

January 12, 1984

Dr. Robert J. Behnke Department of Fishery and Wildlife Biology Colorado State University Fort Collins, Colorado 80523

Dear Bob:

Thanks for the manuscript on artic charr. I certainly agree with you that Nyman's conclusions drawn from a single esterase locus are farcical at best. I really cannot understand how he was able to get such conclusions published.

I have enclosed a copy of the galleys for the hybrid manuscript. Our limited data from bull trout populations indicates that in contrast to brook trout the bull trout apparently have low amounts of intraspecific genetic variation. Thus, you might want to revise this point in your manuscript.

This past summer we collected a fish that was undoubtedly the progeny from a brook trout-bull trout hybrid x brook trout mating. This conclusively demonstrates that some of these hybrids are fertile, although it appears that only a very small percentage are. Our data indicate about one percent.

We are working on a manuscript describing the heritabilities of eight meristic characters in a rainbow trout population. Many of these have unusually high heritabilities, greater than 0.80. I will send you a copy as soon as the manuscript is ready to submit for publication.

Sincerely,

Robb Lang

Robb Leary

RL/cs Encl.

Department of Zoology • Missoula, Montana 59812 • (406) 243-5122

June 13, 1986

Robert Behnke Fish and Wildlife Biology Colorado State University Fort Collins, Colorado 80523

Bob:

At long last here are the <u>Salvelinus</u> electrophoretic data. The samples were obtained from the following locations with sample sizes in parentheses: Bull trout, <u>S. confluentus</u> - South Fork Lolo Creek, Montana (34); Dolly Varden, <u>S. malma</u> - Bear Lake (1), Fox River (12), and Mystery Creek (1) from the Kenai Peninsula, Alaska; Arctic Char, <u>S. alpinus</u> - Clam Lake (1), Dolly Varden Lake (4), East Finger Creek (4), and Moose Lake (1) from the Kenai Penisula, Alaska and a single specimen from an unknown source in Sweden; Brook trout, <u>S. fontinalis</u> - Harriman Trout Company, St. Ignatius, Montana (14), Lake trout, <u>S. namaycush</u> - Lewis Lake strain maintained at the Jackson National Fish Hatchery, Jackson, Wyoming (50).

We determined the genotype of each individual at 42 protein encoding loci (Table 1) and of these 18 can be used to differentiate among the taxa (Table 2). Most of these loci, however, distinguish the brook trout and lake trout from the other three species. Only two loci, <u>Me2</u> and <u>Sod</u> unambiguously differentiate the bull trout from the Dolly Varden and Arctic char. These latter two species share alleles at all loci examined and thus cannot be distinguished with these data.

In Table 3, we have listed the allele frequencies at those loci that showed evidence of inter and intraspecific genetic variation in these samples with sample sizes greater than one plus the Swedish char. The inclusion of the Swedish char is justified based on the work of Nils Ryman and his colleagues. In an extensive survey of Swedish char they found that all populations analyzed clustered together at a Nei's genetic distance of 0.01. This indicates that there is relatively little electrophoretically detectable genetic differentiation among these fishes and thus a single specimen can be considered a valid representation of them.

Considering the Artic char, the allele frequencies in Table 3 have a couple of noteworthy points. At <u>Aatl</u>, the Swedish and Alaska char are completely divergent. The Swedish char have the allele common to the Dolly Varden while the Alaskan char have the allele characteristic of the bull trout. Although we did not detect the <u>Gpi3(108)</u> allele in the two samples of Alaskan char included in Table 3, we did detect this allele in the other two Alaskan specimens. Thus the allele frequencies at this locus are widely divergent Behnke June 13, 1986 Page 2

among populations of Arctic char. The 108 allele being common in Swedish populations the 103 allele common in some Alaskan populations, and both alleles apparently being common in other Alaskan populations.

We calculated Nei's genetic distance between all pairs of samples in Table 3. The dendrogram (Fig. 1) produced by cluster analysis of the genetic distance matrix (Table 4) shows rather nicely the confusing nature of the data. Note that the Swedish char clusters with Dolly Varden before it clusters with the Alaskan char. This indicates that there is as much electrophoretically detectable genetic divergence among Arctic char included in our samples as there is between the Arctic char and Dolly Varden. In contrast to this mess, the bull trout, lake trout, and brook trout are clearly distinct from each other as well as from the Arctic char - Dolly Varden complex. The available data, therefore, support the specific status of the bull trout.

Sincerely,

-Robb Leans

Robb Leary

Enclosures

RL:sf

	TA	B	L	Е	1
--	----	---	---	---	---

Enzymes and loci examined in samples of Salvelinus

Loci	Tissue
Adkl,2	м
Adh	L
Aatl,2 Aat(3,4)	L M
Ckl,2 Ck3	M E
Gpi1,2,3	М
Gap(3,4)	E
G3p1,2	L
G11,2	E
Idhl,2 Idh(3,4)	M L
Ldhl,2 Ldh3,4,5	M E
Lgg	E
Mdhl, 2 Mdh(3, 4)	L M
Me1,2,3 Me4	M L
Pgml,2	М
6Pg	М
Sdh	L
Sod	L
	Adk1,2 Adh Aat1,2 Aat(3,4) Ck1,2 Ck3 Gpi1,2,3 Gap(3,4). G3p1,2 G11,2 Idh1,2 Idh1,2 Idh1,2 Idh1,2 Idh1,2,3 Mdh1,2 Mdh1,2,3 Me4 Pgm1,2 GPg Sdh

Note: E = eye, L = liver, M = muscle. The pairs of loci listed in parentheses are electrophoretically indistinguishable in at least one taxon so they are considered to be single tetrasomic loci in all analyses.

Taxa and alleles								
Locus	Bull	Dolly Varden	Arctic Char	Brook	Lake			
Aatl	54 100,54		100,54	100	100, nul			
Adk2	100	100,20	20	100	100			
Ckl	85	85	85	100	85			
Ck2	86	86	86,100	100	86			
Gpil	100	100	100	100	108			
Gpi3	108	103,108	103,108	108	108			
Ldhl	54	54	54	0	0			
Ldh2	91	91	91	91	88			
Ldh4	76 [.]	76	76	28	76			
Mdhl	145	145	145	110	145			
Mdh3,4	86	86	86	86,93	53,86			
Mel	145	145	145	56	127			
Me2	145	175	175	145	125			
Me4	95,97	95	95	97	97			
Pgml	100	100,138	75,100	100,null	100			
Sdh	120	120	120	200	120			
Sod	190	177,142	177	97	190,177			

Loci that can be used to distinguish among members of the genus <u>Salvelinus</u>. Allelic mobilities are relative to the common allele at the homologous locus in rainbow trout, <u>Salmo gairnderi</u>.

Note: When more than one allele is observed at a locus within a species the most common allele is listed first.

TABLE 2

		Taxa and allele frequencies							
		Bull	Dolly <u>Varden</u>	Arctic Char			Brook	Lake	
Locus	Alleles	S.F.Lolo	Fox Rvr	East Finger Crk	Dolly Varden Lake	Sweden	Harriman	Lewis Lake	
Aatl	54	1.000	0.208	1.000	1.000				
	100		0.792			1.000	1.000	0.684	
	null							0.316	
	6.0	1	1	0.540					
Aat3,4		1.000	1.000	0.563	0.688	1.000	0.679	0.500	
	100							0.495	
	80						0.321	0.005	
	40			0.437	0.312				
Adk2	100	1.000	0.708				1.000	1.000	
	20		0.292	1.000	1.000	1.000			
Ckl	85	1.000	1.000	1.000	1.000	1.000		1.000	
	100						1.000		
Ck2	86	1.000	1.000	0.875	0.500	1.000		1.000	
	100			0.125	0.500		1.000		
Gap3,4	125	1.000	0.979	1.000	1.000	1.000	1.000	1.000	
Gaps,4	100	1.000	0.021				1.000		
Company									
G3pl	105	1.000	1.000	0.500	0.750	1.000	0.679	1.000	
	89			0.500	0.250		0.321		
Gpil	100	1.000	1.000	1.000	1.000	1.000	1.000		
OPII	108							1.000	
Gpi3	108	1.000	0.042			1.000	1.000	1.000	
	103		0.958	1.000	1.000				
Idhl	200	0.853	1.000	1.000	1.000	1.000	1.000	1.000	
and starting	333	0.147							
Idh3,4	106	1.000	1.000	1.000	1.000	1.000	0.375	1.000	
14115,4	135	1.000					0.465		
111111	82						0.405		
and the second									
	null			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			0.035		
Ldhl	54	1.000	1.000	1.000	1.000	1.000			
	0				en entre ston Al		1.000	1.000	

Allele frequencies at those loci that showed evidence of genetic variation in sample of the genus <u>Salvelinus</u>.

TABLE 3

, •

TABLE 3 -- Continued

•

. -

Ldh2	91 88	1.000	1.000	1.000	1.000	1.000	1.000	 1.000
Ldh3	135 95	1.000	1.000	1.000	1.000	1.000	0.750 0.250	1.000
Ldh4	76 28	1.000	1.000	1.000	1.000	1.000	 1.000	1.000
Ldh5	100 95	1.000	0.583 0.417	1.000	1.000	1.000	1.000	1.000
Mdhl	145 110	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mdh3,4	86 93 53	1.000	1.000	1.000	1.000 	1.000	0.839 0.161 	0.005 0.995
Mel	145 127 56	1.000	1.000	1.000	1.000 	1.000	 1.000	 1.000
Me2	145 175 125	1.000	 1.000 	1.000	 1.000 	 1.000 	1.000	 1.000
Me4	95 97	0.941 0.059	1.000	1.000	1.000	1.000	 1.000	 1.000
Pgml	100 138 75 null	1.000	0.833 0.167 	 1.000 	 1.000 	 1.000 	0.750 0.250	1.000
Pgm2	100 122 90	0.971	0.833 0.167 	1.000	1.000	1.000 	1.000 	1.000
Sdh	120 200	1.000	1.000	1.000	1.000	1.000	 1.000	1.000
Sod	190 177 142 97	1.000	0.917 0.083 	 1.000 	 1.000 	 1.000 	 1.000	0.950 0.050

TABLE 4

Arctic Char Bull Dolly Varden East Finger Dolly Varden Sweden Brook Dolly Varden 0.109 ---Arctic Char East Finger 0.159 0.051 Dolly Varden 0.158 0.050 0.005 Sweden 0.143 0.047 0.068 0.066 ---Brook 0.342 0.406 0.497 0.471 0.412 ---Lake 0.238 0.288 0.399 0.400 0.318 0.386

Nei's genetic distance between members of the genus Salvelinus

Figure 1 -- Dendrogram produced by cluster analysis of the Nei's genetic distance matrix.

*----- * * * *

~

Robb heary Department of Toology Viversity of Montana Missoula, Mantana 59812

Sol

Robert Behuhe Fish and Wildlife Biology Colorado State University Font Colling Colorado 80523

FIRST CLASS