1	0.43	41.7
\because	10.0	0.42	42.0
	10.6	0.48	40.5

Nov．30，1967－Secchi disc clear．Zooplankton fai＝ly good，mostly medium sized cladocerans．Jurf．terp 44．I fishermen at 4．0．m．Vater level 4^{\prime} below spillway，no water goingiin．Some fowl smelling blwegreen algae．

7		L	：T．	＂C＇	（Continued）		
	Rainbow	12.3	0.75	40.3	12.1	0.69	38．9
		12．${ }^{\text {a }}$	0.64	43.3	11.3	0.52	43.1
		こ2．	0.75	43.3	12.0	○．－9	42．？
		11.3	0.66	$4 \equiv .9$		－．วう	-2.7

 ．．．えaعa＇ミ fcrd．

 weeds．Some trees or the E．side knocker down by ice this winter．

Ma：．13， 1053 ；The lake opened Ma＝cn 15．Reports indicate that 1， 000 people fishad from Friday thru．Junda：．Fishing reported Eaizly good．Daily fee－ $\$ 1.50$ ，Season Eee－\＄5．00．
 fishemen at 5 p．m．（21 cars）．Nater level latbelow spillway．Ena！l trout，sofた；large tiout，haこc．Permit Eees 1.50 a day．sí． 00 geeson．

Lazgest trout caught thisspring 16．5＂long．
May l，1958－Jecchi disc clear．Zooplankton good，white medium sized form． Su＝f．temp 5s． 36 fishemen at 11 a．m．（19 cars）．Nate y level i． 5^{\prime} below spillway．NTo irrigation yet．Hoderate amount of filamento：is algae on the bottom．Still some snow on B ．Taylor．

	NO	L	！T．	＇C
Rainbow	3	9.4	0.33	30.8
	4	10.4	0.46	41.0
	3	13.4	0.97	40.3
AvG Potal	10	11.0	0.57	40.4

Way 3， 1958 －Secchi disc clear．Zooplankton excellent，medium－sized cladocerans rith eggs．Surf．temp 63． 25 fishemen at noon（fisining jair）． itater level 1.5^{\prime} below spillway，water going in．Bottom covered with filamentous algae．Also，a scum tye algae floating alons shore．Heven＇t started irrigating yet．Irvin Juanico reported 185 fishermen Sunday．Observed one school of minnows at the dam．

May 24， 1063 －Secchi disc clear．Zooplankton good．Eurã．tem？64．Discharge temp 61 （fishing good）． 20 fishemen at 4 p．m．：Tater level 3^{\prime} belo spillway．Moderate shoreine fringe of Eilanentous algae．Troute are in good condition and average 11－12＂long．

May 25， 1058 －Secchi clear． 115 fisnemen at 11 a．m．Tribe has collected $\$ 5 ; 745.50$ in fishing permits so far．with $\$ 1,500$ still out．

AVG．I $\therefore \because \because . \because T . \quad \therefore \because こ " こ ゙$
9 Rainbow $11.5: 0.58$ 38．2

 aquatic weeds along dam．Some reported at i．end．Fathers minors ab：：rdant．

Rainbow	9.2	0.22	41.2
	7.7	0.20	43.3
	9.0	0.34	46.7
	11.3	0.53	43.7

Jul：26，1968－24 fishermen at 5 pm．Fishing fair．Tribe has＝epertec ṣ10，job income sofa：．－－This year from fishing program．
 3＇below spillway．A few clumps of weeds at A．end．Fishing poo＝ Shoreline alive with fathead minnows．Need to partially poison minnows．

Aug． 2 ？， 106 －－：inter level 3－3．5＇below spillway．Lake level came un from a teary rain 2 seeks ago． 17 fishermen at 10 abm．Fishing fair．Fathead minnows becoming extremely abundant．Utter going in ard slowing cut the outlet．Kong adult crayfish have moved up the inlet．Some over 50 yards from the lake．Tater clear at \because ，shore，tut algae common and water green at 玉．shore．
 14 fishermen at 1 pm ．Good alaal islocm

Fei. 11, 1969 - At 3:45 there 7ere 7 fishemen at the laie. So ice on tre laise.
April i8, 1969- On the south side of the lake there were 11 fishermen at 6 ?. च.
June 11, 1969 - Secchi disc 23 inches. Zooplankton outstanding. - Surface temp. ib.
Rater level 3 $\frac{1}{2}-4 \mathrm{ft}$. below spillway.
A fisherman caught a brown trout 16.0 incras long, weighing
1.90 Ibs.. Its stomach contained crayfish remains. "C"= 46.4

Jily 18, 1969 - Errin Juanico, Water level $5 \frac{1}{2} \mathrm{ft}$. below spillway. Surface temp. 76 on east side and 73 on west side. Discharge temp. 650 ($\mathrm{H}_{2} \mathrm{~S}$ odor). At 4 p. m., 8 fishermen on east side and 14 fishemen on west side.

July 25, 1969 - Ervin Juanico and Alfred Pancho, Surface temp. 78 on west side of lake near dam. At 1 p. m., 18 fishermen on east side of lake, 4 fishermen on the dam, and 4 fisherman on west side of lake. Disciaarge temp. 69, strong smell of $\mathrm{H}_{2} \mathrm{~S}$. Iots of cyprinds present. Crayfish young-of-year observed.

Aug. 20, 1969 - Surface temp. 76 on 7 . shore. Discharge temp. 70. At 3 p. m. there were 10 fishermen E. of dam and 9 fishermen ${ }^{W}$. of Dam. Water level 6 ft . below spillway. Discharge est. less than 1 c.f.s.. No odor of $\mathrm{H}_{2} \mathrm{~S}$. Crayfish young of year observed. The following rainbon trout were caught by fishermen:

"C"	Lenght (inc)	Yeight (Ibs.)	
32.3	9.3	0.26	
29.2		9.5	0.25
32.5		9.4	0.27
31.9		8.7	0.21
33.6		9.3	0.27
35.1	9.7		

Sept. 9, 1969 - Ervin Juanico, Surface temp. 75. Aphanizomenon present. 3 fishermen each fished 5 hrs , and caught the following rainbow trout:
\qquad
36.2
33.9
38.8
30.2
35.0
16.8
39.1
28.7

Lenght (in.)
11.5
10.2
10.1
10.4
9.9
10.6
8.0
9.8

Height (Ibs.)
0.55
0.36
0.40
0.34
0.34
0.20
0.20
0.27

Sept. 25, 1969 - Ervin Juanico, Suriace tamp. was 70 on east srore near cam ard 65 on सest shore near dan. Discharge temp. was ó2. pH was 8.5 and EC was $i 970$ in the Lab. The following rainbow trout nere caught by fishemen:

Lenght (in.)	Height (1bri,	"C"
11.0	0.49	36.8
11.0	0.46	34.6
10.7	0.47	38.4
10.0	0.30	30.0
8.4	0.20	33.7

Jan: 10, 1970- Iake covered with ice. Aceording to Ervin Juanico, the ice is about 8 inches thick near shore but only about 2 inches thick in the middle of the lake.

May 14,1970 - Surf. temp. 64 at west side of dem and at east side of dam. 13 of more fishermen at $5: 30$ p. m. Water level 2 ft. below spillway. Hater being released for irrigation.

May 21, 1970 - On west side 12 vehicles and 30 fishermen at 6 p. m.. At least as many fishermen on east side.

June 4, 1970-Secchi disc fairly clear. 25-30 fishermen at 4:40 p. T. and 35 at $5: 35 \mathrm{p} . \mathrm{m}$. Water level $2-3 \mathrm{ft}$. below spillway. The following rainbow trout were caught by fishermen from Albuquerque:

Iength (in.)	$\frac{\text { Height (los, })}{1.28}$	"C"
15.0	1.15	37.9
13.7		44.7

Plenty of the recently stocked rainbows were being taken. Cuite a few large fathead minnows under rocks near shore apparently spamming.

June 6, 1970 - 2:15 p. m. 31 fishermen west of dam. 2:25 p. m. 20 fishermen arong the dam. $2: 35$ p. m. 38 fishermen east of the dam. Total count of fishermen was 89. The following rainbow trout were caught by fishermen today: Length (ine) 13.1 13.2
$\frac{\text { Height (1bs.) }}{0.98}$

"C"
43.6
34.8

June 23，i970－At $3: 50 \mathrm{p} . \mathrm{m}$ ．talked with 2 little Indian boys who had causht a toial of 9 channel catfish and 2 rainbow trout．They said that they caught them on worms．

August 18， 1970 －Assisted by Jerome Ortiz and Ervin Juanico．Secchi disc good bloom．Surface temp．74 $\frac{1}{2}$ ．Discharge temp． $72 \frac{1}{2}$ ．About 17 fishermen at 5：45 p．m．Water level about 5 feet below spill－ way．Observed 1 dying rainbow trout．Was informed that en－ other one was also seen．Trout rising．Water running into lake．Staff gauge at discharge．1．40．Discharge has no HhS odor．Was informed that there mas an $\mathrm{H}_{2} \mathrm{~S}$ cdor several weêks ago during the hottest meather．Minnows numerous in the shallows． Area around lake greatly improved：Dead trees all cut domn； many rocks in parking area east of dam have been removed；add－ itional work being done on＂concession stand＂；and plenty of trasi ：－$^{-}$ cans available．Shelter west of dam still not finished．Toilets still in terrible shape．Still no shade trees planted．

August 20， 1970 －Assisted by Dave Foster．Collected water smaples near spill－． way and from northeast shore and obtained a pH of 9.1 at both places．According to the Tribal game wardens， 30 rainbow trout and 4 brown trout were found dead along the shore this morning． The largest brown trout was said to be 23 inches long．

 ごish． Ierm ：̈eried

$\because \because ロ$ ロ゙ーショ
oct．27，1971－Wate＝上unning into lake fiocm dienh．tjout s
 spillway．Surface temp． 52 ．Lake still not being drained．

Terry inezel
Jan．6， 1972 －No fishermen at 2：00 p．m．Nater level ．．．31 ft．beiorv spillway．Surf．Temp．ice cover．Eall and wirter runs into lake until it fills up．Around way I they divert water upstream for irrigation．Many pejple selvished trout \＆catfish downstream along ditch when headgate was opened．B．I．A．，had apparently worked on the headgate this morning，largest catfish caught was $22 \frac{21}{\prime \prime}$－largest trout caught was $24^{\prime \prime}$ ．Limited stream flow below headgate．Found many dead and alive Ear－ head minnows in ditch downstream．Also noticed many dead crayfish along the lake shoreline．According to Jerome，all fish in lake are deac．There is an es－ timated 3 surface acres of water in lake at Dresent． Assisted by Jerome Ortiz．Charlie Sanchez
 Very thin－ice cover．Lake appriximetely $\frac{1 / 2}{2}$ full．そater beinc deverted into lake．Charlie Sanchez
 caufnt．＂ilincir day．＂Srajtish veine zaught out of lake． Water level 5 ft ．helow spillway．Assistec by Jerome Crizz． כnarlie San：ñz

Maroh 7， 1972 －Accorcing to Ray Histia，Bonced Treasurer of anoma Fue：010，tot：1 incore from permit sales at Acomita Lake curina lシ？2 anounte：： 0 S14，903．25．Terey ぞerivel
 lake，Azzoreine to devome ortiz，this res been foina ch sirze
 зぁ 6 р．т．Terry terks？

June 15， 1972 －Sollested water sample at about noon：took it to Soils Lab and had it analyzed：p ．$=9.0$ E．O．X $10^{6}=1450$ ．There was an orvicus blue－green algae bloom hut it did not look serious．Fred saraia said people have comelained about the fish having soft Elcsh and tastine＂funny＂．

July 20， 1972 －Assisied by Jerome Ortiz．Surf．Temp．72．Water level ayproximajeiy 6 or 7 Eeet below seillway．Aquatic weeds numerous in uyper end oí lake．No water＇eing discharged．Nater beine munto lake from ditch．Youns－of－rear seayfish ovserved in lake．Day＇efore yesterizy
 жаs pone．Terry Merkel

 $\because \because: \because \because$

$$
\because \because 2.20 .1475
$$

－	$=$	\because
－：••	＝	
－－．	．$: 2$	：$:$
三－	$\therefore \%$	こう．
－－	\cdots	－
－i．	\because	－
－	．	－j
－2．	． 0	57.7
－	． 2	：－．
－－	$\therefore-$	12．
\cdots	． $8: 4$	4う．
こう． 3	．	－
－1．1	．	20．\％
－0．	． 4	4ミ．
ご，	？．2？	： 3.0
1？．：	． 54	டこ．
－i． 2	．こう	－？
こ〇．2	.$\therefore 2$	こ\％．5
ここ． 2	－	－， 2
ここ． 2	．$こ$	50.5
－\because.	． 3	$\therefore 5$.
$\bigcirc .7$	－	：
$\bigcirc{ }^{-7}$	．$̄$	：－． 3
－ 3	．$う$	$\because \bigcirc$
12.5	． 22	41.9
12.5	． 4.4	3\％．？
5.9	． 42	43.5
二2．3	.12	ここ．こ
こう．	． 32	\therefore－．
12． 3	．$=2$	！こ．
$=-.5$	－ジ	42.5
－2． 3	． 72	ここ．こ
9.7	．	4 4
12．1	．$\%$	42．
2.3	． 20	$\because ?$

 none. Lots of fathead minnows spawning in the shallows and rocier \equiv Eres. Lots of desd creyfish. Euddy jensen

June 25, 1974 - Water level 80" below spillway. Surf. Temp. 800F. Discharge Teme. Eiof. Visibility moderately clear. Aquatic weeds none. 44 fishermen a 2 E. . . Fisfermen doing well during the cool part of the day. Catching insin up to 19". Buddy jensen
Aug. 27, 1974 - Water level $95^{\prime \prime}$ below spillway. Surf. Temp. 680F. Visibility 48" bluegreen algae bloom. Aquatic weeds none. 10 fishermen at $9: 30$ a.m. Wardens say that fishermen are still doing pretty good and cetching some real nice fish. Buddy Jensen

Sept. 13, 1974- Water level $98^{\prime \prime}$ below spillway. Surf. Temp. $64^{\circ} \mathrm{F}$. Visibility clear. Aquatic weeds none. Two fishermen at 9:00 a.m. Sparse blue-green algae bloom (rod shaped)? pH $=8.5$ No water entering or being released. Buddy Jensen

Oct. 10, 1974 - Weter level 79" below spillway. Surf. Temp. 650F. Aquatic weeds none. 33 fishermen at 11:45 p.m. Quite a bit of runoff entered lake from the recent rains. No other water entering lake. Heavy bloom of rod-shaped green or blue-green algae.

Buada Jensen
Jan. 28, 1975 - Water level 30 " below spillway. Surf. Temp. 400F. Visibility clear. Aquatic weeds none. Fishing closed. Lake had about $1 / 3$ ice cover. Could use about 2 more feet of water in the lake before fishing season opens on March 1.

Buday Jensen
March 1, 1975 - Assisted by Ervin Juanico \& Byron Wanye. Water level 30" below spillway. Surf. Temp. 440F. Visibility clear. Aquatic weeds none. 250 fishermen at $10 \mathrm{~A} . \mathrm{M}$. Opening day of fishing season. Have a new Tribal Ranger this year - Byron Wanye. He replaced Robert Vicinte. At 10 A.M. the Acomas had sold 250 1-day permits and 75 season permits. Buddy Jensen
Rainbow Trout caught by anglers at Acomita Lake

Length	Weight	"C"	Length	Weight	"C"	Length	Weight	"C"
11.2	. 56	40.0	10.3	. 44	40.5	11.9		40.0
13.0	. 80	36.5	11.6	. 64	41.0	11.3	. 62	41.5
11.3	. 63	43.5	12.9	. 85	39.5	11.8	. 71	43.0
11.5	. 60	39.5	10.7	. 47	38.5	13.8	1.25	47.5
11.8	. 68	41.0	11.3	. 66	46.0	13.8	-. 59	43.0
11.5	. 54	35.5	13.3	1.00	42.5	11.6	. 62	39.5
15.3	1.38	38.5	11.8	. 66	40.0	12.5	. 73	37.5
11.3	. 55	38.0	12.5	. 81	41.5	12.5	. 66	39.0
10.3	. 42	38.5	13.5	. 93	37.0	12.3	. 72	38.5
10.3	. 45	41.0	12.5	. 82	42.0	11.1	. 55	41.0
12.0	. 70	40.5	13.2	. 94	41.0	12.2	. 68	37.5
11.5	. 64	42.0	13.0	. 87	39.5	13.9	1.06	39.5
12.2	. 77	42.0	12.7	. 75	36.5 44.0	10.5	. 48	47.5
12.5	. 82	42.0	11.4	. 66	44.0	10.5		

4COMITA LAKE

March 1, 1975 - (Continued)

Length	Weight	"C"	Lensth	Weight	"C"
12.8	. 85	40.5	14.6	1.25	40.0
13.2	. 90	39.0	12.4	. 78	41.0
12.6	. 72	36.0	11.8	. 72	44.0
. 31.5	. 66	43.5	12.4	. 78	41.0
11.2	. 62	44.0	12.3	. 70	37.5
13.0	. 82	37.5	12.9	. 89	41.5

Buddy Jensen
April 29, 1975 - Assisted by Laweka, Sanchez. Water level 37" below spiliway. Sumf. Temp. 56OF. Visibility clear. Aquatic weeds none. 35 fisiemen at 1i:30 a.m. Fishing has been quite slow this spring with all the cool weather. Ray Concio said fishing permit sales are muning behind sales during previcus years.

Buddy Jersen
June.18, 1975 - Assisted by Alex Laweka. Water level 50" below spillway. Suní. Temm. $68^{\circ} \mathrm{F}$. Visibility moderately clear. Aquatic weeds none. 30 fishermen at 9:20 a.m. Fishing is fair. Mary large fathead minnows along the shallow areas - many smaller ones also.

Buddy Jensen

Aug. 28, 1975 - Water level 60" below spillway. Surf. Temp. $72^{\circ} \mathrm{F}$. Visibility quite clear. Aquatic weeds none. 2 fishermen at $10: 30$ a.m. A smail algae bioom of some type. Need to get water running into lake.

Buddy Jंensen
Oct. 10, 1975 - Assisted by Alex Laweka. Water level l' below spillway. Surf. Temp. 740 F . Visibility quite clear (but extensive algae bloom). Aquatic weeds none. 10 fishermen at 3:50 p.m. Quite an extensive algae bloom. Water entering lake. $\mathrm{pH}=9.78 \quad$ Buddy Jensen

March 6, 1976 - Water level 30" below spillway. Sumf. Temp. 510F. Water clear.

Length	Weient	"C'	Lenptin	Weigint	"C"	Length	Weient	"C':
13.3	1.11	48	12.1	. 67	38	11.3	. 61	42
12.8	. 93	45	11.2	. 55	39	13.7	1.05	43
21.7	. 59	37	19.8	3.00	39	10.3	. 54	50
10.8	. 53	42	11.8	. 74	45	11.2	. 55	40
11.6	. 60	39	10.7	. 54	44	10.5	. 54	48
12.0	. 76	44	12.7	. 79	39	9.5	. 36	42
17.3	. 62	43	17.3	. 58	41	13.4	1.01	42
12.0	. 63	37	11.9	. 72	43	12.3	. 69	37
11.9	. 77	46	12.6	. 73	37	13.3	. 95	41
11.0	. 60	45	13.9	1.08	43			

CHADNEL CATFISH

ACO：O－A：$\because=\Xi$

： $\mathfrak{B r a i}$ 23， 1276

May 12， 1976

June 22， 1976

July 1， 1976

July 29， 1976

Aug．25， 1976

Oct．4， 1976

Hov．24， 1976

Marcin I， 1977

 fishermen at $1: 45$ p．m．The tniכal nanger advised ごった really been very siow．Alex Levera
－Assisted by Iaweka．Nater level 4＇below spilliway．Sunf．Femp． 620 F．Visibility moderately clear．Acuatic weeces rone． 25 fisier－ men at ll：35 p．m．Observed fisheman taking trout－i5＂I．i． Ranger requested browns an pu்lic request．Ben Rciersan
－Surf．Temp． 71° F．Discharge Temp．660F．More than 20 fishemen were counted at 4：40 p．m．According to one fishermen，there were lots more earlier in the dav．Fishing slow．Discinarge water rad strong odor of $\mathrm{H}_{2} \mathrm{~S}$ ．Spawning fathead minnows were observed．

Temy Merkel
－Assisted by Ervin Juanico．Water level l01＂belon spillway．Surí． Temp． $70^{\circ} \mathrm{F}$ ．Visibility $I^{2} \mathrm{~F} \mathrm{ft}$ ．Aquatic weeds filarentous algae． 35 fishemen at 5 p．m．Water level real low．Migint keep a close eye on the algae blocm． $\mathrm{pH}=9.32$ Alex ianeira
－Water level 79＂below spillway．Surf．Temd． $74^{\circ} \mathrm{F}$ ．Visioilizy munc： Aquatic weeds－none visible． 28 fishermen at 3 p．m．Water reai brown in color．Fishemen report that fishing is real slow． $\mathrm{pH}=9.35$

Alex Laveka
－Assisted by Ben and Amold．Water level 75＂below soillway．Sumf． Temp．800F．Visibility clear．No aquatic weeds． 12 fishermen at 3：30 p．m．Fishing reported poor．Alex Laweka
－Water level 65＂below spillway．Surf．Temp．5605．Visibility clear Filamentous algae an bottom of lake． 4 fisnemen at 1 p．m． Alex Larveka
－Water level $63^{\prime \prime}$ below spillway．Surf．Temp． $44^{\circ} \mathrm{F}$ ．Visibility clear No aquatic weeds visible． 15 fishermen at l：30 D．m．Observed a lot of plankton in the water around the shoreline．

Alex Laweika
－Assisted Dy Andy Antonio．Water level 18＂below spillway．Surf． Temp． $41^{\circ} \mathrm{F}$ ．Visibility 2^{\prime} ．No aquatic weeds．No fishemen at 11 a．m．－ 4 p．m．Gill netting－I houm set on each net． 2 were deep set where most of the fish were aaught． 3 shallow water sets－ very few fish caught from these sets．Approximately 300 waterfow？ observed．

Length	Weight	＂C＂	Length	Weight	＂C＂	Length	Weight
12.6	． 67	33	10.7	． 45	37	11.2	． 50
10.3	． 38	35	12.3	． 66	36	8.9	． 23
10.7	． 41	33	10.2	． 37	35	9.7	． 34
8.5	． 22	36	10.6	． 40	34	10.2	． 43
10.1	． 36	35	10.8	． 44	35	9.9	． 37
10.9	． 50	39	11.2	． 52	27	ㄴ． 5	47
11.2	． 55	$こ ゙$	－ 2	．-2	40	2．${ }^{\text {\％}}$	5
12.0	． 58	こ4	ここ． 5	． $5 \div$	35	20．3	． 3 ¢

\because シャッグ 二， 1377
－Continued

Ler． 5 Ein	Vėzhz	＂C＂
13.0	． 78	36
10.5	． 48	42
9.1	． 29	39
10.8	． 45	36
11.4	． 52	35
12.3	． 58	31
10.1	． 40	39
13.1	． 68	30
10.6	． 39	33
9.7	． 29	32
8.5	． 23	38
9.4	． 33	40
10.5	． 46	40

Alex Laweka
March 5， 1977 －Assisted by NYC kicis．Waten level 18＂below spillway．Surf．Temp． $45^{\circ} \mathrm{F}$ ．Visibility $1 \frac{1}{2} \mathrm{ft}$ ．No aquatic weeds． 115 fishermen at 12 noc： Opening day of the 1977 season．Fishing real slow early part of the day but improved later in the day．I．took weigint and lengtin of fishermen＇s catch and also took pictumes of fishermen．

RAINBOW TPOUT．

Length	Weight	＂C＂	Length	Weight	＇ 1 ＂	Length	Weight	＂C＂
9.2	． 29		11.7	． 64	40	10.8	． 55	44
12.7	． 74	36	12.8	． 59	33	8.2	． 22	40
13.1	． 74	33	11.1	． 56	41	9.0	． 23	32
11.5	． 68	45	11.2	． 57	41	8.7	． 25	38
10.4	． 38	34	8.0	． 19	38	9.1	． 25	33
8.6	． 22	35	11.9	． 64	38	9.3	． 28	35
10.1	． 36	35	12.8	． 57	27	11.0	． 48	36
8.5	． 20	33	12.0	． 65	38	8.9	． 25	35
11.8	． 62	38	11.9	． 69	41	9.8	． 40	43
19.9	2.85	36	12.3	． 75	40			

CHANNEL CATFISH
$\frac{\text { Length }}{17.1} \quad \frac{\text { weight }}{1.75} \quad " \mathrm{C"}$

Alex Laweka

April 21， 1977 －Assisted by B．Rebertson．Water level 18＂below spilfway．Surf． Tenp． $64^{\circ} \mathrm{F}$ ．Visibility clear．Aquatic weeds sparse． 20 fishermen at $3: 30 \mathrm{p} . \mathrm{m}$ ．Fathead minnows extremely abundant in shallows．

Alex Laweka
May 3， 1977 －Water level $38^{\prime \prime}$ below spillway．Surf．Temp． 65° F．Visibility clear．Submerged vegetation starting to grow in shallow areas． 20 fishermen at 3：30 p．m．The Governor and his council met with Chief c Police，Rangers，Ray Concho and I on their new rules and regulations for the lake．No water is running into the lake but there is water running out．Alex Laweka

Muy 18, 1977 - P.ay Concho from icoma MeEio called to infom us on some sa=こish dying at Accmita lake. The rargers have counted up to 27 dead catfish.

Alex La:reka
:Kay 13, 1977 - Assisted by Robert Vicente. Water level 44" belaw spillway. Surf. Temp. 63° E. Visibility clear. Submenged vegetation aiundant timousiout shallow areas. 22 fishermen at 11:05 a.m. pi. = 8.50: D.0. $=10 \mathrm{p}$. m Partial kill of cinannel catfish occurred last week but Pueblo did ro= inform this office about it until this week. Reasons for kill unichoi TRout were not affected. Alex Iaveka

June 13, 1977 - Water level 67 " below spillway. Surf. Temp. 68° §. Visibility clear Submerged vegetation growing in shallow areas and blue-green bloom just starting. 20 fishermen at 5 p.m. Also blue-green algae along banks of dam area. Water being discharged has odor of $\ddot{r}_{2} S$. So far ajout 100 channel catfish have died since they were plented at the end of lay. They are still being picked up at tre rate of 2 or 3 per day. $\mathrm{pH}=8.60$

Alex Laweika
June 28, 1977 - Water level $75^{\prime \prime}$ belon spillnay. Surf. Terp. $19^{\circ} \mathrm{C}$. Visibility clear. Aquatic weeds abundant with submerged vegetation on the lionth side. 35 fishermen at 12 noon. Ranger :tartinez advised that about 100-150 RBT died when they were planted last Thrusciay. pit $=8.8 ;$ D.0. $=14$ prm No more catfish died since our-last visit.

Alex Iameka
July 22, 1977 - Water level $6 \frac{1}{2}{ }^{\prime}$ below spillway. Surf. Temp. $18^{\circ} \mathrm{C}$. Visibility clear. Blue-green algae starting to bloom. 23 fishermen at 1:30 p.m. Alex Laweka

August 2, 1977 - Water level 7^{\prime} belon spillway. Sumf. Temp. 71 ${ }^{\circ} \mathrm{F}$. Visibility clear. Blue-green algae blooming and submerged vegetation abundant on shallow area on north side. 30 fishemmen at 1 p.m. pit $=9.56$ \therefore : O : water being discharged, Ranger said there is water being diverted from river.

Alex Lazeka
Aug. 24, 1977 - Fivater level $8^{\prime} l^{\prime \prime}$ below spillway. Sunf. Femp. $77^{\circ} \mathrm{E}$. Visibility clea Subnerged vegetation abundant on north side of lake. 6 Iishormen at 3:15 p.m. Tribal rangers were saying that some of the fishermen hay been catcing chuis and suckers during the summer montis. $p \ddot{i}=3.93$ Alex Laweka

Sept. 21, 1977 - Surf. Temp. $15^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$. Visibility $3^{\prime} 2^{\prime \prime}$ secchi disc. Blue-green algae abundant. 18 fishermen at 12 noan. $\mathrm{pH}=9.05(?)$.

Alex Laweka

> Iez. E, =:777

March 23, 19.78 - Assisted by Mackel. Water level 42"belcw spiliway. Sunf. Temp. Iた ($54^{\circ} \mathrm{F}$). Visibility clear blue-green. No aquatic weeds. Jo fisherme at 4:40 ?.m. 20 waterforsI seen. flex jaive.ka

Marah 29, 1978 - Assisted by Mackel and Robert Vicenti. Water level 35" beiow the spillway. Surf. Temp. 580 F. Visibility clear. No aquatic weeds visible. No fishemmen at 9:15 a.m. About 200 waterfowl observed. We met with Mr. Ray Concho and Bob Vicenti on their creel census and notified them that we will be working with them closely througiout their fishing season.

Alex Laweka
April I, 1978 - Assisted by Jim Mackel. Water level 30" below spillway. Sunf. Jemp. $56.5^{\circ} \mathrm{F}$. Visibility clear (blue-green). Submenged vegetation in shallow areas. 225 fishermen at 10:30 a.m. From 10:30 a.m. to 12:30 p.m. We measured angler-caught fish for condition factors and oiserved for marked fish. 80% of the fishermen had been fishing for at least 3 hours. We measured about 80% of the fishermen's catch. The fishermen on the east and northeast side of the lake were catchir. more fish than the other fishermen fishing from the dam and on ti.e west side.

Length	Weight	"C"	Remark	Length	Weight	"C"	Remark
13.4	. 90	37	Holdover	10.0	. 40	40	Marked
12.1	. 89	50	Holdover	13.9	1.20	45	Holdove
13.0	1.02	46	Holdover	9.1	. 30	40	Marked
12.5	. 89	45	Holdover	10.9	. 48	37	Marked
14.3	1.24	42	Holdover	15.3	1.33	37	Holdove
11.3	. 64	45	Holdcver	10.1	. 40	39	Marked
I3.3	. 90	38	Holdover	9.2	. 25	32	Unmarke
10.5	. 50	43	Unmarked	11.0	. 58	44	Holdove
12.4	. 79	41	Unmarked	11.3	. 60	42	Holdove
12.8	. 98	47	Holdover	13.9	1.17	43	Holdove
12.8	. 95	45	Holdover	12.1	. 68	38	Hoidove
15.2	1.46	41	Holdover	13.9	1.12	42	Holciove
16.8	2.00	42	Holdover	10.7	. 60	49	Holdove
8.0	. 20	39	Marked	11.8	. 50	31	Holdove
12.3	7.4	40	Holdover	12.9	. 84	39	Holdove
11.6	. 64	41	Holdover	10.5	. 50	43	Holdove
11.4	. 72	49	Holdover	12.3	. 80	43	Holdove
9.9	. 40	41	Holdover	10.1	1.39		Marked
10.8	. 58	46	Holdover	10.5	. 50	43	Unmarke
12.7	. 80	41	Marked	12.1	. 80	45	Marked
11.1	. 52	38	Holdover	11.5	. 75	49	Holdove
10.6	. 50	41	Marked	12.6	. 84	42	Holdove
10.7	. 52	42	Holdover	11.7	. 72	45	Holdo's

	Contin Length	$\begin{aligned} & \text { Ei) } \\ & \text { Weignt } \end{aligned}$	＂C＂	Femar： Mミnked Holdover Mariked Holaover Holさover Holdover Holdover Holdover Marked Holdover	ご			
	10.4	． 44	डड		14．6	7.08	ミE	
	10.7	． 58	47		17.0	1.8 .3	37	
	11.0	． 54	41		15.4	1.08	30	
	11.2	． 56	40		17.3	1.80	35	
	15.3	1.62	45		17.8	1.38	33	
	13.1	1.24	55		21.8	3.50	35？	
	11.6	． 68	43		15.9	1.33	33	
	10.6	． 56	47		17.3	1.66	32	
	10.7	． 52	42		15.8	1.50	38	
	12.0	． 70	40					
	Length	$\frac{\text { BNT }}{\text { weight }}$	＂C＂					
	12.6	． 82	41					
	11.8	． 68	41					
	13.8	1.10	42					
	14.0	1.16	42					
	15.4	1.76	48					
	13.0	． 82	37					Le：veica

April 7， 1978 －Assisted by Barton Martza．Water level． 2^{\prime} below spillway．Süf． Temp． $15^{\circ} \mathrm{C}$（ 580 F ）．Visibility clear．Submerged vegetation stiroin to grow in shallow areas． 18 fishemen at 4 p．m．Alex Laweici

April 11， 1978 －Assisted by Bob Vicenti．Water level $253 / 4$＂below spillway．S：m Temp． $58^{\circ} \mathrm{F}$ ．Visibility clear green－ $18^{\prime \prime}$ approx．No $\exists q u a t i c ~ w e=i ̇$ visible． 93 fishermen at 4 p．m．Took creel cersus from 1：3C j．．．．： 4 p．m．Counted 17 marked RBT； 19 unnarked RET； 7 hoidovers RE：： 8 holdovers CCF； 26 holdovers BRiv； 13 RBT－unsume．Jim Meckei

April 15， 1978 －Assisted by Ed Seymour．Water level $20^{\prime \prime}$ below spillway．Sumf．$=\because-\cdots$ $59^{\circ} \mathrm{F}$ ．Visibility clear．Sumerged vegetation graving in sinaiic：i areas． 123 fishermen at 11 a．m．We sampled some angler－acuzi：$E_{i=:}$ for stomach contents and 90% of the trout contained blackfy iar． Only a couple of fish had plankton in their stomach．Ho catiish ：is： sampled．The fisiermen fishing on the dam were catching brown troi＝ using worms．There were about a hundred waterfowl observed．

Alex Laneica
April 25， 1978 －Water level 17＂below spillway．Surf．Temp． $58^{\circ} \mathrm{F}$ ．Visibility cies： green．No aouatic weeds visible． 78 fishermen at $12: 15$ to $2: 1$ ב．．．． At 2 p．m．Hatchery truck from Mescalero stocked 3，000 הBT，hai e＝ them mariked，haif unmarked．

Results of Creel Cersus from $12: 15$ to $2: 15$ p．m．

April 25, 1378 - Continued from previous pase
$\frac{10}{3} \quad \frac{S p}{\text { SiT }}$
of caugint by one person using Peacock nymph with red tain one caugit with worm (est. lengtin 12 " to $18^{\prime \prime}$)
1 CCF Est. lengtin $18^{\prime \prime}$
Bait used on all fish was: com (whole kermel), fireballs, worms, flys - mostly blackknat and peacock nympin witi red tail.

Jin Mackel
May 9, 1978

- Assisted by Ed Seymour. Water level 11 3/4" below spillway. Surf. Temp. 64° F. Visibility clear blue-green. Aquatic weeds present alc shore. 80 fishermen from $12: 15$ a.m. to $2: 15$ p.m. An abundant amour of minnows sciooling up, est. 200 to 300 in schools. Stomacin sampl= revealed aquatic insects larvae and minnows-algae. Took creel cens: from $12: 15 \mathrm{a} . \mathrm{m}$. to $2: 15 \mathrm{p} . \mathrm{m}$.

Length	Wieight	"C"			t	"C"	Remark
13.3	. 80	34	Fioldover	12.0	. 74	43	Marked
15.3	1.33	37	Holdover	11.7	. 62	39	liarked
13.1	. 95	42	Holdover	12.0	. 69	40	Marked
13.6	1.08	43	Holdover	12.1	. 68	38	Marked
12.3	. 81	44	Holdover	11.4	. 57	38	Variked
11.0	. 50	38	rioldover	10.6	. 49 .	41	ifarked
13.5	1.03	42	Holdover	9.5	. 36	42	Marked
10.1	. 42	41	Marked	9.7	. 34	37	, Varked
10.2	. 42	40	Marked	9.3	. 28	35	Unmarkec
7.7	. 18	40	Marked	9.3	. 29	36	Usmarked
11.4	. 56	38	Marked	9.3	. 58	72?	Urmarked
11.3	. 54	38	Marked	9.2	. 34	42	Unmarke
17.2	. 58	41	Marked	9.0	. 34	47	Unmarke
9.9	. 43	44	Marked	8.8	. 30	44	Unmarked
BROWN TROUT			CHANVEL CATEISİ				
Length	Weight	"CT	Remark	Length	Welght	"C"	Remark
14.1	1.20	43	Holdover	18.5	2.58	46	Holdover
14.2	1.19	41	Foldover	12.7	. 76	37	Holdover
14.2	1.23	43	Holdover	15.6	1.40	37	Hioldoven
14.7	1.27	40	Holdover				
13.5	1.10	44	Holdover				
14.2	1.08	38	Holdover			Jim	ckel

May 13, 1978

- Assisted by Ejay Lorenzo. Water level 10" below spillway. Surf. T $70^{\circ} \mathrm{F}$. Incoming Temp. $72^{\circ} \mathrm{F}$. Visibility clear blue-green. No aquat: weeds visible. 85 fishermen from 3:30 p.m. to 6:15 p.m. Took cree? census from 3:30 p.m. to 6:15 p.m.

			C0:15:	L:KE				
May 13, 1978	Continued from previcus page RA IBON TROLI							
	$\frac{\text { Lengtin }}{14.8}$	$\frac{\text { Weigint }}{1.93}$	$\frac{" C "}{61}$	Remark	$\frac{\text { Length }}{11.7}$	$\frac{\text { Weigint }}{52}$	$\frac{18}{32}$	R, Remarik
	14.8	1.93	61	Holdover		. 52	32	ked
	13.5	1.92 1.52	61	Holcover	9.7	. 33	36	'arked
	13.4	. 99	41	Holdover	11.0	. 59	44	Marked
	14.5	1.16	33	Fioldover	10.9	. 53	40	larked
	12.7	. 76	37	rioldover	9.1	. 76	100	Unmarked
	12.1	dressed		Holdover	8.8	. 72	98	Unmarked
	12.2	. 75	41	Holdover	11.7	. 72	44	Urmarked
	13.1	1.09	41	Holdover	9.5	. 36	41	Unrarked
	11.7	. 65	40	Holdover	21.9	. 71	42	Unmarked
	10.7	. 55	44	Holdover	9.3	. 32	39	Unmarked
	10.5	. 94	80	Marked	9.3	. 32	39	Unmarked
	10.6	. 98	81	Marked	9.6	. 32	36	Linmariked
	9.8	. 83	87	Marked	9.5	. 36	41	Urmariked
	11.1	1.02	75	Marked	9.5	. 34	34	Unmariked
	12.3	. 77	41	Marked	9.1	. 28	37	Linnarked
	11.9	. 62	35	Marked	9.3	. 30	37	Unmarked
	11.0	. 53	39	Marked	9.3	. 28	34	Unrarked
	11.9	. 67	39	Marked	9.2	. 38	48	Unmanked
	9.2	. 32	41	Marked	10.2	. 48	45	Urmarked
	10.5	. 47	40	Marked	9.6	. 40	45	Unnariked
	10.6	. 50	41	Marked	9.5	. 39	45	Unmarked
	11.3	dressed		Marked	9.6	. 40	45	Unnarked
	21.7	. 57	36	Marked				
		BROWN TROUT				CHANNEL CATFISH		
	Length	Werght	"C"	Remark	Length	Weignt	"C11	Rerark
	14.5	1.80	58	Foldover	16.6	2.07	59	Holdover
	16.1	1.64	45	Holdover	16.3	1.50	34	Holdover
	13.4	1.04	43	Holdover	14.5	1.15	37	Foldover
	14.5	1.17	38	fioldover	14.7	1.26	39	Holdover
						Jim		! Mackel

May 26, 1978 - Water level $16^{\prime \prime}$ below spillway. Surf. Term. $70^{\circ} \mathrm{F}$. Visibility clear. Submerged vegetation growing in shallow areas. 26 fishermen at l:50 p.m.

Alex Laweka
May 29, 1978 - Water level $20^{\prime \prime}$ below spillway (est.). Surf. Temp. $65^{\circ} \mathrm{F}$. Visibilit. clear. Submerged vegetation starting to grow in sinallow areas. 75 fishermen from 10:30 a.m. to $2: 30 \mathrm{p} . \mathrm{m}$. I conducted creel census and took pictures of some fishermen and fish caught. The rangers said that this day has had the least number of fishermen for the weekerd. Alex Laweka

June 3, 1973

- Assisted by Rick Brown. Water level 22" below spillway. Surf. Temp. $66^{\circ} \mathrm{F}$. Discharge Temp. $62{ }^{\circ} \mathrm{F}$. Visibility clear blue-green. Filanentc: algae on sandy shores, water milfoil on ricky shores with algae. Sub. merged vegetation present but not yet to surface. Water being releass for irrigation, Temp. $62{ }^{\circ} \mathrm{F}$. Water coming in from irrigation overfle: Temp. 72 年. Due to heavy winds, fishermen turmout was low. 40 fishermen at 6 p.m.

ACOMIT MAE

June 10, 1978 - Continued from previous page

CHANEL CATFISH

$\frac{\text { Length }}{16.4} \frac{\text { Weight }}{1.62} \frac{\text { "C" }}{37}$ Remark
Jin Mackel
June 18, 1978° - Assisted by Ejay Lorenzo. Water level $26^{\prime \prime}$ below spillway. Surf. Temp. 76° F. Visibility clear blue-green. Filamentous algae $3 / 4$ around lake shore - medium to heavy. 41 fishermen at $3: 15$ p.m. Jim Mackel

July 18, 1978 - Assisted by Ed Seymour and Brian Hepting. Surf. Temp. 75 ․ Discharge Temp. $72^{\circ} \mathrm{F}$. Visibility green clear. Submerged vegetation growing from bottom but not yet to sumface. Eilamentous algae water milfoil. Water being released for imigation. Eaby crayzish and minnow fry aburdant. 40 fishemmen at 7:15 D.m. Three Rio Grande chubs caught:

Length	Weignt	"C"'
	$\frac{.25}{8}$	53
7.9	.24	49
7.6	.23	53

CREEL CENSUS RESULT FROM. 5 D.m. TO 7:15 D.m.
RAIVBOW TROUT

Length	Weigit	"C"	Remarik	Length	!eizht	" ${ }^{\circ}$	Remarik
12.0	. 69	40	Marked	11.3	. 54	38	Markec
11.3	. 58	40	Marked	12.0	. 69	40	Marked
11.0	. 55	41	Marked	10.7	. 47	38	Yarked
12.2	. 70	39	Marked	12.4	. 79	42	Marked
11.0	. 49	37	Marked	13.6	. 92	37	Mariked
12.2	. 75	41	Marked	12.2	. 67	37	Mariked
12.2	. 75	41	Marked	12.4	. 70	37	Marked
9.6	. 38	43	Marked	12.5	. 70	36	Marked
12.5	. 72	37	:arked	10.8	. 49	39	tariked
11.4	. 60	40	Marked	10.0	. 41	41	'tarised
12.2	. 70	39	Marked	11.6	. 60	39	larked
10.7	. 48	39	Marked	12.1	. 67	38	Marked
13.8	. 77	29	! Marked	12.5	. 73	38	Yariked
12.3	. 63	34	Marked	10.2	. 42	40	Manised
12.9	. 32	38	Marked	11.3	. 54	38	Vanked

Jul: 12, 1378 - Continued from zrevious ̄ミ̃

FAI:EOM TROJ!					
Length	"ieimt :c"	Remarir	TenEt	Ueimht "C"	Rerank
10.1	.38 37	Yericed	11.7	. 50 41	Timariked
11.3	. 5840	:'Erked	9.0	. 28 - 39	Unmarised
11.1	dressed	itarked	11.5	.6844	linarked
12.0	dressed	?'arked	9.7	. 3943	Lirarieed
12.0	. 6340	Unmarked	9.7	. 3842	linmarikec
10.3	. 3936	Unmarked	13.1	. 7935	Untariked
10.0	. 4343	Unmarked	11.3	. 5438	Unnarieed
9.3	. 3139	Unmarked	10.0	. 3939	Unmarked
10.2	. 4240	Unmariced	9.7	. 3842	Linmarked
9.5	. 3541	Unmarked	9.7	. 3842	Lintarked
9.8	. 4144	Unmarked	11.7	. 6541	linrarked
11.4	. 6242	Unnariked	10.5	dressed	Unmerired
10.4	. 5045	Unrarked	10.6	dressed	immarked
10.9	. 4938	Unmarked	9.7	dressed	Unmarised
10.5	. 4539	linmarked	11.1	ciressed	Untarked
9.5	. 3642	Untariked	12.7	. $86 \quad 42$!oldover
10.2	. 4845	Unsarked	15.4	1.51 41	:Oldover
9.5	. 2024	Unmariked	14.5	dressed	:\%oldover
9.7	. 33 - 36	linmarked	14.7	dressed	Foldover
9.5	. 33 39	Linmariked	13.2	dressed	Holdover

July 19, 1978 - Assisted by Bryan Fiepting and Ejay Iorenzo. Sumf. Temp. $76^{\circ} \mathrm{E}$. Discharge Temp. 710F. Visibility green clear. Blue-green algae presen: along soutiwest shore. ijater milfoil present along northeast shore. Filamentous algae along north and northeast shore. Submerged veget tion along north and northeast shore not yet to surface. Thousands of minnows along entire shoreline. Incoming trickle 860F. 35 fisinom men at 11:30 a.m.

CREEL CEIISUS RESULT ERO:1 10 A.M. TO $11: 15$ A.M.

CHADNEL CATFISH

Lensth	Sieigit
20.3	2.99
12.9	77
20.8	3.73

 spillway. Sumf. Temp. $75^{\circ} \mathrm{F}$. Eischarge Temp. 720\%. Visioiliti turbid ヨlong shore, seccii disc reading $3^{\prime \prime} 3^{\prime \prime}$ - Freen mumy. Accuatia weeds surfaced and submerged. Filarentous algae on sumface on ronth side of lake; a patch 200 yds. $x 15$ yds. in horseshoe shase from eas: to mest. Also along sardy shores oi lake. Water milyoil alonz southern shoreline. Round blue-green algae present. Subrerced vezet tion also on nortio end, northinest, and northeast sices of iake. fat= being reieased for irrigation. 23 fishermen at 4 p.m. Hinnow fry, adult and baby crayfish abundant. Wind from northwest and cloudy (dark clouds).

CREEL CENSUS RESULT FROM 3:30 P.M. TO 5:30 P.M.

CHANEL CATHESi

Length	Weight	"C"	
13.2		.80	35
13.0	.80	36	
12.9	.80	37	
13.8	.94	35	
16.2	1.50	35	

Jim l'ackei
July 26, 1978 - Assisted by Joe Leno. Water level 53" belav spillway. Sumf. Temp. 77 to $78^{\circ} \mathrm{F}$. Discharge Temp. $72^{\circ} \mathrm{F}$. Visibility green muriv, $3^{\prime} 2^{\prime \prime}$ secchi disc reading. Filamentous algae 100 ydis. out from northem shore. Also along east and west shore with water milfoil and narrowleaf pondweed. Submerged vegetation present - few surfaced 75 to 100 yards from northeast shore. Blue-green algae clustering up and abun. dant. Saw 2 fish jump. Abundance of crayfish and minnows. 50 water fowl present with young. Temp. at south side by spillway is $78^{\circ} \mathrm{E}$. T.T. $23^{\circ} \mathrm{C}-71.5^{\circ} \mathrm{F}, \mathrm{DH}=9.09$. Temp. at north side was 7705. T.I. $23^{\circ} \mathrm{C}-71.5^{\circ} \mathrm{F}, \mathrm{pH}=9.16$. DH sample taken at $1: 30 \mathrm{D} . \mathrm{m}$. , tested at 5:15 p.m. for north side. pir sample taken at 3 p.m., tested at $5: 25$ for south side.

CREEL CEISUS RESULT FROM 1:45 P.M. TO 3 P.M. RAIFBOW TROUT

July 26，i373－Continued ミron mevious zace

Jin ：

Aug．15， 1373 －Assisted by G．Ortiz and E．Seytoum．＇later level 4^{\prime} ieeic． $1:=02$ spillway．Surf．Temp． $72^{\circ} \mathrm{F}$ ．Visibility $4^{\prime} 10^{\prime \prime}$ secni disc reading． Summerged vegetation abundant in shatlows，heavy blue－green al Eae bloom in deep waters． 22 fishemen at 1 p．m．p：$=9.11$

Depth	Term．	D． 0.
Surface	720 F	3pan
2^{1}	710 F	
4＇	$70^{\circ} \mathrm{E}$	
$6{ }^{\prime}$	$70^{\circ} \mathrm{F}$	
$8{ }^{\prime}$	70°	700m
10^{\prime}	$70^{\circ} \mathrm{E}$	
12＇	63 ${ }^{\text {F }}$	
24＇	69 \％	
16^{\prime}	$59^{\circ} 5$	5ppm

 Geese in the center oミ こaくる．

Feb．27， 1979 －Assisted by 4 Manpower enployees．Water level l＇belcw spillway． Visibility clear．Filamentous algae along most of the shcrelire ar： submerged vegetation growing to the surface in the shallow areas on the north side of the lake．No fishermen from 12：30 p．m．to 4：30 0 We observed about 300 waterfowl：canvasbacks，pintails，buifleheacis cadwalls，conmon mergansers，and muddy ducks．Gill net set from 1 p．m．to 3：15 p．m．

OUT		
Length	Weigit	＂C＂
16.7	1.88	40
16.3	1.73	40
15.	1.48	38

Alex Leweika

ACOMTMA ALE

April 1, 1979 - Ássisted by Dusty Laweka. Water level l' below lip of spillway. Surf. Temp. $48^{\circ} \mathrm{F}$. Visibility clear. No aquatic weeds visible. 110 fishermen at 3 p.m. We weigned and measured for total length fish caugit by anglems in the afternoon on opening day. Channel 7 KCAT T Sports Program had been out here in the morning to report on opening day fishing on this lake and to intervies fishermen on the Tribe's raising the cost of the fishing permits. A lot of fishermen will not consider coming back if the fishing permit remains at $\$ 4.00$ per day. RAINBOW TROUT

Length	Weight	"C"	Lente	Weinit	"C"	Lencth	iveignt	$\because C$
13.1	- ${ }^{\text {a }}$	43	9.5	. 31	$\overline{36}$	11.0	. 64	48
11.5	. 68	45	12.8	. 90	43	11.3	. 53	37
11.2	. 49	35	12.5	. 84	43	10.7	. 50	41
13.8	1.08	41	11.8	. 68	41	12.5	. 90	46
10.9	. 52	40	10.9	. 52	40	24.1	1.08	38
14.0	1.00	36	10.8	. 45	35			
11.5	. 68	45	10.8	. 46	37			

RROWN TRCUT
$\frac{\text { Lengtin }}{16.2} \frac{\text { Weight }}{1.61} \quad$ "C" $38 \quad \frac{\text { Length }}{15.3} \frac{\text { Weight }}{1.24} \frac{\text { "C" }}{35}$
Alex Laveka
June 1, 1379 - Assisted by 3oi Vicenti. Uater level $4^{\prime \prime} 4^{\prime \prime}$ below spill:vay. Surf. Ter 62F. Visioility clear. Submerged vegetation aburcant in shailous. 25 fishermen at 11:30 a.m. Water running into lake and being discharged. Disciarge smells of $\mathrm{H}_{2} \mathrm{~S}$.

Alex Laiveka
June 3, 1979 : - Assisted by Justy. Water level 4곰 belas spillway (estimated). Visibility clear. Submerged vegetation groning in shailow areas. 149 fishermen at 2 p.m. Water running into lake and being dischargec Discharge smells of ${ }^{2} 2 S$. RADJBOA TROUT

Length	Weight	"C"	Lensth	Weigint	'c"	Lenstin	Heigit	
13.4	. 87	36	10.4	. 50	45	16.9	1.77	36
15.6	1.40	37	10.6	. 49	41	$15.0-$	1.25	37
11.7	. 65	41	11.9	. 68	40	16.8	1.68	35
15.4	1.44	39	9.3	. 30	37	18.2	2.46	40
11.6	. 61	39	13.4	. 90	37	18.0	1.96	33
11.3	. 60	42	11.0	. 57	43		Alex Law	

Aug. 23, 1979 - Water level 8^{\prime} below spillway. Surf. Temp. $16^{\circ} \mathrm{C}$. Lots of aquatic weeds at upper end - slight bloom. 10 fishermen at 6:45 p.m. $\mathrm{pH}=9.2$ Ken Harper
Sept. 7, 1979 - Water level 6^{\prime} below spillway (estimated). Surf. Temp. $75^{\circ} \mathrm{F}$. Visibility murky. Submerged vegetation abundant in the north shallo, waters and a moderate blue-green algae bloom. No fishemen from 12 noon to 6 p.m. pir $=9.1$ by the spillinay.

Alex Laweka
 Surf．Temp． 410 g．Visijility alear．ito aquatic weecis visible．才o
 pulled the two shallow sets at 1：30 p．m．and resetted for overnishr． RAIISOH TROUT

Leneth	iveight	＂C＂	Length	Weigit	${ }^{\prime}{ }^{\prime \prime}$
14.3	1.05	36	12.9	． 75	$\overline{35}$
12.8	． 92	44	24.5	1.08	35
9.6	． 35	40	10.1	． 37	36
14.1	． 94	33	13.9	． 88	33
9.7	． 36	40	11.2	． 52	37
14.8	1.22	38	13.9	． 96	36
9.9	． 38	39	9.7	． 30	33
10.7	． 46	38	9.8	． 33	35
14.0	1.18	43	9.5	． 38	45
10.5	． 46	40	10.2	． 43	40

Alex Laweka
Feb．17， 1980 －＂Assisted by Darrel Felipe and Nacio．Water level $8^{\prime \prime}$ below soillway． Surí．Temp．48́․ Visibility clear． 10 aquatic weeds visible． 2 fisher－ men at 10 a．m．to 3 p．m． 4 gill nets set overnight -2 from $10 \mathrm{a} . \mathrm{m}$ ． $2 / 16 / 80$ to 10 a．m． $2 / 17 / 80-2$ from 2 D．m． $2 / 15 / 80$ to 10 a．m．2／17／80．

RAIIEON TROUT

L $\frac{L e}{1}$ $\begin{array}{rrrrr}14.4 & 1.35 & 45 & 9.9 & .38 \\ 14.5 & 1.44 & 47 & 8.3 & .26 \\ 18.5 & 3.20 & 50 & 10.0 & .44 \\ 14.5 & 1.55 & 50 & 9.0 & 37\end{array}$ $\begin{array}{rrrrr}13.8 & 1.05 & 40 & 10.1 & .38 \\ 12.5 & .85 & 44 & 9.0 & .34\end{array}$ 15 $\begin{array}{lr}12.1 & .78 \\ 13.3 & 1.02\end{array}$ $\begin{array}{ll}13.1 & .98 \\ 12.5 & .72\end{array}$ 10

9.0	.32	44	9.3	.32
9.0	.33	45	9.0	.32

8.7	.27	41	9.5	.34

	.26	36	9.8	.38
9.4	.34	41	10.3	.48

10.7 ． $50 \quad 41 \quad 9.0 \quad .32$
$10.9 \quad .48 \quad 37 \quad 9.6 \quad .38$

$" \mathrm{C}:$
33
46
44
51
37
47
44
41
48
39
38
48
40
44
42
40
44
44
43
41
31
48
44

Length	Weight	＂C＂
8.7	． 24	37
7.6	． 20	46
9.1	． 36	48
9.3	． 36	45
8.5	． 30	49
9.7	． 34	37
8.5	． 28	46
9.1	． 40	53
9.7	． 34	37
8.0	． 26	51
8.5	． 24	39
9.7	． 34	37
10.1	． 44	43
9.3	－． 35	45
8.1	． 26	49
9.1	． 38	51
9.5	． 36	42
8.5	． 28	46
9.0	． 34	47
8.1	． 27	51
9.1	． 30	40
9.8	． 38	40
8.7	． 30	46

	HANNEL CATFISH		
LETGTH	WEIGHT	＂C＂	LENGTH
18.2	2.30	38	17.7
20.5	4.00	43	19.3
14.8	1.60	49	22.0
17.3	2.12	41	22.3
19.2	2.30	32	19.8
19.4	2.44	33	24.5
70 7	7 as	25	

WEIGHT	＂C＂．
$\frac{31}{2.06}$	3T
2.54	35
4.08	48
4.30	49
4.45	57
5.64	35

BROWN TROUT

$\frac{\text { LEIGTH }}{18.2}$	$\frac{\text { WEIG－T }}{2.90}$	$\frac{" C}{45}$
15.0	1.52	42
18.0	2.48	42
13.2	3.30	47

L＝ロバ	WEIETT		NEEEM
5.7	． 10	5.4	． 3
7.5	． 22	5.3	． 11
5.7	． 11	5.3	． 10
9.3	． 42	5.2	． 08
8.7	． 36	5.9	． 11
7.7	． 22	5.5	． 14
8.1	． 30	5.7	． 22
7.5	． 22	5.5	． 10
5.5			

Alex Let：e＂‘a
April 2， 1980 －Water level 1 ft ．below spillway．Surf．Temp． $44^{\circ} \mathrm{F}$ ．Visibility clear． No inflow．Presented to the crew that will be selling pemits for ti．e lake on the use of creel census and the monthly permit sales reports the＊ will be prepared by them．It＇s a cold windy day．The lake wili oren far fishing Monday，April 7， 1980 but they will not advertise ocening $\dot{c}=\mathrm{y}$ に： the 12 th，which is on a Saturday．This will give the new crew a chance get the hang of selling permits and get used to taking creel cersus $\because \because-$ time the weekend fishing pressure starts．

Alex Laweía
April 13， 1980 －Assisted by Bob Vicenti．Water level l＇below spillway．Surf．Terp． 52^{2} Visibility clear．Rooted vegetation starting to grow in the shallow wet三 106 fishermen at 11 a．m．We weighed and measured for total length on se：－ of the fish caught by anglers．Fishing was good today considering the os weather and snow．This was the first weekend the lake is open since it opened on Monday，4／7／80．

Length	Weight	＂C＂	Length	Weight	＂C＂	Length	Weight	＂${ }^{3}$＂
11.5	． 60	40	11.3	． 43	$\overline{30}$	9.6	． 32	35
10.6	． 46	39	10.5	． 44	38	10.6	． 50	42
11.3	． 52	36	9.0	． 25	36	8.5	． 22	36
12.0	． 64	37	8.0	． 20	39	8.1	． 25	45
12.5	． 72	37	8.8	． 26	38	8.6	． 29	$4 \hat{}$
10.7	． 52	42	10.5	． 62	54	8.0	． 19	37
11.8	． 60	36	8.8	． 26	38	14.1	． 92	33
11.0	． 50	38	11.5	． 64	42	9.2	－． 2.8	3E
11.5	． 56	37	11.0	． 54	41	11.5	． 35	2.3
10.3	． 40	37	10.8	． 50	40	9.8	． 32	34
9.1	． 38	51	10.7	． 56	46	8.9	． 32	45
9.4	． 30	336	11.8	． 64	39	8.8	． 29	43
11.0	． 50	38	11.4	． 62	42	8.3	． 22	3 3
8.8	． 26	38	10.0	． 44	44	8.1	． 22	41
11.0	． 52	39	11.2	． 60	43	9.3	． 29	36
8.2	． 20	36	10.3	． 42	39	9.5	． 23	27
11.4	． 60	41	10.0	． 36	36	8.8	． 29	43
9.2	． 32	41	9.5	． 38	45	7.4	． 15	37
8.5	． 26	42	8.4	． 26	44	9.6	． 29	23
11.5	． 60	40	9.0	． 32	44	11.8	． 58	35
11.5	． 58	37	11.4	． 60	41	10.4	． 48	4 ？
9.0	． 30	41	8.0	． 22	43	10.9	． 51	4
11.4	． 48	32	9.3	． 32	40	12.3	． 72	三3

ACOOMT: AKE

ADril 13, 1980 - (CONTIMED EROM PREVIOUS PAGE)

Length	Weight	"C"	Length	Neight	"C"	Length	Weight	"
11.2	. 52	$\overline{37}$	9.0	. 32	44	14.1	1.14	40
10.7	. 48	39	8.8	. 28	41	-8.7	. 23	43
11.5	. 54	36	11.5	. 62	41	9.3	. 34	42
9:3	. 30	37	10.6	. 54	45	10.8	. 47	37
12.1	. 70	40	9.0	. 26	36	15.3	1.24	34
14.9	1.25	38	8.6	. 28	44	14.7	1.05	33
10.3	. 50	46	9.3	. 33	41	11.4	. 45	30
10.2	. 42	40	7.8	. 20	42	11.3	. 53	37
9.3	. 40	50	8.7	. 25	38	12.0	. 58	34
10.7	. 50	41	10.8	. 54	43			
10.1	. 40	39	10.6	. 47	40			

CHANNEL CATFISH

| $\frac{\text { Length }}{23.6}$ | $\frac{\text { Weight }}{4.96}$ | "C" |
| :--- | :--- | :--- | :--- |
| 26.5 | 5.28 | 287 |

April 4, 1981

- (CONTINUED FROM PREVIOUS PASE)

		"C"	R Lininb	TROLICht	"C"	Length	Weisht	,
$\frac{\text { Lenme }}{9.8}$	$\frac{.}{} \frac{33}{}$	$\frac{}{35}$	$\frac{1}{8.2}$	-. 30	55	10.0	. 35	3
9.2	. 32	41	3.5	. 26	42	9.6	. 38	\bigcirc
.8.7	. 29	44	9.3	. 43	54	10.0	. 40	-9
9.0	. 38	52	9.4	. 34	41	10.2	. 38	\%
9.2	. 30	39	10.8	. 60	48	10.2	.42	4
9.7	. 36	40	9.5	. 32	37	10.3	. 4	4
8.9	. 28	40	10.8	. 52	41	13.0	1.00	45
13.4	. 97	40	7.8	. 26	55	8.9	. 32	45
10.8	. 52	41	12.2	. 84	. 46	11.7	. 68	43
13.8	1.14	43	10.0	. 40	40	9.5	. 34	40
9.3	. 36	45	9.5	. 42	49	9.1	. 28	37
9.9	. 38	39	9.5	. 36	42	9.6	. 34	36
13.6	1.00	40	11.5	. 60	40	9.3	. 32	40
9.6	. 40	45	13.8	. 96	36			

CHANNEL CATFISH

Length	$\frac{\text { Veight }}{2.06}$	" $C^{\prime \prime}$
18.2	34	
17.2	1.85	37

April 3, 1982 - Assisted by Nacio. Water level 2' below spillway (estimated). Visibili clear. Rooted vegetation growing in the shallow waters. 210 fishermen at D:30 a.m. Acomita Lake opening day - weather sunny and warm. Emmet Torivio - Supervisor, Game Warden; Duane Mousseau - Game !\%arden. Emmet. Duane, Nacio $\&$ I ran creel census count on some fishermen from 9:30 a.m. to 11 a.m. Before we ran the creel count I explained and went through the census form with Emmet. Than the three of us went and started on th: creel count. I showed the two how to identify the species of game fish. Marked adipose fin (clipped) was shown to the two rangers plus cutthroat both RBTs and CCFs: Alex Laweka

April 14, 1982 - Took profile data at 1300 hours.near midpoint of lake. Weather wes sun and clear with a slight breeze less than 15 mph from west. used fydro: 4041 and Hach turbidimeter 16800. No fish mortality observed; Acoma ranger collected 2 RBT specimens earlier today. Algae problem not yet fully developed, some filamentous becoming dominant near north shore. Used Sears cartop with oars and anchor.

April 14, 1982 - (CONTINUED FROM PREVIOUS PAGE)

PROFILE DATA

DEPTH (ft)	TEMP $\left({ }^{(} \mathrm{C}\right)$	PH	D.O. (DPm)	CONDUCTIVITY $(\mathrm{micromhos/cm)}$	TURBIDITY $($ NTU $)$
0	12.5	8.1	11.4	1784	7.7
1	12.5	8.1	10.6	1788	
2	12.4	8.0	10.2	1786	
3	12.4	8.0	9.8	1786	
4	12.4	8.0	9.8	1786	
5	12.5	8.0	9.6	1786	
6	12.5	8.1	10.2	1793	
7	12.5	8.1	9.8	1789	
8	12.5	8.1	9.4	1788	
9	12.5	8.0	9.3	1788	
10	12.4	8.0	9.1	1788	
11	12.4	8.0	9.0	1788	
12	12.4	7.9	8.9	1789	
13	12.4	7.9	8.9	1789	
14	12.3	7.9	8.9	1790	
15	12.3	7.9	5.5	1720	

Frank Halfmoon

March 9, 1982

- Time: 1600 hours Water color: Green Weather: NW breezes 15 moh (reads "less than") Depth: 16 ft . Secchi: 6 ft . Personnel: Loren Panteah and Frank Halfmoon Instrument: Hvdrolab 4041

$\begin{gathered} \text { DEPTH } \\ (\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { TEMP. } \\ & \text { (C) } \end{aligned}$	pH	$\begin{gathered} \mathrm{D.O} \\ (\mathrm{mg} / 1) \\ \hline \end{gathered}$	CONDUCTIVITY (micromhos $/ \mathrm{cm}$)
0	7.8	9.2	11.0	1664
1	7.7	9.2	10.9	1664
2	7.7	9.2	10.8	1664
3	7.7	9.1	10.7	1665
4	7.6	9.1	10.6	1665
5	7.6	9.1	10.6	1666
6	7.6	9.1	10.5	1668
7	7.6	9.0	10.5	1668
8	7.5	9.0	10.5	1669
9	7.5	9.0	10.4	1670
10	7.5	9.0	10.4	1670
11	7.5	9.0	10.3	1670
12	7.5	9.0	10.3	1671
13	7.4	9.9	10.2	1673
14	7.3	9.0	10.1	1671
15	7.2	9.0	10.0	1672
16	7.1	9.0	10.0	1672

ACOMITA LARE

ept. 25, 1981
Time: 1815 hours
Temp. $=18.4^{\circ} \mathrm{C}$
$\mathrm{pH}=9.3$
D. O. $=8.6$
$E C=1709$
Visibility 3 ft ; color green; vegetation bloom. Weather clear with westerly wind. Can see 10 anglers, but not whole lake. Level is down 5-7' 2 boys (local) say fish caught are small ($8^{\prime \prime}$) and not many.

Frank Halfmoon

Sept. 30, 1982

- Time: 1000 hours

Weather: Cloudy, slight northerly breezes, less than 10 mph . Air Temp. $=60^{\circ} \mathrm{F}\left(+5^{\circ}\right)$
Instruments: Hydrolab 4041 and Hach 16800
Readings collected on east shore. Lake closed to fishing - no anglers present. Several hundred coots/ducks.

TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	PH	D.O. $(\mathrm{mg}!1)$	EC $($ micromhos $/ \mathrm{cm})$	TURBIDITY (NTU)
17.0	8.8	6.4	1846	3.8

Water level $=-2.8^{\prime} ;$ Area $=57$ acres

```
        \lambda
5.



RELAT IVE COHTRISLCT LOM OF GMURASP ERTUENT \(T\) LAKE ACOM OAA \({ }^{*}\)
Grauts stp Load To labe Aroucuts
\[
\begin{aligned}
& =1.28 \times 10^{9} \frac{\mathrm{my}}{4 \mathrm{r}} \times \frac{5}{103 \mathrm{my}} \\
& =1.28 \times 10^{6} \mathrm{y} / \mathrm{yr} \text {. }
\end{aligned}
\]

Paremen of Tiofe hoad
\[
\begin{aligned}
& N: \frac{1.25 \times 10^{6} \text { flyr thow } 6 \text { munt } 5 \text { sp }}{11.9 \times 0 \text { gelyr toke }} \times 100=10.8 \% \\
& \text { P: } \frac{5.7 \times 10^{5} \text { glor trim Grouts spe }}{15.7 \times 10^{5} \text { gly }} \times 100=35.8 \%
\end{aligned}
\]
* Pueluinnirt estiasite
```

