Note in this piper how
population estimates mode from
Coth per unit effort of gillnets t mark and recapture.
~ know definitions of:
biomass ($=$ standing crop)
production $\rightarrow A$. Net production
yield (ibarvest)

Year-Class Abundance, Population, and Production of Walleye (Stizostedion vitreum vitreum) in Clear Lake, Iowa, 1948-74, with Varied Fry Stocking Rates ${ }^{1,2}$

Kenneth D. Carlander and Philip Michael Payne
Department of Animal Ecology, Iowa State University, Ames, Iowa

Carlander, K. D. and P. M. Payne. 1977. Year-class abundance, population, and production of walleye (Stizostedion vitreum vitreum) in Clear Lake, Iowa, 1948-74, with varied fry stocking rates. J. Fish. Res. Board Can. 34: 1792-1799.
Year-class abundance of walleye, Stizostedion vitreum vitreum, in Clear Lake from 1948 to 1974 was significantly correlated ($r=0.613$) with annual fry stocking, which was varied from 0 to 6070 fry/ha. Abundance of young walleye seined along shore was even more highly correlated with fry stocking ($r=0.819$) but not significantly correlated with year-class abundance ($r=0.179$) indicating that year-class strength may change between the first summer and later years. No correlation was found between year-class abundance and temperature in summed degree-days, water levels, or abundance of yellow perch, Perca flavescens, as effects were probably masked by the fry stocking. Growth of age 0 and I walleye were negatively correlated with fry stocking ($r=-0.42$ and $r=-0.41$, respectively), but growth of age V walleye was positively correlated $(r=0.70)$. Growth was also correlated with water levels $(r=0.79)$. Annual mortality rate averaged 42%. Standing crop ranged from 2.63 to $16.52 \mathrm{~kg} / \mathrm{ha}$ and annual production from 1.01 to $9.31 \mathrm{~kg} / \mathrm{ha}$. Production per biomass was low when water levels were low.

Key words: Percidae, walleye, Stizostedion vitreum vitreum, population dynamics, productions, Clear Lake, Iowa, stocking

Carlander, K. D., and P. M. Payne. 1977. Year-class abundance, population, and production of walleye (Stizostedion vitreum vitreum) in Clear Lake, Iowa, 1948-74, with varied fry stocking rates. J. Fish. Res. Board Can. 34: 1792-1799.
Il existe une corrélation significative ($r=0.613$) entre l'abondance des classes d'âge du doré jaune, Stizostedion vitreum vitreum, dans le lac Clear, de 1948 à 1974 et les peuplements annuels d'alevins, variant de 0 à 6070 alevins/ha. L'abondance des jeunes dorés jaunes capturés à la senne le long du rivage est encore plus étroitement liée aux peuplements d'alevins ($r=0.819$), mais il n'y a pas de corrélation significative avec l'abondance des classes d'âge ($r=0.179$), ce qui indique que l'abondance des classes d'âge peut changer entre le premier été et les années subséquentes. Nous n'avons pas trouvé de corrélation entre l'abondance des classes d'âge et la température comme somme de degrés-jours, les niveaux d'eau ou l'abondance de la perchaude, Perca flavescens, étant donné que les effets sont probablement masqués par les peuplements d'alevins. La croissance des dorés jaunes d'âges 0 et 1 montre une corrélation négative avec les peuplements d'alevins ($r=-0.42$ et $r=-0.41$, respectivement), mais la corrélation est positive pour les dorés jaunes d'âge $\mathrm{V}(r=0.70)$. La croissance est également liée aux niveaux d'eau $(r=0.79)$. Le taux de mortalité annuelle est de 42% en moyenne. La biomasse varie de 2.63 à $16.52 \mathrm{~kg} / \mathrm{ha}$, et la production annuelle de 1.01 à $9.31 \mathrm{~kg} / \mathrm{ha}$. La production par biomasse est faible quand les niveaux d'eau sont bas.

Received September 16, 1976
Accepted March 24, 1977
Fish populations have been monitored at Clear Lake, Iowa, since 1942. In this paper, we relate the annual stocking of walleye, Stizostedion

[^0]Reçu le 16 septembre 1976
Accepté le 24 mars 1977
vitreum vitreum (Mitchill), fry to abundance of year-classes and estimate annual biomass and production of walleye. Numbers of walleye fry stocked from 1948 to 1972 were varied (Table 1) to evaluate the effect of stocking. An earlier report on the results of the 1948-57 stocking (Carlander et al. 1960) showed that walleye from years when fry were stocked were more abundant than in years dependent only upon natural spawning, but questions were raised about the effect of the regular alternation in stocking. The 1961-72 stocking rates were thus varied

Table 1. Numbers of walleye fry stocked per hectare, mean catches of walleye per gillnet-hour (C/f), year-class abundance indexes, and numbers of young-of-the-year walleye and yellow perch caught per standardized seine haul by calendar year.

Yearclass	Fry stocked	C/fa ${ }^{\text {a }}$	Year-class abundance ${ }^{\text {b }}$	Young-of-the-year	
				Walleye	Yellow perch
1948	3870	0.180	1.44	-	-
1949	0	0.540	0.74	-	-
1950	3580	0.750	3.08	-	-
1951	0	0.200	0.67	-	-
1952	2205	0.460	2.82	-	-
1953	0	0.470	0.24	-	-
1954	2833	0.530	0.83	-	-
1955	0	0.498	0.13	-	-
1956	2860	0.215	0.17	22.75	8.47
1957	0	0.280	0.18	0.58	3.57
1958	2934	0.186	0.23	12.33	0.22
1959	-	0.236	0.26	6.00	5.92
1960	2152	0.104	0.29	19.66	0.20
1961	405	0.145	0.10	1.37	1.32
1962	202	0.156	0.13	0.25	0.16
1963	6070	0.036	1.50	-	-
1964	4047	0.097	1.39	-	-
1965	2024	0.318	0.75	3.00	2.65
1966	2024	0.287	1.21	20.66	6.90
1967	1012	0.352	0.67	2.44	2.07
1968	4047	0.471	1.43	9.11	2.93
1969	202	0.253	0.63	3.33	1.06
1970	405	0.256	0.40	1.77	0.83
1971	1012	0.184	0.55	4.66	1.08
1972	6070	0.129	10.21	32.33	6.35
1973	-	0.747			
1974	-	0.870			

${ }^{\text {a }}$ Data from Iowa Cooperative Fishery Research Unit Quarterly Reports. 1957-61 C/f values were reduced 8% to adjust for reduced water area those years.
${ }^{\mathrm{b}}$ The mean C / f each year was multiplied by the percentages of the catch in ages I, II, and III. Individual C/f values in each age-group I-III were divided by the mean of that age-group (4.114, 9.403 , and 7.590 , respectively). The year-class abundance index is the mean of the adjusted C/f for the three age-classes representing that year-class.
according to an irregular pattern. The fry came from walleye gillnetted from spawning areas in the lake.

Clear Lake $\left(44^{\circ} \mathrm{N}\right.$ and $\left.94^{\circ} \mathrm{W}\right)$ is a 1474 -ha eutrophic lake (Table 2), and represents the original southern limit of walleye in lakes. Water levels were below the outlet from 1955 to 1960 (Fig. 1) and the area of the lake was reduced about 8% when the water was lowest, 1 m down (McCann and Carlander 1970). Bailey and Harrison (1945) listed 43 species of fish from the lake. The walleye is the most abundant predator species.

General Methods

Graduate students from the Iowa Cooperative Fishery Research Unit collected scale samples and
catch data each summer from 1947 to 1974 with a variety of gear. Gillnet sampling from 1947 to 1952 was concentrated in one area (Carlander 1954) but by 1958 it was standardized to include the entire lake (Bulkley 1970a). Gillnet catches showed a diel cycle (Carlander 1954) and were adjusted to represent equal sampling throughout the 24 h .

Ages and growth of walleye were determined from scale examination and measurement (Cleary 1949; Carlander and Whitney 1961).

Relation Between Fry Stocking and Year-Class Abundance

Abundance indexes for year-classes 1948-72 (Table 1) were highly correlated with the number of fry stocked ($r=0.613$, df 22). If the very abundant 1972 year-class is eliminated, the correlation is still significant ($r=0.563$, df 21).

Table 2. Physical and chemical characteristics of Clear Lake, Iowa. ${ }^{\text {a }}$

Physical	
Lake area	(ha)
Watershed area	(ha)
Mean depth	(m)
Maximum depth	(m)
Shoreline development factor	3400
Littoral zone (<2m)	3.6
Little overflow most years	6
Not thermally stratified in summer	1.58
Chemical (as ppm)	25%
Total alkalinity	
Total dissolved solids	
Calcium	143
Magnesium	230
Sulfate	23
Chloride	22
Nitrite nitrogen	13
Phosphate	7.8
Other	0.004
Transparency (summer mean, m)	0.002
Specific conductivity (microhms)	1.4
pH	306
Morphoedaphic index (metric)	8.6

${ }^{\text {a }}$ The chemical data are mostly from Bachmann (1967) and the physical data from Pearcy (1953). The nitrogen, phosphate, and pH data came from Bailey and Harrison (1945). The total dissolved solids were reported by the State Hygienic Laboratory, Iowa City.

During the low water years 1956-61, year-class strength was poor. Elimination of these yearclasses improved the correlation with fry stocking ($r=0.641$, df 17).

Numbers of age 0 walleye collected in a $9.1-\mathrm{m}$ bag seine ($7-\mathrm{mm}$ mesh) from 1956 to 1972 (Table 1) were also highly correlated with the number of fry stocked ($r=0.819$, df 13). Correlation between numbers of age 0 walleye and year-class abundance indexes (excluding the very abundant 1972 year-class) was only 0.179 , indicating that year-class strength may change between the middle of the first summer and ages I to III.

Year-Class Abundance and Other Factors

Success of walleye year-classes in western Lake Erie has been shown to be affected by water temperatures during spring spawning and incubation (Busch et al. 1975). However, time of iceout, the rate of warming, total number of degreedays above $5.5^{\circ} \mathrm{C}$ (Ryder 1972), and the duration of ice cover the next winter after spawning showed no significant correlation with year-class abundance in Clear Lake. Although year-class

Fig. 1. Maximum and minimum water levels (m) at Clear Lake, Iowa, 1948-72.
abundance was low during drought years (195662), water levels were not significantly correlated with year-class abundance.

Success of walleye year-classes has been correlated with success of yellow perch, Perca flavescens (Mitchill), reproduction in two Minnesota lakes (Maloney and Johnson 1957), and in Lake Oneida (Forney and Noble 1970). Numbers of young walleye and yellow perch (Table 1) were significantly correlated in Clear Lake, 1956-72 ($r=0.606$, df 13). Excluding 1972, the relationship is still significant ($r=0.532$, df 12). Yellow bass, Morone mississippiensis Jordan and Eigenmann, were a more abundant prey for walleye than were perch from 1947 to 1968. Almost complete elimination of yellow bass in 1968 by an Aeromonas salmonicida infection (Bulkley 1970b) was followed by an increase in abundance and average size of yellow perch. Walleye fry in Clear Lake begin feeding on larval fish at approximately 31 mm in length (Bulkley et al. 1976). Yellow perch fry usually are available at this critical time whereas yellow bass fry do not emerge until considerably later.

The effects of fry stocking probably masked effects of climate or other factors. A step-down multiple regression analysis of year-class abundance to (1) number of fry, (2) C / f of yellow perch, (3) number of degree-days above $5.5^{\circ} \mathrm{C}$, and (4) mean water levels failed to show any significance (at $P=0.05$) except for fry stocking. Yellow perch C / f, however, approached significance ($r=0.30, P<0.10$) when the effects of fry stocking were removed.

Table 3. Mean calculated total lengths (mm) of walleyes at each annulus by year-classes, 1948-72.

Yearclass	Numbers in samples per age-group ${ }^{\text {a }}$	Length at each annulus												
		1	2	3	4	5	6	7	8	9	10	11	12	13
1948	$73,116,16,28,8,4,4,1,2,1 ; 0,1$	166	298	384	436	479	573	551	606	618	659	655	670	
1949	16, 61, 69, 28, 5, 1, 2, 3; 0, 2, 2, 3, 4	176	264	349	434	493	533	553	577	604	605	605	625	640
1950	$103,340,129,40,19,17,26,4 ; 4,9$	171	265	363	442	487	520	546	576	576	606	607	609	
1951	$49,15,13,12,15,19,1 ; 12,6,7,0,1$	197	297	379	435	480	507	545	557	596	636	648	660	
1952	21, 82, 110, 41, 58, 7; 17, 8, 20, 5, 1	189	290	374	425	465	504	527	558	571	581	602		
1953	1, 8, 14, 21, 8; 22, 14, 15, 5	186	289	378	427	468	496	514	548	490				
1954	16, 38, 33, 7, 21, 10, 20, 7, 2, 0, 3	186	303	382	428	449	470	482	533	554	586	594		
1955	6, 4, 1; 13, 8, 16, 4, 2, 0, 3, 1	188	285	386	431	464	485	540	566	627	640	648		
1956	5, 2; 6, 2, 7, 7, 2, 0, 3	184	286	376	430	469	478	535	619	642				
1957	3; 9, 2, 2, 8, 4, 0, 2, 2	190	287	354	394	429	486	520	539	561				
1958	$3,3,53,26,10,0,5,8,2,0,1$	169	251	344	401	489	532	562	578	581	607	615		
1959	$4,27,16,4,0,10,5,2,1,1,1$	175	265	336	411	477	512	551	588	619	640	653		
1960	62, 49, 57, 0, 29, 14, 1, 7, 2, 1	172	263	332	416	472	486	534	559	638	668			
1961	$14,61,0,52,42,15,10,3$	175	258	346	412	458	488	520	602					
1962	21, 0, 21, 20, 8, 9, 2, 0, 1	172	267	344	407	436	452	500	518	581				
1963	0, 141, 68, 22, 22, 2, 1, 2	185	273	341	386	438	530	554	578					
1964	62, 116, 50, 32, 6, 6, 7	176	263	344	404	480	509	555						
1965	56, 37, 14, 3, 7, 2, 1, 1	169	275	338	412	455	535	554	617					
1966	30, 72, 6, 25, 9, 1, 1, 3	163	249	304	377	454	522	565	584					
1967	16,68, 42, 33, 2, 2	172	258	338	395	425	442							
1968	57, 95, 47, 7, 18, 3	169	260	321	381	427	498							
1969	27, 52, 15, 24, 1	176	260	352	427	472								
1970	4, 22, 15, 6	191	261	338	469									
1971	12,28, 3	187	272	340										
1972	170, 185	163	256											

${ }^{\text {a }}$ The data on age-groups collected through 1958 are from Carlander and Whitney (1961) and are separated by semicolons from the data calculated by Payne.

Table 4. Instantaneous growth rates ${ }^{\mathrm{a}}$ in weight of walleye by age-group in Clear Lake, 1948-73.

Year	I	II	III	IV	V
1948	1.619	0.774	0.398	0.248	0.184
1949	1.636	0.858	0.363	0.276	0.143
1950	1.299	0.697	0.367	0.214	0.152
1951	1.361	0.919	0.408	0.206	0.191
1952	1.330	0.988	0.569	0.260	0.162
1953	1.382	0.832	0.483	0.259	0.189
1954	1.411	0.886	0.510	0.248	0.220
1955	1.483	0.842	0.396	0.302	0.238
1956	1.565	0.747	0.401	0.246	0.165
1957	1.376	0.760	0.350	0.232	0.160
1958	1.314	0.783	0.396	0.218	0.169
1959	1.219	0.752	0.308	0.225	0.164
1960	1.336	0.979	0.575	0.179	0.139
1961	1.286	0.734	0.602	0.263	0.155
1962	1.249	0.671	0.552	0.376	0.167
1963	1.269	0.885	0.543	0.304	0.278
1964	1.099	0.782	0.547	0.398	0.236
1965	1.217	0.726	0.549	0.318	0.170
1966	1.404	0.807	0.563	0.416	0.194
1967	1.386	0.720	0.389	0.286	0.128
1968	1.256	1.062	0.467	0.266	0.279
1969	1.412	0.764	0.370	0.260	0.152
1970	1.645	0.676	0.521	0.268	0.151
1971	0.944	0.696	0.431	0.278	0.195
1972	1.019	0.696	0.425	0.286	0.154
1973	1.415	0.890	0.687	0.249	0.169

[^1]Table 5. Catches per gillnet-hour and population estimates of walleye in Clear Lake 1948-74.

Year	C/f	Walleyes over 305 mm		Population estimates		
						Rounded
		\%	C/f	$305 \mathrm{~mm}^{\text {a }}$	All sizes	by 3's
1948	0.180	68	0.122	8576	12612	24783
1949	0.540	85	0.459	31411	36954	33561
1950	0.750	93	0.697	47538	51116	34085
1951	0.200	49	0.098	6950	14184	32294
1952	0.460	75	0.345	23687	31583	25992
1953	0.470	91	0.428	29311	32210	33324
1954	0.530	96	0.509	34731	36178	34154
1955	0.498	90	0.408	30666	34073	28380
1956	0.215	94	0.202	13997	14890	22757
1957	0.280	96	0.269	18537	19309	15715
1958	0.186	94	0.175	12168	12945	16190
1959	0.236	97	0.229	15827	16316	12229
1960	0.104	89	0.093	6611	7425	11357
1961	0.145	64	0.093	6611	10330	9596
1962	0.156	63	0.098	6950	11032	8136
1963	0.036	48	0.017	1462	3046	8872
1964	0.097	-	-			12538
1965	0.318	62	0.197	13658	22029	18199
1966	0.287	55	0.158	11016	20029	22129
1967	0.352	67	0.236	16301	24330	25618
1968	0.471	56	0.264	18198	32496	24938
1969	0.253	36	0.091	6476	17989	22784
1970	0.256	59	0.151	10541	17866	16228
1971	0.184	79	0.145	10135	12824	13324
1972	0.129	53	0.068	4917	9277	24533
1973	0.747	36	0.269	18537	51492	41039
1974	0.870	11	0.096	6815	61955	61955

${ }^{\text {a }}$ Derived from the regression of C / f on five mark-and-recapture estimates, given in the text.

Growth

The calculated growth rates for the various year-classes of Clear Lake walleye (Carlander and Whitney 1961) showed a negative correlation with year-class abundance for the years 1935-57. Such a correlation supports the evidence that, for fish in general, growth rate usually decreases as population density increases. Lengths calculated from scale measurements at each annulus (Table 3) were converted to weights using a weight-length regression based on 489 Clear Lake walleye collected in 1961-62 (Sriprasert 1974) :

$$
\log W=-5.4187+3.1413 \log L
$$

This procedure involved an underestimate of weight, and of the subsequent biomass estimates, "commonly in the order of 5% " (Ricker 1975, p. 211).

Negative correlations were found between numbers of fry stocked and instantaneous growth
(Table 4) in the first ($r=-0.42, P<.05$) and second ($r=-9.41, P<.056$ years of life. This may have been related to increased density. The growth of age V walleye was positively correlated ($r=0.70, P<.008$) with fry stocking. Chevalier (1973) stated that predation by age III and older (III+) walleyes was the most probable cause of mortality of young walleye in late summer and fall in Lake Oneida. A similar predation at Clear Lake may have resulted in an increased growth of older walleyes correlated with the numbers of fry stocked.

Carlander and Whitney (1961) reported a significant correlation ($r=0.565$, $\mathrm{df}=21$) between summer temperatures and growth in Clear Lake for 1935-57; however, no correlation between temperature, in summed degree-days, and the average instantaneous growth rate was found for 1948-73. Instantaneous growth was significantly correlated with water levels ($r=0.79$, $P<.0001$)

Table 6. Mark-and-recapture population estimates of adult walleye in Clear Lake and associated catch-per-effect for certain years.

		Walleye over 305 mm	
	Year of estimate	Number $^{\mathbf{a}}$	$\mathrm{C} / \mathbf{f}^{\mathrm{a}}$
Source	1953	30,822	0.428
Whitney (1958)	1958	11,800	0.175
McCann and Carlander (1970)	1959	12,300	0.229
	1966	11,716	0.158
Hollingsworth (1967)	1972	6,600	0.068
Schutte, S., I.S.C.C.			
\quad Personal communication			

${ }^{a}$ Except for 1953, the numbers are means of 2 to 4 estimates derived from the data by various modifications. Variation between the estimates was small within each year.
${ }^{\mathrm{b}}$ Values (C/f) from Table 5.
Table 7. Population estimates of walleye by age-groups each year based on numbers at age III computed from the regressions of the year classes and assuming an annual mortality of 42%.

Year	I	II	III	IV	V	VI	Total $^{\text {a }}$
1948	24831	15121	4063	1935	831	462	48689
1949	10767	14402	8770	2357	1122	482	38647
1950	14138	6245	8353	5087	1367	651	36554
1951	46671	8200	3622	4845	2950	793	67781
1952	10648	27069	4756	2101	2810	1711	49950
1953	40678	6176	15700	2758	1218	1630	69653
1954	7803	23593	3582	4106	1600	707	48203
1955	11558	4526	13684	2078	5281	928	39515
1956	11008	6703	2625	7937	1205	3063	33926
1957	1650	6384	3888	1523	4603	699	21325
1958	1653	957	3703	2255	833	2670	14019
1959	6683	959	555	2148	1308	512	14821
1960	3098	3876	556	322	1246	759	11691
1961	3668	1797	2248	322	187	723	10530
1962	4703	2128	1042	1304	187	108	10763
1963	4257	2728	1234	604	766	108	10525
1964	19290	2469	1582	716	351	439	25390
1965	16843	11188	1432	918	415	203	31556
1966	5016	9769	6489	830	532	241	23332
1967	8038	2909	5666	3764	482	309	21564
1968	12970	4662	1687	3286	2183	279	24583
1969	13769	7522	2704	978	1906	1266	28542
1970	14524	7986	4363	1568	568	1106	31077
1971	10181	8424	4632	2473	910	329	28147
1972	3523	5905	4886	2687	1434	528	19848
1973	98274	2043	3425	2834	1558	832	109783
1974		56999	1185	1987	1644	904	63201

${ }^{\text {a }}$ The totals for 1948 to 1960 include average numbers for the 1941 and earlier year-classes. The addition was 1135 to the 1948 collection and 42% less in each successive year.

Standing Crop and Production of Walleye
To estimate annual biomass and production, C/f values were converted to population numbers (Table 5) by using mark and recapture estimates made in five of the years (Table 6).

A correlation between these population estimates, Y, and adjusted C / f values, X, was significant ($r=0.974, \mathrm{df}=3$) and the regression was

$$
Y=310+67759 X .
$$

Since most of the population in a given year

Table 8. Standing crops and annual production (kg/ha) of walleye in Clear Lake, 1948-74

Year	Standing crop		Annual Production		
	III+	I+	III+	I+	0+
1948	4.90	7.90	1.00	4.15	4.53
1949	6.06	8.35	1.51	4.62	5.38
1950	8.36	9.73	1.89	3.48	3.74
1951	8.30	10.39	1.63	5.36	5.77
1952	8.13	11.44	1.65	6.19	7.42
1953	9.99	12.42	3.07	7.26	9.31
1954	9.98	16.52	2.14	6.14	7.63
1955	11.30	12.33	2.91	4.64	4.91
1956	10.56	12.16	1.76	3.62	4.02
1957	8.90	9.88	1.34	2.28	2.68
1958	7.90	8.11	1.27	1.52	1.58
1959	5.70	6.03	0.72	1.14	1.20
1960	4.12	4.59	0.49	1.09	1.26
1961	3.42	3.74	0.59	0.95	1.04
1962	2.50	2.86	0.50	0.91	1.01
1963	2.25	2.63	0.46	0.99	1.12
1964	2.09	3.02	0.48	1.79	1.91
1965	1.88	3.67	0.42	2.35	3.00
1966	2.90	4.04	1.04	2.33	2.82
1967	3.63	4.16	0.97	1.64	1.77
1968	3.45	4.21	0.93	2.06	2.25
1969	3.86	4.95	0.64	2.16	2.51
1970	3.73	5.02	0.93	2.68	3.03
1971	3.94	5.30	0.88	2.13	2.55
1972	4.32	5.04	1.04	1.70	2.09
1973	4.27	6.77	1.32	6.98	6.98
1974	4.40	9.82	-	-	-
Mean	5.72	7.23	1.21	2.87	3.31
without			with 1972	3.08	3.53
$1972 \text { year- }$					

must have been present the previous and following years, estimates were averaged by three's to reduce some of the irregularities. Population estimates were proportioned to age-groups on the basis of scale samples each year. Regressions of logarithms of numbers in each age-group (beginning with the most numerous age-group) within a year-class gave estimates of mortality rates (Ricker 1975) which ranged from 22 to 63% and averaged 42.5%. The combined data in one regression gave a mortality rate of 42%.

Numbers of age III walleye in each year-class were computed from the regression lines and the average mortality rate of 42% was applied to estimate numbers in each age-group (Table 7). Age III was selected since the average age of fish used in the regression was 3.2 yr . The numbers in each age-group were then converted to biomass by multiplying by the mean weight.

Standing crop ranged from $16.52 \mathrm{~kg} / \mathrm{ha}$ in 1954 to 2.63 kg /ha in 1963 (Table 8). Even the peak standing crop of age III $\pm, 11.30 \mathrm{~kg} / \mathrm{ha}$, was below the mean of $16 \mathrm{~kg} / \mathrm{ha}$ for lakes summarized by Carlander (1977). The mean age $\mathrm{II} \pm$ standing crop was also below the lowest reported for those lakes, $6.1 \mathrm{~kg} / \mathrm{ha}$ for West Blue Lake, Manitoba (Kelso and Ward 1972).

The morphoedaphic index for the lake is 64 , in comparison with 40 for the optimum (Ryder et al. 1974) which indicates a more eutrophic condition than optimum. The number of competing species of fish in Clear Lake may be related to the low standing crop of walleye.

Annual production was estimated by multiplying the instantaneous growth rate by the mean biomass (i.e. the mean of the biomass at the

Table 9. Annual production per biomass at beginning of season (P / B_{o} ratios) and per mean biomass $^{\mathrm{a}}$ (P / \bar{B} ratios) for walleye in Clear Lake, 1948-73.

Year	P / B_{o}		P / \bar{B}		P / B_{o}			P / \bar{B}	
	III+	I+	$\mathrm{III}+$	I +	Year	III+	$\mathrm{I}+$	III +	$\mathrm{I}+$
1948	0.20	0.53	0.24	0.52	1961	0.17	0.25	0.21	0.29
1949	0.25	0.55	0.26	0.52	1962	0.20	0.32	0.22	0.34
1950	0.23	0.36	0.24	0.37	1963	0.20	0.38	0.23	0.40
1951	0.20	0.52	0.21	0.50	1964	0.23	0.59	0.26	0.56
1952	0.20	0.54	0.24	0.55	1965	0.22	0.64	0.26	0.62
1953	0.31	0.58	0.33	0.51	1966	0.36	0.58	0.40	0.58
1954	0.21	0.37	0.25	0.43	1967	0.27	0.39	0.29	0.41
1955	0.26	0.38	0.28	0.39	1968	0.27	0.49	0.27	0.47
1956	0.17	0.30	0.19	0.33	1969	0.17	0.44	0.19	0.45
1957	0.15	0.23	0.17	0.25	1970	0.25	0.53	0.27	0.54
1958	0.16	0.19	0.19	0.22	1971	0.22	0.40	0.25	0.42
1959	0.13	0.19	0.15	0.22	1972	0.24	0.30	0.27	0.36
1960	0.12	0.24	0.14	0.26	1973	0.31	1.03	0.34	0.84

[^2]beginning of the year and the beginning of the following year in each year-class). The annual production (Table 8) ranged from 1.01 to 9.31 $\mathrm{kg} / \mathrm{ha}$ for fish age 0 through age VI or considering only age I+ from 0.91 to 6.98 or age III+ from 0.42 to $3.07 \mathrm{~kg} / \mathrm{ha}$.

Annual production is obviously dependent upon the biomass available at the beginning of the season (B_{o}), and the effects of other factors upon production will be masked by the differences in available biomass. Annual comparisons may be more evident with the P / B_{o} ratio, the production per unit of biomass at the beginning of the year (Table 9). The production per biomass was low from 1956 to 1962, the low water years. The production per biomass also decreased with age:

Age-group	I	II	III	IV	V	V+
P / B_{0}	2.24	1.00	0.43	0.24	0.16	0.11

Age-groups I and II accounted for 59% of the annual production; 78% by I-III; and 87% by I-IV. The usual P / B ratios using mean biomass are aquivalent to instantaneous growth rates of all year-classes (since $P=\bar{B} G$).

Acknowledgments

Project No. 2076, Iowa Cooperative Fishery Research Unit, sponsored by the Iowa State Conservation Commission, Iowa State University of Science and Technology and the Fish and Wildlife Service, U.S. Department of Interior.

The fry stocking experiments were possible through the cooperation of the Iowa State Conservation Commission Fisheries Division, particularly K. Madden, E. Speaker, and J. Conley. The field data were collected by a large number of graduate students in the Iowa Cooperative Fisheries Research Unit program. The cooperation of the State Conservation Commission field personnel at Clear Lake is also greatly appreciated. Many persons made suggestions in the preparation of the paper but particular mention should be made of J. Mayhew, Dr R. J. Muncy, Dr R. V. Bulkley, and Dr R. F. Carline.

Bachmann, R. W. 1967. Some chemical characteristics of Iowa lakes and reservoirs. Proc. Iowa Acad. Sci. 72: 237-241.
Bailey, R. M., and H. M. Harrison Jr. 1945. The fishes of Clear Lake, Iowa. Iowa State J. Sci. 20: 57-77.
Bulkley, R. V. 1970a. Fluctuations in abundance and distribution of common Clear Lakes fishes as suggested by gill net catch. Iowa State J. Sci. 44: 413422.

1970b. Changes in yellow bass reproduction associated with environmental conditions. Iowa State J. Sci. 45: 137-180.
Bulkley, R. V., V. L. Spykerman, and L. E. Inmon. 1976. Food of the pelagic young of walleyes and five
cohabiting fish species in Clear Lake, Iowa. Trans. Am. Fish. Soc. 105: 77-83.
Busch, W. D. N., R. L. Scholl, and W. L. Hartman. 1975. Environmental factors affecting the strength of walleye (Stizostedion vitreum vitreum) year-classes in western Lake Erie, 1960-70. J. Fish. Res. Board Can. 32: 1733-1743.
Carlander, K. D. 1954. Use of gill nets in studying fish populations, Clear Lake, Iowa. Proc. Iowa Acad. Sci. 60: 621-625.
1977. Biomass, production, and yields of walleye (Stizostedion vitreum vitreum) and yellow perch (Perca flavescens) in North American lakes. J. Fish. Res. Board Can. 34. (This issue)
Carlander, K. D., R. R. Whitney, E. B. Speaker, and K. MADDEN. 1960. Evaluation of walleye fry stocking in Clear Lake, Iowa, by alternate-year planting. Trans. Am. Fish. Soc. 89: 249-254.
Carlander, K. D., and R. R. Whitney. 1961. Age and growth of walleye in Clear Lake, Iowa, 1935-1957. Trans. Am. Fish. Soc. 90: 130-138.
Chevalier, J. R. 1973. Cannibalism as a factor in first year survival of walleyes in Oneida Lake. Trans. Am. Fish. Soc. 103: 739-744.
Cleary, R. E. 1949. Life history and management of the yellow pikeperch Stizostedion vitreum vitreum (Mitchill) of Clear Lake, Iowa. Iowa State J. Sci. 23: 195-208.
Forney, J. L., and R. L. Noble. 1970. Study of conditions influencing year class strength of walleyes in Oneida Lake. Prog. Rep. for Job I-b, Proj. F-17-R-14-I-b. Cornell University, Ithaca, N.Y. 13 p.
Hollingsworth, R. 1967. Clear Lake walleye population estimate. Q. Biol. Rep., Iowa State Conserv. Comm. 19: 27-32.
Kelso, J. R. M., and F. J. Ward. 1972. Vital statistics, biomass, and seasonal production of an unexploited walleye (Stizostedion vitreum vitreum) population in West Blue Lake, Manitoba. J. Fish. Res. Board Can. 29: 1043-1052.
Maloney, J. E., and F. H. Johnson. 1957. Life histories and inter-relationships of walleye and yellow perch, especially during their first summer, in two Minnesota lakes. Trans. Am. Fish. Soc. 85: 151-202.
McCann, J. A., and K. D. Carlander. 1970. Mark and recovery estimates of fish populations in Clear Lake, Iowa, 1958 and 1959. Iowa State J. Sci. 44: 369-404.
Pearcy, W. G. 1953. Some limnological features of Clear Lake, Iowa. Iowa State J. Sci. 28: 189-208.
Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 382 p.
Ryder, R. A. 1972. The limnology and fishes of oligotrophic glacial lakes in North America (about 1800 A.D.). Fish. Res. Board Can. 29: 617-628.

Ryder, R. A., S. R. Kerr, K. H. Loftus, and H. A. Regier. 1974. The morphoedaphic index a fish yield estimator - a review and evaluation. J. Fish. Res. Board Can. 31: 663-688.
SRIPRASERT, R. 1974. Length-weight relationships of walleye, Stizostedion vitreum, in Clear Lake, Iowa. M.Sc. thesis. Iowa State Univ, Ames, Iowa. 30 p.
Whitney, R. R. 1958. Numbers of mature walleyes in Clear Lake, Iowa. 1952-53, as estimated by tagging. Iowa State J. Sci. 33: 55-79.

Biomass, Production, and Yields of Walleye (Stizostedion vitreum vitreum) and Yellow Perch (Perca flavescens) in North American Lakes ${ }^{1,2}$

Kenneth D. Carlander
Department of Animal Ecology, Iowa State University, Ames, Iowa 50010, USA

Carlander, K. D. 1977. Biomass, production, and yields of walleye (Stizostedion vitreum vitreum) and yellow perch (Perca flavescens) in North American lakes. J. Fish. Res. Board Can. 34: 1602-1612

Abstract

Compilation of available data indicated that walleye (Stizostedion vitreum vitreum) biomass in lakes averaged $16 \mathrm{~kg} / \mathrm{ha}$, but the data were not adequate to show relationships with mean depth, alkalinity, latitude, or morphoedaphic indexes of the lakes. Yellow perch (Perca flavescens) biomass also failed to show relationships with these factors. In small lakes and ponds with only perch, biomass ranged from 39 to $215 \mathrm{~kg} / \mathrm{ha}$, but in lakes with other species, perch biomass was under $65 \mathrm{~kg} / \mathrm{ha}$. Annual production of walleye was from 1.2 to $4.1 \mathrm{~kg} \cdot \mathrm{ha}^{-1} \cdot \mathrm{yr}^{-1}$ and that of yellow perch was $21.9 \mathrm{~kg} \cdot \mathrm{ha}^{-1} \cdot \mathrm{yr}^{-1}$. Average commercial yields of walleye ranged up to 3.06 $\mathrm{kg} \cdot \mathrm{ha}^{-1} \cdot \mathrm{yr}^{-1}$, and sport fish yields averaged $3.7 \mathrm{~kg} \cdot \mathrm{ha}^{-1} \cdot \mathrm{yr}^{-1}$. Annual commercial and sport yields decreased with latitude. Area of lake was negatively correlated with sport yield, but positively with commercial yield. The latter situation is believed to be an artifact of the sample and not a general trend. Commercial yield increased with total dissolved solids of the lakes. Lack of other correlations may be related to the fact that walleye biomass and yield do not bear a constant relationship to total biomass and yield.

Key words: Percidae, Stizostedion, Perca, biomass, production, yield
CARLANDER, K. D. 1977. Biomass, production, and yields of walleye (Stizostedion vitreum vitreum) and yellow perch (Perca flavescens) in North American lakes. J. Fish. Res. Board Can. 34: 1602-1612.

Une compilation des données disponibles indique que la biomasse des dorés jaunes (Stizostedion vitreum vitreum) dans les lacs était en moyenne de $16 \mathrm{~kg} / \mathrm{ha}$, mais ces données sont insuffisantes pour montrer les relations avec la profondeur moyenne, l'alcalinité, la latitude ou les indices morphoédaphiques des lacs. La biomasse des perchaudes (Perca flavescens) ne montre pas, elle non plus, de relations avec ces facteurs. Dans les petits lacs et les étangs ne contenant que des perchaudes, la biomasse varie de 39 à $215 \mathrm{~kg} / \mathrm{ha}$, mais dans les lacs contenant d'autres espèces, la biomasse des perchaudes est inférieure à $65 \mathrm{~kg} / \mathrm{ha}$. La production annuelle de dorés jaunes varie de 1.2 à $4.1 \mathrm{~kg} \cdot \mathrm{ha}^{-1} \cdot \mathrm{a}^{-1}$. et celle des perchaudes est de $21.9 \mathrm{~kg} \cdot \mathrm{ha}^{-1} \cdot \mathrm{a}^{-1}$. Les rendements commerciaux moyens en dorés jaunes vont jusqu'à $3.06 \mathrm{~kg} \cdot \mathrm{ha}^{-1} \cdot \mathrm{a}^{-1}$, et les rendements de la pêche sportive sont en moyenne de $3.7 \mathrm{~kg} \cdot \mathrm{ha}^{-1} \cdot \mathrm{a}^{-1}$. Les rendements commerciaux et sportifs diminuent tous deux en fonction de la latitude. Il y a une corrélation négative entre la superficie du lac et le rendement de la pêche sportive, mais une corrélation positive avec le rendement commercial. On croit que cette dernière situation est une erreur systématique d'échantillonnage plutôt qu'une tendance générale. Le rendement com'mercial augmente avec les solides totaux dissous des lacs. Il se peut que l'absence d'autres corrélations soit liée au fait que la biomasse et le rendement des dorés jaunes ne comportent pas de relation uniforme avec la biomasse et le rendement totaux.

Received June 18, 1976
Accepted May 19, 1977

Reçu le 18 juin 1976 Accepté le 19 mai 1977

Even though information on production of walleye (Stizostedion vitreum vitreum) and yellow
${ }^{1}$ This paper forms part of the Proceedings of the Percid International Symposium (PERCIS) convened at Quetico Centre, Ontario, September 24-October 5, 1976.
${ }^{2}$ Journal Paper No. J-8699 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa.
Printed in Canada (J4405)
Imprimé au Canada (J4405)
perch (Perca flavescens) would be helpful in management of the resources, few data are available. Data on 136 populations of walleye or yellow perch in North American lakes were compiled from a search of published, and some unpublished, reports. These data were reported as biomass, production, and yield.

Biomass, or standing crop, is weight of the population at any specified time. It is the result of the previous production, as affected by natural and fishing mortality. It is also somewhat a mea-
sure of the productivity, or carrying capacity, of the environment. As biomass approaches carrying capacity net production (addition to biomass) decreases. Production is the tissue elaborated by the organisms through reproduction or individual growth within a specified period, whether or not that tissue survives to the end of the period. Yield means the number or weight of the organisms harvested from the population within a specified period of time.

For comparative purposes in this paper, these measures are expressed as kilograms per hectare (and per year for yield and production).

Biomass

Biomass is usually estimated by mark-andrecapture methods or by draining or chemical treatment of a lake or pond to recover all of the fish. Well-balanced, healthy populations are rarely estimated by chemical treatment. Mark and recapture usually is limited to fish above a given size; thus, the estimates do not include the younger fish. Biomass may also be estimated by determining numbers or weight of fish per area with gear that effectively captures all the fish in a given area; but gear is rarely consistent or effective in enough areas to adequately determine biomass in a lake. - selectivity of geor

Walleye - Comparatively few estimates of walleye biomass (Table 1) were found, and most of them do not apply to typical walleye lakes. Walleyes are most abundant in large unstratified lakes where the annual growing season has 500720 degree-days above $12.8^{\circ} \mathrm{C}$ (Schneider 1973a).

In the three lakes with $<3.3 \mathrm{~kg} / \mathrm{ha}$, walleye were not the principal predators. The lake trout, Salvelinus namaycush, was the major predator in Nipigon Bay; the northern pike, Esox lucius, in Burnt Camp Lake; and the smallmouth bass, Micropterus dolomieu, in East Twin Lake. Long Lake, with a biomass of $3.9 \mathrm{~kg} / \mathrm{ha}$, originally was noted as a smallmouth bass lake.

Biomass in the other lakes ranged from 5.7 to $37.0 \mathrm{~kg} / \mathrm{ha}$ and the mean was 16.0 , considering only the estimates for walleye longer than 300350 mm . The three lakes under 100 ha had $18.7-$ $37.0 \mathrm{~kg} / \mathrm{ha}$ with a mean of 26.8 ; the nine lakes between 100 and $1000 \mathrm{ha}, 6.1-15.5 \mathrm{~kg} / \mathrm{ha}$ with a mean of 10.5 ; and the seven lakes over 1000 ha , $5.7-37.0 \mathrm{~kg} / \mathrm{ha}$ with a mean of 18.4 . The correlation between area and biomass was only 0.385 ($P>.05$), even eliminating the lakes $<100 \mathrm{ha}$.

Correlation of biomass with mean depth of the lakes with latitude or length of growing seasons was not evident. The three Canadian lakes had a lower mean biomass, $8.2 \mathrm{~kg} / \mathrm{ha}$, than the eight

Michigan, Minnesota, and Wisconsin lakes at $17.1 \mathrm{~kg} / \mathrm{ha}$ and the eight Iowa, Ohio, and New York lakes at $17.3 \mathrm{~kg} / \mathrm{ha}$; but this is not sufficient to show latitudinal effects. There also is no evidence of correlation with alkalinity or with the morphoedaphic index, MEI (Ryder et al. 1974).

Standing crops within a lake change from year to year and from season to season as the result of harvest, reproductive success, and environmental changes. The estimates also have sampling variation even if there were no changes in biomass. For example, the range in estimated biomass was 1.65 times the mean of 27 annual estimates in Clear Lake, 1.35 times the mean of 16 annual estimates in Escanaba Lake, 0.92 times the mean of 6 annual estimates in Wilson Lake, and 0.52 times the mean of 5 estimates in 1 yr in West Blue Lake (citations as in Table 1).

Yellow perch - More biomass estimates (Tables 2-4) were found for perch than for walleye, but only three of those found were for percid lakes, or lakes in which walleyes were the major predator: Storm Lake, Iowa, with 7 kg perch/ha; East Twin Lake, Michigan, with $22 \mathrm{~kg} / \mathrm{ha}$; and Oneida Lake, New York, with $36 \mathrm{~kg} / \mathrm{ha}$.
The data from the other lakes do not add to our knowledge of percid lakes but give some information on perch populations. They are considered in three categories. The first (Table 2) is for lakes in which perch were $<20 \%$ of the fish biomass. Other estimates in which perch were a minor part of the population are available, but this listing includes most estimates in which perch were at least $2 \mathrm{~kg} / \mathrm{ha}$. In lakes in which perch were at least 20% of the fish biomass, the mean biomass of perch was $27 \mathrm{~kg} / \mathrm{ha}$ (Table 3). Several of the lakes in both these lists were chemically treated because they contained undesirable populations of stunted perch, and the results from these lakes are thus not representative of lakes as a whole.

Most of the lakes are too shallow for the morphoedaphic indexes to be meaningful, and the data gave no indication of correlation between alkalinity and the biomass.

There are standing crop estimates for several ponds and small lakes in which yellow perch were the only species of fish (Table 4), and these ranged from 39 to $215 \mathrm{~kg} / \mathrm{ha}$. The biomass in some experimental ponds in Illinois (Buck and Thoits 1970) were $2-3$ times as high as those of smallmouth or largemouth bass (M. salmoides) populations in the same ponds in other years.

Production

Annual production is the most meaningful measure of a population's response to the environ-

Table 1. Biomass ($\mathrm{kg} / \mathrm{ha}$) of walleye, other predators, and all fish in 23 North American Lakes, arranged according to increasing biomass.
$\left.\begin{array}{lcccccccc}\hline \hline & & & & & & & \text { Biomass }\end{array}\right]$

Rose 1950
${ }^{\text {a }}$ All that were estimated; usually other species were present but not included.
${ }^{\text {b }}$ Converted from total alkalinity measures by the formula of Ryder (1964): TDS (total dissolved solids) $=1.1913$ (total alkalinity) +23.5 ppm . The alkalinity values for some Iowa lakes came from Bachmann (1967).
${ }^{\mathrm{c}}$ Treated with rotenone. All other estimates were by mark-and-recapture techniques, usually for walleyes over 300 or 350 mm .
${ }^{\text {d }}$ Numbers converted to weights on the assumption that mean weight was $0.68 \mathrm{~kg}(1.5 \mathrm{lb})$ except that in Little John Lake a mean weight of 0.45 kg was used since this was judged to be a better average by Helm (correspondence).

Table 2. Biomass ($\mathrm{kg} / \mathrm{ha}$) of yellow perch and all fish in 18 lakes where they were less than 20% of the fish biomass.

Citation and lake	Area (ha)	Mean depth (m)	Alkalinity (ppm)	Biomass		Method ${ }^{\text {a }}$
				Perch	Total	
Nova Scotia, Smith 1940						
Trefry's	22	-	-	1	19	p
Tedford	21	2.5	-	2	40	p
Minn., Hooper 1951						
Demming	5	3.5	25	2	22	p
Indiana, Ricker 1942						
Shoe	17	4	-	2	180	m
Mass., Stroud 1953						
Ponkapoog Pond	-	-	-	4	48	p
Iowa, Rose 1950						
Storm	1238	2	136	7	305	m
Wis., O'Donnell 1953						
West Twin	5	6	-	9	103	p
Mich. Schneider 1973a						
O'Brien	4	$4.5{ }^{\text {b }}$	167	2	50	p
Deep	6	$9{ }^{\text {b }}$	-	2	71	p
Howe	5	$3.5{ }^{\text {b }}$	51	2	71	p
Scaup	2.4	,	121	3	50	m
Walsh	4	$3^{\text {b }}$	138	3	171	p
Cub	11.3	3.3	10	11	70	m
Kimes	2.8	2.7	-	12	256	p
Mill	55	1.6	140	16	130	m
Pond 4	0.6	-	-	20	127	p
Cassidy	19	1	127	27	162	m
Wintergreen	16	-	-	36	404	m

${ }^{\mathrm{a}} \mathrm{p}=$ estimate by chemical treatment; $\mathrm{m}=$ mark-and-recapture estimate.
${ }^{\mathrm{b}}$ Mean depth not available, estimates at 0.5 maximum depth.
ment. However, production estimates involve data on standing crop by size or age-groups, individual growth rates, and mortality rates. Therefore, very little annual production information (Table 5) is available on walleye or perch populations. Because sustained harvest cannot exceed annual production, walleye yields from these lakes should not exceeds $1-3 \mathrm{~kg} / \mathrm{ha}$.

Yield

Annual yield statistics are the most readily available indicators of fish production. If yields only from lakes subjected to moderately intensive or intensive fishing are used and if the fishery is maintained several years, the yield statistics probably are representative of production (Ryder et al. 1974).

Perch yield data were not analyzed. Few perch populations are subject to consistently intensive fishing because the perch fishery is secondary to that for other species. The data that I analyzed cover a wider range of lake types than those re-
ported by Adams and Olver (1977), but the yields were recorded in a less standardized manner and did not always cover enough years to indicate sustained yields. My search was not exhaustive, and yield data are scattered, often in reports with limited distribution or in unpublished files.

The annual commercial yields of walleye (Table 6) ranged from 0.04 to $3.06 \mathrm{~kg} / \mathrm{ha}$. Hebden and Contact lakes had larger yields of lake trout than of walleye and perhaps should not be included as percid lakes. Lakes Michigan and Ontario had their largest yields of walleye only after lake trout had been largely eliminated. Perhaps only Lake of the Woods, Lake St. Claire, Red Lake, and Lake Erie, lakes with yields of $1.35-3.06 \mathrm{~kg} / \mathrm{ha}$, are representative of percid populations. With these four lakes there is no correlation between yield of walleye and area, mean depth, total dissolved solids, or MEI.

The average yield (Y) decreases with latitude in degrees north (L) if Lakes Michigan, Huron, Ontario, Hebden, and Contact are left out:

Table 3. Biomass ($\mathrm{kg} / \mathrm{ha}$) of yellow perch and all fish in lakes where they were at least 20% of the fish biomass.

${ }^{a} p=$ estimate by chemical treatment; $m=$ mark and recapture estimate.
In Lake Wineconnet only one cove was rotenoned.
${ }^{\mathrm{b}}$ Mean depth not available; estimated at 0.5 maximum depth.
${ }^{\text {c }}$ The estimate, given as $64 \mathrm{~kg} / \mathrm{ha}$ of littoral area, was corrected to the area of the entire lake to be comparable with data from the other lakes.

$$
Y=6.36-0.096 L ; r=-0.58, P<0.05
$$

Yield also increases with total dissolved solids (T) :

$$
Y=0.29+0.008 T ; r=0.61, P<0.05
$$

However yield also shows a trend to increase with mean depth ($r=0.32, P>0.05$) which is the reverse of the expected relationship and therefore for this series of lakes, MEI is not as good a predictor of yield as is the total dissolved solids.

The yield also increases with the area (A) of the lakes in this series:

$$
Y=1.17+0.0007 A ; r=0.58, P<0.05
$$

Rounsefell (1946) found the yield to decrease with increasing area of lakes. The fact that the
eight lakes under 86,000 ha were all in Saskatchewan probably influenced the positive correlation in the data.

Multiple regression analysis indicated that the following would account for 55% for the variation in yield compared with 37% accounted for by total dissolved solids:

$$
Y=0.359+0.0063 T+0.00058 A
$$

Addition of latitude, mean depth, and MEI did not materially improve the regression.

The annual yield to sport fishing averaged 3.7 $\mathrm{kg} / \mathrm{ha}$ (Table 7) which was greater than the average commercial yield. Many of these data are for a single year of fishing rather than averages over several years, but the available averages

Table 4. Biomass ($\mathrm{kg} / \mathrm{ha}$) in lakes with only yellow perch.

Citation and lake	Area (ha)	Mean depth (m)	Alkalinity (ppm)	Biomass	Method ${ }^{\text {a }}$
Mich., Schneider 1973a					
Cassidy	19	1	127	39	m
Section 4 pond	1.3	$11+$	149	53	p
South Twin	1.7	0.7	106	65	p
Jewett	5	2	33	70	m
Mass., Mullan and Tompkins	1959				
Round Pond	1.4	-	-	56	p
N.Y., Regier 1962					
Vann Pond	0.2	-	-	63	2 y
Mich., Schneider 1973b					
Cattail ponds	-	-	-	94	
Plankton ponds	-	-	-	121	
Ill., Buck and Thoits 1970					
Iota Pond	0.4	-	149	106	1 y
				112	2 y
Alpha Pond	0.4	-	203	161	1 y
Theta Pond	0.4	-	117	215	2 y 3 y

${ }^{a} \mathrm{p}=$ estimate by chemical treatment; $\mathrm{m}=$ mark and recapture estimate; $\mathrm{y}=$ population when drained after 1,2 , or 3 yr growth.

Table 5. Annual production ($\mathrm{kg} \cdot \mathrm{ha}^{-1} \cdot \mathrm{yr}^{-1}$) of walleye and of yellow perch.

Lake and citation	Ages included	Production		
		Mean	Range	Years
Walleyes				
West Blue, Man. Kelso and Ward 1977	I-VI	2.1	-	1969
Dexter, Ont. Moenig 1975	$\begin{gathered} \text { IV }+ \\ \text { IV + a } \end{gathered}$	$\begin{aligned} & 4.1 \\ & 7.8 \end{aligned}$	-	-
Clear, Iowa	III+	1.21	0.42-3.07	1948-73
Carlander and Payne 1977	I +	3.08	0.91-6.98	1947-73
Hoover Reservoir, Ohio Momot et al. 1977	II +	2.16	1.31-4.05	1967-73
Perch				
Red Deer, Ont. Chadwick 1976		21.9	-	1974

${ }^{\text {a }}$ Including reproductive products.
are similar to those from single years. Additional data on mean depths and on water chemistry and other factors may be available, but there is no indication that these would provide significant correlations.

There is, however, a significant correlation between yields and latitude, $r=-0.395, P<0.02$, and between yields and area of the lake, $r=$ $-0.366, P<0.03$. Multiple regression analysis
gave

$$
Y=18.52-0.3197 L-0.00002 A
$$

The combined regression, $r=0.476$, accounts for 22.6% of the variance, whereas simple regression on latitude accounted for 15.6%. Increased yields to the south are to be expected because the growing seasons are longer, and yield is a function of production more than of biomass. Data on growth

Table 6. Annual yield (kg/ha) of walleye and all fish to commercial fishing

${ }^{\text {a }}$ Yields for the decades with the highest average walleye catch. Bluepike and/or sauger were included with walleye in Ontario, Huron, Erie, and St. Clare data.
${ }^{\mathrm{b}}$ Not used in further calculations.
of walleye tabulated by Carlander (1953) and Colby et al. (1977) indicate that growth rates increase from the north to the south. The negative correlation between yield and area of the lake may be related to decreased fishing effort per hectare as distance from shore increases.

Data from the Minnesota Department of Natural Resources indicated sport fishing yields of walleye from 15 lakes classified by W. J. Scidmore (personal communication) as warmwater rather than percid lakes averaged $2.4 \mathrm{~kg} \cdot \mathrm{ha}^{-1} \cdot \mathrm{yr}^{-1}$ and ranged from 0.04 to 7.25 . The yield from one other lake was considered as exceptional, 21.3 $\mathrm{kg} / \mathrm{ha}$, and not included in the mean. Walleye
may be quite abundant even where other predators are more abundant.

Conclusion

The available data point to our lack of information and suggest merely the probable magnitude of walleye and perch production. The lack of correlation between biomass or yields and the usual indicators of productivity probably is largely because walleye or perch populations do not bear a constant relationship to the total fish biomass or yield. The morphoedaphic index may indicate the potential yield from a body of water, but the proportion of the yield varies according to the

Table 7. Annual yield (kg/ha) of walleye, other predators, and all fish to sportfishing in 48 percid lakes arranged in order of increasing yield

Lake and citation	Area (ha)	Lat. $\left({ }^{\circ} \mathrm{N}\right)$	Mean depth (m)	TDS (ppm)	MEI	Yield			Yrs covered
						Walleye	Other predators	Total	
LaRonge, Sask. Rawson 1957b	123,616	52	13	149	11	0.15	-	-	6
St. Clair, Ont. Johnston 1977	119,139	42	3	208	69	0.19	-	-	6
Seagull, Minn. Micklus 1959	1,512	46	-	-	-	0.5	-	-	1
Eagle, Ont. Chevalier 1975	27,692	48	3	-	-	0.8	0.9	-	1
Lake of the Woods, Minn. Scidmore ${ }^{\text {a }}$	122,316	49	7	83	12	1.0	0.2	-	3
Cutfoot Sioux, Minn. Moyle and Franklin 1953	953	47	-	-	-	1.0	5.9	-	1
Nipissing, Ont. Anthony and Jorgensen 1977	85,500	46	4.6	80	11	1.0	1.2	2.9	1
Lost Island, Iowa Moen 1960a	510	43	2.5	$290{ }^{\text {b }}$	116	1.1	-	285	1
Pike, Minn. Scidmore ${ }^{\text {a }}$	328	47	7	99	14	1.2	-	1.3	2
Kegonsa, Wis. Frey et al. 1939	1,273	42	-	-	-	1.3	-	10.7	1
Green, Minn. Moyle and Franklin 1953	2,244	45	-	-	-	1.3	3.8	-	1
Waubesa, Wis. Frey et al. 1939	823	43	-	-	-	1.5	-	2.0	1
Winnibigoshish, Minn. Schneider 1977	28,256	46	4.6	169	45	1.7	-	5.0	2
Clear, Iowa Moen 1959, 1960a	1,474	43	3.6	230	64	1.8	-	16.8	2
Edward, Minn. Scidmore ${ }^{\text {a }}$	822	45	11	-	-	2.0	-	-	3
Cass, Minn. Scidmore ${ }^{\text {a }}$	6,313	47	7.6	180	24	2.1	-	6.2	5
Leech, Minn. Scidmore ${ }^{\text {a }}$	45,123	47	5.1	172	34	2.1	-	4.8	3
Splithand, Minn. Scidmore ${ }^{\text {a }}$	575	47	5.5	137	25	2.4	-	5.6	3
Toad, Minn. Scidmore ${ }^{a}$	679	46	6.4	183	29	3.0	-	10.9	2
Lac des Mille Lacs, Ont. Elsey and Thomson 1977	24,114	48	6.8	68	10	3.1	1.3	5.2	4
Moose, Minn. Scidmore ${ }^{\text {a }}$	485	46	7.9	163	21	3.2	-	4.6	5
Many Point, Minn. Scidmore ${ }^{\text {a }}$	694	47	9.1	168	18	3.3	-	8.5	3
Andrusia, Minn. Scidmore ${ }^{\text {a }}$	611	46	7.9	177	22	3.3	-	9.5	5

Table 7. (Concluded)

Lake and citation	Area (ha)	Lat. (${ }^{\circ} \mathrm{N}$)	Mean depth (m)	TDS (ppm)	MEI	Yield			Yrs covered
						Walleye	Other predators	Total	
Norris, Tenn. 1974 Fitz and Holbrook Unpublished data	13,840	36	18	127	7	3.5	-	-	1
Ingham, Iowa Moen 1959	170	43	25	$163{ }^{\text {b }}$	65	3.6	5.6	-	1
Detroit, Minn. Moyle and Franklin 1953	1,223	47	-	-	-	3.7	5.1	-	1
Mille Lacs, Minn. Scidmore ${ }^{\text {a }}$	53,420	46	6.2	133	21	4.0	-	6.0	2
Wolf, Minn. Scidmore ${ }^{\text {a }}$	425	47	8.5	167	20	4.8	-	15.2	5
Wilson, Minn. Johnson 1977	245	47	6.6	51	8	4.9	0.5	-	3
Little Pine, Minn. Scidmore ${ }^{\text {a }}$	824	46	8.5	222	26	6.1	-	11.6	3
West Okoboji, Iowa Moen 1960b	1,594	43	12	$261{ }^{\text {b }}$	22	6.2	-	62	3
Oneida, N.Y. Grosslein 1961	20,640	43	6.8	90	13	6.5	-	-	3
Black Hawk, Iowa Moen 1960a	387	42	2	$260^{\text {b }}$	103	6.7	-	117	1
Big Bearskin, Wis. Bersing 1940	229	44	-	-	-	7.3	-	-	1
Spirit, Iowa Moen 1960a	2,168	43	5.2	$271{ }^{\text {b }}$	52	7.7	-	26.5	4
East Okoboji, Iowa Moen 1960b	567	43	2.8	$272^{\text {b }}$	97	8.0	-	77	3
Escanada, Wis. Kempinger and Carline 1977	119	45	4.3	43	10	9.0	-	19.8	27
Norris, Tenn. 1963 Fitz and Holbrook Unpublished data	13,840	36	18	127	7	10.8	-	-	1
Escanaba, Wis. Churchill 1957	119	45	4.3	43	10	12.9	-	21	8

${ }^{\text {a Data from files and reports of Minnesota Department of Natural Resources by W. J. Scidmore, } 1976 . ~}$
${ }^{\mathrm{b}}$ Calculated from total alkalinity by the formula from Ryder et al. (1974).
species composition of the population and catch. In many of the lakes covered in this report there is evidence of overfishing for walleye, and in few cases was the yield sustained over a sufficient number of years for the average yields to be valid measures of annual production.

Acknowledgments

In addition to those listed in the references, thanks for data are due Dr R. W. Bachman, Dr W. T. Helm,
R. E. McNicol, T. C. Osborn, R. A. Ryder, J. C. Schneider, W. J. Scidmore, and C. W. Threinen. Data also were received from Dr J. Hartmann, Dr J. Holčik, Dr E. A. Lind, Dr P. S. Maitland, Dr M. Nagięć and Dr J. E. Thorpe on European populations which were not included in the final paper. Suggestions by R. A. Ryder, Dr P. J. Colby, Dr R. Carline, Dr R. J. Muncy, and P. M. Payne are appreciated. This work was sponsored by the Iowa State Conservation Commission, Iowa State University of Science and Technology, and the Fish and Wildlife Service, U.S. Department of Interior, as Project No. 2002, Iowa Cooperative Fishery Research Unit.

Moenig, J. T. 1975. Dynamics of an experimentally exploited walleye population in Dexter Lake, Ontario. M.Sc. Thesis. Univ. Toronto, Toronto. 198 p.

Момot, W. T., J. Erickson, and F. Stevenson. 1977. Maintenance of a walleye, Stizostedion vitreum vitreum, fishery in a eutrophic reservoir. J. Fish. Res. Board Can. 34. (This issue)
Moyle, J. B., and D. J. Franklin. 1953. Creel census of 23 Minnesota lakes, 1952. Minn. Dep. Conserv. Div. Game Fish. Res. Sect. Res. Plann. Invest. Rep. 135: 71 p .
Mullan, J. W., and W. A. Tompkins. 1959. Trout pond management in Massachusetts. Mass. Div. Fish. Game p. 1-132.
O'Donnell, D. J. 1943. The fish population in three small lakes in northern Wisconsin. Trans. Am. Fish. Soc. 72: 187-196.
Olson, D. E. 1958. Statistics of a walleye sport fishery in a Minnesota lake. Trans. Am. Fish. Soc. 87: 52-72.
Peterson, A. 1955. Fish populations of five small northern Minnesota lakes as determined by rotenone poisoning and netting. Minn. Dep. Conserv. Div. Game Fish. Sect. Res. Plann. Invest. Rep. 153: 6p.
Rawson, D. S. 1957a. Limnology and fisheries of five lakes in the Upper Churchill drainage, Saskatchewan. Sask. Dep. Nat. Resour. Fish. Rep. 3: 61 p.

1957b. The life history and ecology of the yellow walleye, Stizostedion vitreum, in Lac la Ronge, Saskatchewan. Trans. Am. Fish. Soc. 86: 15-37.
Regier, H. A. 1962. Some aspects of the ecology and management of warmwater fish in New York farm ponds. Ph.D. Thesis. Cornell Univ., Ithaca, N.Y. 420 p .
Ricker, W. E. 1942. Creel census, population estimates and rate of exploitation of game fish in Shoe Lake, Indiana. Invest. Indiana Lakes Streams 2: 215-253.
Rose, E. T. 1950. A fish population study of Storm Lake. Proc. Iowa Acad. Sci. 56: 385-395.
1955. The fluctuation in abundance of walleyes in Spirit Lake, Iowa. Proc. Iowa Acad. Sci. 62: 567-575.
1957. The recapture of tagged walleyes from Dickinson County lakes. Iowa Conserv. Comm. Biol. Rep. 9(3): 32-35.

Rounsefell, G. A. 1946. Fish production in lakes as a guide for estimating production in proposed reservoirs. Copeia 1946: 29-40.
Ryder, R. A. 1964. Chemical characteristics of Ontario lakes as related to glacial history. Trans. Am. Fish. Soc. 93: 260-268.
1968. Dynamics and exploitation of mature walleyes, Stizostedion vitreum vitreum, in the Nipigon Bay region of Lake Superior. J. Fish. Res. Board Can. 25: 1347-1376.
Ryder, R. A., S. R. Kerr, K. H. Loftus, and H. A. Regier. 1974. The morphoedophic index, a fish yield estimator - review and evaluation. J. Fish. Res. Board Can. 31: 663-688.
Schneider, J. C. 1973a. The standing crop of fish in Michigan lakes. Mich. Dep. Nat. Resour. Fish. Res. Rep. 1974: 35 p.

1973b. Density dependent growth and mortality of yellow perch in ponds. Mich. Dep. Nat. Resour. Fish. Res. Rep. 1796: 18 p.
Smith, L. L. Jr. 1977. The walleye (Stizostedion vitreum vitreum) and yellow perch (Perca flavescens) populations and fisheries of the Red Lakes, Minnesota 1930-75. J. Fish. Res. Board Can. 34. (This issue)
Smith, M. W. 1939. Fish population of Lake Jesse, Nova Scotia. Proc. N.S. Inst. Sci. 19: 389-427.
1940. Fish production in Trefry's Lake. Fish. Res. Board Can., Atl. Biol. Stn. Prog. Rep. 26: 6-8.
1961. A limnological reconnaissance of a Nova Scotian brown-water lake. J. Fish. Res. Board Can. 18: 463-478.
Stroud, R. H. 1953. Spot-poisoning applied to the Massachusetts lake and pond fisheries survey. Prog. Fish Cult. 15: 3-10.
Threinen, C. W., and W. T. Helm. 1952. Composition of the fish population and carrying capacity of Spauldings Pond. Rock County as determined by rotenone treatment. Wis. Invest. Rep. 656: 19 p.
Vashro, J. E. 1976. Production of yellow perch in Oneida Lake. M.Sc. Thesis. Cornell Univ., Ithaca, N.Y. 32 p.

[^0]: ${ }^{1}$ This paper forms part of the Proceedings of the Percid International Symposium (PERCIS) convened at Quetico Centre, Ontario, September 24-October 5, 1976.
 ${ }^{2}$ Journal paper J-8617 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa.
 Printed in Canada (J4564)
 Imprimé au Canada (J4564)
 Project No. 2076

[^1]: ${ }^{\text {a }}$ In calculating instantaneous growth, G, only the fish which completed the year's growth were used. e.g. Age I fish were not used in calculating the mean length at the first annulus in determining the increment in the second year. The mean lengths were converted to weights and $G=\log _{e} W_{n+1}-\log _{c} W_{n}$.

[^2]: ${ }^{\mathrm{a}} \mathrm{B}$ was determined by taking the mean of the biomasses at the beginning of the year and at the beginning of the next year for the same year-classes.

