Bos,
I enjayed your letien on Canlson's dissentstion - I agree compleyely wirh ycur गhoughns. Sorny abour the missing pages - they are missit in my copy, too. Next tine I'm at vemes I will ting >0 ger them copied t send copies 70 yur. IT wair be sow shough.
Tive enclused a copy of Decels 1970 tor >ou.
Jim also enclusing an ecovomic stidy >hat uns dove ${ }^{5} y$ comell on solman restomation.
I ageee with your commenns on Irelandie fics in your leitur to conbon ad renssinly moseoker were ande in post severic mymn of 74 eroprom. Howeven, she propum is a well inegmod rogperasiveench Apary does Not" dom in's cwn >hig." We hove hod a sound. Sneedingiploveris in plice ton several. yewns. The lessin oshers should lesur is >hatio is for exsien. 70 save a Narive stoik \rightarrow kon To Respone a sheck wishou, Native gevelic marerinl. RR \#1, Box 33, North Springfield, VT 05150-9726

- returns - NoIt atrervey
- Values - intopropad. changer vieur opinions

Following your August statements in Connecticut about supporting the salmon restoration project in New England, I write to acquaint you with research done here at the Department of Anthropology at the University of Massachusetts. This information suits very well the recommendation in your department's recently promulgated "National Strategy for Federal Archaeology"-" P public Use of the Archeological Paleoenvironmental Record... to help shape our present responses to changing environments."

Archaeological research at the Universities of Maine and Massachusetts has confirmed the absence of Atlantic salmon in the archaeological record prior to about A.D. 1300 . Dr. Catherine Carlson completed a dissertation here evaluating and interpreting this evidence. A' summary of her work, very well received recently at a regional historical conference, is enclosed to provide details and references for the argument.

Carlson's data strongly indicate that climatic warming, not industrial construction, ended the brief habitation of New England waters by the Atlantic salmon. The salmon were not native to this continent during or after the last le Age. They appear to have arrived via Greenland with the cooling climates of the Little le Age, perhaps only a century or so prior to the arrival of Europeans. They were never abundant in souther New England waters, as Carson's careful review of historical data clearly establishes. The presence of the "noble salmon" in waters not restricted by game marshals enchanted the English, who advertized the salmon lavishly in their recruitment literature. Similar public relations exaggeration is a well known aspect of the exploration narratives from North America-- you are likely familiar with the claims for gold.

Late in the 18th century, at the time of industrialization and the construction of dams and canals, atmospheric carbon dioxide began its modem rise. Climatic warming following the Little Ice Age was essentially coincident with the industrialization of New England's rivers and also with the disappearance of salmon from the waters of southern New England In this case, only the coincidence of development with the salmon disappearance was interpreted as causal.

Among the advisors for Catherines dissertation was a very competent fisheries biologist at the University of Massachusetts, who finds no problems in her argument or conclusions. However, when the information was presented to persons associated with the salmon restoration project locally, their response has been denial and dismissal. Although all of their objections are anticipated in the dissertation, nothing new has been offered in rebuttal or refutation of any of the data.

Given the results of this research, I believe that additional federal financial support of the semen restoration project in southern New England is unlikely to be rewarded by results. The disappointing results to date fit Dr. Carlson's expectations very well. I urge that your department (the National Biological Survey?) inquire further into this matter and reevaluate the level of support appropriate for the agendas of optimistic game fishermen. Only a retum of near-glacial climates will bring Atlantic saimon south again.

Sincerely,

Dena E. Dincauze, Pfó

Professor of Anthropology
ENV: text of "THE (IN)SIGNIFICANCE OF ATLANTIC SALMON IN NEW ENGLAND, 13 pp.

United States Department of the Interior
FISH AND WTLDIIFE SERVICE
300 Westgate Center Drive
Hadley, MA 01035-9583

In Reply Refer To:
FWS/Region 5/83041

NOV 11993

Dr. Dena F. Dincauze
Professor of Anthropology
University of Massachusetts at Amherst
Machmer Hail
Amherst, Massachusetts 01003

Dear Dr. Dincauze:

Secretary Babbitt has asked me to respond to your letter of September 29, 1993, regarding the historical significance of Atlantic salmon in New England. Ms. Carlson's research has fascinating implications for traditional biological interpretations of data. Her work should definitely be considered in evaluating modeled expectations for successful recovery efforts.

We certainly agree that the size of fisheries populations is often cyclic which can be due, in part, to long-term natural climatological cycles. Ms. Carlson makes a good argument for this in her paper, The (In)Significance of Atlontic Salmon In New England. The international scientific community, in fact, has strong evidence to support a similar theory explaining the present short-term worldwide depressions in Atlantic salmon populations. Cyclical changes in ocean temperatures over a 10-20 year periol inipaui the sias of salmon ocean foading grounds in the North Atlantic which cause increases and decreases in the marine survival of salmon regardless of other variables.

It is important to note that while Atlantic salmon were never extremely abundant for extended gevlogical perivils here at the edge of their range in the lower Now England rivers, they have had a significant historical presence. Unquestionably, their presence has been severely inpacted in the last 200 years by industrialization. Salmon populations have been destroyed, and cause and effect relationships have been demonstrated directly implicating danns and associated lack of passage and loss of habitat. For example, the successful restoration of Atlantic salmon in the Merrimack River in the 1870-1890s was abruptly terminated when a flood destroyed a primitive, but effective, fish passage facility at the Lawrence dam in 1896.

The U.S. Fish and Wildiife Service recognizes the value of Atlantic salmon as indicator species within discrete river basin ecosystems. Their numbers reflect water quality and quantity, fisheries management, river development, and land management on or near watersheds. Conditions that favor salmon favor most other native species and aquatic life including American shad, river heming, and sturgeon. To this day, these rivers and their resident species continue to provide both economic and social benefits to communities within the watersheds.

Our attention to these particular fishery resources in no way diminishes our concern for other fisheries. Ms. Carlson cites the relatively grcater historical importance of groundfish, like cod, to New England's commercial fisheries. In the last two decades, the New England Fisheries Management Council (of which the U.S. Fish and Wildlife Service is a member), in cooperation with the Department of Commerce, National Marine Fisheries Service, has expended many more dollars and agency resources to manage the New England groundfishery (cod and haddock) than has ever been expended on Atlantic salmon. Clearly, over fishing is the primary environmental factor influencing cod and haddock populations.

It has and will continue to be our goal to conserve and restore native fish populations and their habitats which have been recognized as critical components of larger ecosystems. This is especially important since we are both stewards of and elements of these ecosysterns. Whether a species has been a significant naturally occurring element of a particular ecosystem for centuries or millennia should not be a factor in weighing our relative stewardship responsibilities among species.

Thank you for expressing your historical viewpoint on our Atlantic salmon restoration program. It interested me greatly and I assure you that we will consider its implications in our future evaluations.

Sincerely,

Regional Director

By
Joseph N. Decola

U. S. Department of the Interior
 edaral Watar quality Administration

 Northeast RegionNoed England Basins office
August 1970
I. introduction
Acknowledgements 1
Background and Soope 2
Objectives 3
II. SUMMARY 5
III. DISSOLVED OXYGEN REQUIREMENTS
Introduction 11
Embryanic Stages 12
Juvenile and Adult Stages 18
IV. TEMPERATURE FLEQUIRIMENIS
Introduction 26
Embrychic Stages 27
Juvenile and Adult Stages 28
V. OTHER ENVIRORMENIAL FACIORS
pH33
Carbon Dioxide 33
Copper and zinc 34
Levels of Pesticides for Certain Salmonoids 37
VI. perfertances 39
VII. APPENDIX A - LITE CYCLE A-1
VIII. APPENDIX B - STATEMENT OF INIENT FOR A COOPERRATIVE FISHERY RESTORATION PROGRAM FOR THE CONNDCIICUT RIVER BASIN ...

Backgroind and Soope

Under section 3 (a) of the federal hater pollution control Act; the secretary of the interior is directed to develop comprehensive programs for eliminating or reducing pollution of interstate waters and tributaries thereof considering the improvements which are necessary to conserve such waters fot legitimate uses including propagation of fish and other aquatic life.

Section $3(b)$ of the Act states that in the survey or planning of any reservoir by the corps of Engineers; Bureau of Reclamation, or any other Federal agency, consideration shall be given to inclut sion of starage for regulation of stremflow for the purpose of water quality control. The heed for and value of storage for this purpose shall be deteninined by these agencles with the advice of the secretary.

In both the deveioptient of ochiprehensive water quailty management programe and stremiliow regulation bystems for water quality control; the future potential used of the waters and the associated levels of water quality suat be recognitred.

Under the provislotis of the Anedranous and Great lakes Pisheried festoration hct of 1965, a oooperative Eishery restoration program has been initiated fot the Cotinecticut River Basin. A copy of the restoration egreement between the participating state and Federal fishery agencies is included in Appendix B. The objectives of this
program are to realize the full potential of the fishery resources of the River including both anadromous and resident species. Small runs of Atlantic Saimon (Salmo salar) have been restored in the Machias, Dennys, Pleasant, East Machias, Narraguagus and Sheepscot Rivers in Maine, and the possibility of restoring them in other New England rivers is being explored. From the standpoint of water quality, the salmoh is one of the most sensitive species which is being considered undar the restoration program. The water quality requirements for the Atlantic Salmon will, therefore, play a large role in the development of a water quality management prograin.

objectives

The objective of this report is to present a summary of the results of research and investigations on the water quality requirements for Atlantic Salmon. It should be noted, however, that the information available or water quality requirements for Atlantic Salmon is limited. Aithough adequate information exists on oxygen and temperature requirements at the egg stages, few sources deal with water quality requirements during other fresh water stages.* much of the recorded experimentation during fresh water stages excamines only lethal or near lethal temperatures and dissolved oxygen concontrations which barely permit salmon survival. Near lethal levels of wator quality are totally inadequate for feeding activities, growth, reproduction and normal

[^0]swirming performance and, this, camot be used as water quality requirements. Some excellent information exdsts on the requirements of Pacific salmon during fresh water stages. This information can supplement the available data on Ätlantic Salmon and can aid in establishing tentative water quality requirements until further research is carried out.

II. SUMMARY

Concentrations of dissolved oxygen, carbon dioxide, toxic pollutants together with temperature and pH levels greatly affect productivity of fish. Near air-saturated dissolved oxygen concentration with maximum temperatures not exceeding $19^{\circ} \mathrm{C}$ is optimum for growth and activity of Atlantic Salmon. Extended exposure of Atlantic Salmon to dissolved oxygen concentrations below $5.0 \mathrm{mg} / 1$, temperatures above $20^{\circ} \mathrm{C}$, or various toxicants causes their reduction or elimination from the enviranment.

Dissolved oxygen requirements for Atlantic Salmon are highest during hatching and at other stages during periods of high activity, such as swiming against currents and foraging for food. The oxygen required to sustain activity varies with water temperatume and also with apparent water velocity during embryonic stages. As temperature rises, metabolic activity rises causing an increase in oxygen requirements for all stages. During embryonic development, apparent water velocities of $100 \mathrm{~cm} / \mathrm{hr}$ and above are necessary to insure delivery of coxygen to eggs and alevins which are buried within the gravel of the streambed. Spawning areas should remain free of silt since sedimentation causes reduction in apparent water velocity.

During embryonic development of salmonoids, sustained dissolved oxygen concentrations below 4 or $5 \mathrm{mg} / \mathrm{l}$ or low apparent water velocities cause retarded development, hatching of weak sac-fry, malformity, and mortality. During other stages, concentrations of dissolved oxygen below
$6 \mathrm{mg} / 1$ seriously restrict swirming ability and reduce growth. Although juvenile Atlantic Salmon are able to exist in the laboratory at dissolved onggen concentrations as low $3 \mathrm{mg} / 1$ at temperatumes of $20^{\circ} \mathrm{C}$, such low concentrations are inadequate in nature.

For good development and hatching of Atlantic Salmon, intragravel dissolved orygen concentrations should be at least $7 \mathrm{mg} / 1$ with apparent water velocities not less than $100 \mathrm{aw} / \mathrm{hr}$. If apparent water velocity is low, then an intragravel dissolved cosygen concentration at or near air saturation is nloessary for nomal development.

At parr, smolt and adult stages, nomal productivity requires dissolved oxygen concentrations of $6 \mathrm{mg} / 1$ and dbove. Minimum dissolved cosygen levels may trange betimeen 5 and $6 \mathrm{mg} / 1$ for short periods. For those portions of the fiver used during migration, sustained dissolved cosgen concentrations should be above $5 \mathrm{mg} / 1$. Dissolved coxygen cancentrations below $5 \mathrm{mg} / 1$ could produce a block to migrating salmon.

Water bemperatures are extremely fuportant to the production of healthy Atlantic Salmon. Terperatione greatly affects metabolism and generally a $10^{\circ} \mathrm{C}$ Hise in temperature doubles the coyygen consumption of salmonoids. Growth, activity and uifgrations of Atiantic Salmon are also largely controlled by anbient water temperatures which must undergo seascnal cooling before epuning and normal incubation of eggs will occur. For excmple, tenperatures in excess of about $12{ }^{\circ} \mathrm{C}$ precilude matur ration of sexual products in taults while spaming oocurs at temperatures of about $5.6^{\circ} \mathrm{C}$ to $4.4^{\circ} \mathrm{C}$. Normal growth and development of eggs does
not proceed at temperatures above $9{ }^{\circ} \mathrm{C}$. At $12^{\circ} \mathrm{C}$, at least 50% mortality of eggs can be expected, and hatching alevins will be weak or deformed. Subsequent to hatching in the spring, however, warmer temperatures are required for optimum growth of the young salmon. Optimm temperatures for best food coinsumption and growth rate of salmon parr are in a range of about $15^{\circ} \mathrm{C}$ to $19^{\circ} \mathrm{C}$. The optimm temperature for post-smolt salmon has been recorded as $15^{\circ} \mathrm{C}$ with salinities of about $10^{\circ} / 00$. Although thermal optima for the growth of adult Atlantic Salmon are not available, mature salmon apparently require much cooler water than juveniles. Adult salmon in Greenland waters have been found feeding and growing at temperatures as low as $2^{\circ} \mathrm{C}$--a temperatume known to inhibit feeding and growth of parr in flvers. Why adult salmon seem to prefer cooler temperatures is not known, but is probably related to physiological changes that occur during and after smoltification, as well as acclimation of adults to cooler sea temperatures.

Atiantic Salmon do not tolerate high temperatures, and excessive stress or mortality of salmon occurs as temperatures excoed $27^{\circ} \mathrm{C}$ $29{ }^{\circ}$ C. In addition to dissolved oxygen concentrations, principal among the factors detemining the tolerance of Atlantic Salmon to thermal elevations is the prior acclimation temperature. Lowering or raising the acolimation temperatire causes a corresponding reduction or elevation in the upper limit of themal tolerance. Salmon that are acclimated to low temperatures are particularly susceptible to death from themal elevations. Sudien $10^{\circ} \mathrm{C}-15^{\circ} \mathrm{C}$ temperatume rises will cause serious adverse effects. In the laboratory, juvenile Atlantic Salmon
acclimated to $20^{\circ} \mathrm{C}$ were just able to tolerate temperatures of $27.5^{\circ} \mathrm{C}$. it an acclimation temperature of $13^{\circ} \mathrm{C}$, however, a $14.5^{\circ} \mathrm{C}$ rise to the same temperature of $27.5^{\circ} \mathrm{C}$ produces 50 percent mortality in just under 2s hours for the same age sallooh.

In nature Àtlantićc salmó parr undergo à continual year-round process of acclimation to changing water temperatures, while aduit salmon retuming from the sea to spolin, may not fully acclimate to the warmer fresh water, and thus, would be more susceptible to death from high temperatures. Mortality of adult Ntlantic salmon from heatstroke can be expected when temperatures exceed $29^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$.

Temperatunes do not have to reach lethal levels to cause undesirable effects upori salmon poptations. Milgrations of smoits wlli cease when water temperatures exceed $10^{\circ} \mathrm{C}$, and adults may not enter Malne rivers when temperatures exceed $23^{\circ} \mathrm{C}$. Temperatures above $20^{\circ} \mathrm{C}$, however, reduce activity of adult salmoh and are not conducive to fishing. When Atlantic Salmon are subjected to such high temperatures, they will require about 10 days at feduoed water temperatures before they will be active enough to respond to angiting. In addition to these effects; temperatures in a range of doout $20^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$, although not directly lethai to Atlantic salmon, greatly Increase oxygen requirements, favor the growth of undesirable disease organisms which are rapidily letthal to salmon at high temperatures, and enhance the development of more thermal tolerant fish that replace salmon through predation and coilpetition. Maximm temperatures for rearing of juveniles and migration of adult Atlantic Salmon should not exceed $20^{\circ} \mathrm{C}$.

During fresh water stages, Atlantic Salmon in Maine are typically found in very soft waters with a total alkalinity less than 20 ppm and with a pH ranging from 5-7. In other areas, Atlantic Salmon have been found in alkaline waters with a ph above 8. Most productive populations. of fish are found in waters where the pH ranges from 6.5 to 8.5.

Salmonoids are tolerant of relatively high carbon dioxide concentration at all stages in development. However, since carbon dioxide causes an increase in the dissolved oxygen requirements, carbon dioxide concentrations should not exceed $25 \mathrm{mg} / 1$.

Threshold or incipient lethal concentrations of oopper and zinc for Átlantic Salmon parr have been recorded as $0.032 \mathrm{mg} / 1$ of copper and $0.42 \mathrm{ftg} / 1$ of zinc of a mixture containing half of these concentrations in soft water ($14 \mathrm{mg} / 1$ as CaCo_{3}). Avoidanoe by adult salmon in nature to copper and zinc pollution below lethal levels has been documented by Canadiah blologists. Utilizing the concept of toxic units to express poliution levels (toxic unit = concentration of substance actually found \div the incipient lethal cohcentration) investigators have shown that adult salmon migrating to spaning areas may be completely blocked by a level of 0.8 torde unit, while significant avoidance reactions of salmon oocur at about 0.35 to 0.43 toxic units of $\mathrm{Cu}^{2+}+\mathrm{zn}^{2+}$. In streams supporting runs of Atiantic Salmon, levels of zinc and copper pollution should be minimized as much as possible and levels not excosding 0.25 to 0.30 toxic units should not cause avoidance reactions in salmon, providing other water quality is favorable.

Information concerning the effect of toxicants upon Atlantic Salmon is limited. Based upon available data, the National Technical Advisory Committee (4) has recommended the following: Concentrations of materials that are nompersistent (half ilfe of less than 96 hours) or have noncimulative effects after mixing with receiving waters should not exceed $1 / 10$ of the 96 -hour ILm valute at tany time or place. The 24 -hour average of the concentration of such substances should not exceed $1 / 20$ of the IIm value after mixing. For other toxicants, concentrations should not exceed $1 / 20$ of the 96 -hour IIth value at any time or place and the 24 -hour average of the cohcentrations of these materials should not exceed 1/100 of the 96 -hour TLim.

Because of adverse edisting water quality, the TIm value of heavy metals, pesticides and other toxicants can be considerably lower than the estimated or anticipated concentration. Stream temperatures above $20^{\circ} \mathrm{C}$ and dissolved okygen doncentrations below 4 or $5 \mathrm{mg} / 1$ greatly increase the suscoptibility of salmon to industrial and agriculturai toxicants. For this reasoti, exdsting guidelines on safe levels of toxdcants may be inadequate in sche cases.

Table 4 in this paper, Mckee $\begin{gathered}\text { Wolf's Water Quality Criterla (42) }\end{gathered}$ and the Report of the committee on Water Quality Criteria (4) contain same good infomation on TIIM values and the recommendations on determining safe levels may be employed to determine tentative guidelines for Atlantic Salmon until further research is undertaken.

III. DISSOLVED OXYGEN RIEQUIRPMENIS

InEnoduction

Dissolved orygen requikements of Atiantic Salmon vary with the different stages of their life cycle. bissolved oxygen concentrations during embryonic stages should be near saturation. Similarly high concentrations of oxygen are necessary at the pair and adult stages during periods of high activatioh, such as swimming against currents; and foraging for food. Low concentrations of cosygen such as 3 or $4 \mathrm{mg} / 1$ are inadequate since they cause serious reduction in the activity and growth rate of salmon.

Water velocity and temperature also influenoe the dissolved orygen fequilrements fot salmoh. buring the embryohic stage, a high apparent water velocity is hecessary to carry the oxygen supply to the developing embryos which lie in the interstioes of gravel beds (redds) at an average depth of ten lhches. If the apparent water velocity is insufficient, few developing embryos will receive enough oxygen for normal fnetabolism. Tempeŕatire greatly affects the oxygen requirement during every stage of the flah's life. Oxygeh demand can be increased br decreased by correspondifig changes in water temperatures. Generally, an increase in water bemperature will raise the ariount of coxyen that is necossary to maintain proper metabolism and activity of salmon.

[^1]
Oxygen Reguirenents buring Embryonic Stages

Laboratory studies upon developing Atlantic Salmon eggs demonstrate that oxygen demand fincreases greatly with age. While working with Atlantic Salmon einbryois at constant temperature, Hayes $(1 ; 2)$ found that respiratory sates were lowest fust after fertilization and highest just pelor to hatching. other experimenters, working with Pacific Salmon enbryos, also found that increased development is directly, related to an licirease. In onggen demand (3). Thus, for salmon embryos, there is a continual increase in oxygen demand that culminates near hatchling:

Experimenters have deternuned crltical dissolved axygen coricentrations at various incubating temperatures just prior to hatching which is the most crucial perlod for the developing eggs. Below a critical dissolved oxygen concentration nomal metabolic activity of Atlantic Salmon whil be restricted. As shown in Figure 1, a, linear relationship is established when incubating bemperatures and critical dissolved oxygen ooncentrations are plotted just prior to the hatching of Atlantic saimon eggs. At a temperature of $17{ }^{\circ} \mathrm{C}$, which is substantially above nonnal incubation temperature; Atiantic Salmon eggs fust prior to hatching require minimum dissolved oxygen concentrations of $8.7 \mathrm{mg} / 1$ to maintain respiratory demands. At $9^{\circ} \mathrm{C}$, normal develogment of Atiantic salmon eggs just prior to hatching is sustained by dissolved oxygen concentrations of about $7 \mathrm{mg} / 1$. At a temperature of $6{ }^{\circ}$, the critical dissolved oxygen concentration is $6 \mathrm{mg} / 1$.

The National technical Advisory Camittee (4) recommends an absolute minimum dissolved orygen concentration of $7 \mathrm{mg} / 1$ in spawning areas of salmon and trout. This recommendation is quite consistent with the data presented in Figume 1, since embryonic development of Atlantic Salmon occurs in water temperature up to about $9^{\circ} \mathrm{C}$.

It is important to realize that near saturated concentrations of dissolved coyygen in the water directly above the stream bed may be required to sustain $7 \mathrm{mg} / 1$ of dissolved oxygen within the redds. Ecological factors such ts periphytic tegetation, slime growth, siltation, and the invertebrate population may have an oxygen demand that could seriously deplete the okigen supply of the percolating water before it reaches the indubating eggs; Oxygen depletion is especiaily high in polluted areas that contain lange numbers of invertebrates and cosygen demanding benthle depolitis.

Salmon eggs burled within the redds are entirely dependent upon the sub-surface movement of wateer to supply them with the oxygen necessary for survival and growth. High apparent water velocities are necessary to carry away thetabollc waste products in addition to delivering oxygen to saimonoid enbryos. Low apparent water velocities may result in a build-up of waste materials causing a lethal microenviromment. Wickett (6) demonstrated that even air-saturated water would not sustain embryonic life of Paclfic Salmon if the apparent water velocity were below .05 caihr. peters' (7) experiments (Table 1) with rainbow trout embryos support Wickett's conclusion that mortality

TABLEI. Trout egg mortality compared with intragravel oxygen concentrations and intragravel apparent velocilies of winter incubation temperatures Taken from Peters (7).

Station Number		Oxygen Concentrotion, PPM		Apparent velocity, $\mathrm{cm} / \mathrm{hr}$	
		Range	Average	Range	
		7.8	7.4 to 8.1	82	751090
II	39	7.8	7.3 to 8.1	61	551085
III	90	7.6	7.1 to 8.1	43	151085
IV	100	7.3	6.4 to 8.1	21	5 to 90
V	100	7.1	6.4 to 7.9	23	101085

of saimonoid embryos is affected by the apparent water velocity since rainbow trout eggs; like salmon, incubate in redds. Coble's (8) experiments have also demonstrated that mortality rates of salmonoid embryos are increased with low apparent water velocities.

Changes in stream bottam odiposition from siltation can restrict the percolation rate of water throuigh the redds. If the stream bed is heavily silted, the apparent water velocity is so drastically reduced that even air-saturated water would not produce successful hatching of salmonoids. Table 1 stiows the effect of appanent water velocity upon mortality of tadribow thout eggs placed seven inches deep within gravel tedds at Blituwatet Creek, Montana during winter conditions. The conoentrations of dlssolved oxygen within the redds (the intragravel dissolved oxygen concentrations) during the experiment were continually above $6 \mathrm{tmg} / 1$. Based on data from Table 1 and Figure 2, a decrease if apparent water velocity at each station is associated with a correspotiding lincrease in sedimentation and trout mortality. At station IIt (table 1) when the average apparent velocity is $43 \mathrm{~cm} / \mathrm{hr}$, a 90 percent finitality occurs; this velocity is insufficient to meet the oxigen demands of the developing trout embryos. At Station I, where sedimentation is minimal (Figure 2) and where the average apparent velocity is $82 \mathrm{ch} / \mathrm{hr}$ (Table 1); the mortality is estimated to be only five percent. Therefore, high sedimentation of the spamning beds reduces the apparent water velocity and decreases the supply of oxygen to the developing embryos which results in increased mortality. Low apparent water velocities could also cause
covering of the eggs by suspended sediment resulting in oxygen deficiency.

Based on the observations of Wickett (6) and Peters (7), assuming sufficient intragravel dissolved oxygen concentrations (see Figure 1), apparent water velocities greater than $100 \mathrm{~cm} / \mathrm{hr}$ may result in the successful hatching of healthy salmonoid sac-fry.
taboratory experiments on salmonoid embryos have demonstrated that the usual result of oxygen deficiency during embryonic stages is a significant reduction of successfully hatching sac-fry. In flowing water experiments with coho salmon embryos, Warren (9) demonstrated that dissolved oxygen concentrations even as high as $5 \mathrm{mg} / 1$ at a water temperature of $12.5^{\circ} \mathrm{C}$ did not produce satisfactory hatching. Garside (10) reported that extended exposure of lake trout embryos to an average oxygen concentration of $4.2 \mathrm{mg} / 1$ at a water temperature of $10^{\circ} \mathrm{C}$ resulted in high or total embryo mortality. Alderice (3) reconded that seven-day exposure of chum salmon embryos at various developmental stages at a constant temperature of $10^{\circ} \mathrm{C}$ and dissolved oxygen concentrations less than $2 \mathrm{mg} / 1$ resulted in three prominent responses: retarded embryonic development, deformed sac-fry, and mortality. The apparent water velocity for these experiments was $82 \mathrm{~cm} / \mathrm{hr}$. The median lethal dissolved oxygen concentration was estimated to be $1.2 \mathrm{mg} / \mathrm{l}$ at hatching. Silver (11) noted that all the enbryos of chum salmon and steelhead trout died after exposure to a temperature of 119 C in flowing water at a dissolved oxygen
cancentration of $1.6 \mathrm{mg} / 1$. In änother experiment, Silver raised the dissolved oxygen conoentration to $2.15 \mathrm{mg} / 1$ and obtained a successful hatching of sac-fry. However, the sac-fry that hatched were exceptionally weak and small. Such individuals would not be strong enough to survive emergence from the overlying gravel in nature. Thus, low concentrations of dissolved oxygen during embryonic development for salmonoid species result in retarded development, hatching of weak and small sac-fry; malfomity, and mortality.

Oxygen Requirements During Juvenile and Adult Stages
The concentration of dissolved oxygen that is required by freeswimming salmon is latgely dependent upon water temperature and activity of the fish. Actite salmonoids consume from three to five times the amount of oxygen ats resting £ish, while a temperature increase of $10^{\circ} \mathrm{C}$ generally doubles oxygen consumption.

Fry (12a) demonstrated the relationship of oxygen uptake and tenperature for three species be yearling trout, genus Salmo, in both active and resting conditions (see Figure 3) The oxygen consumption for either Salmo gairdnerl br salmo kamlogos ranged approximately from $60 \mathrm{cc} / \mathrm{kg} / \mathrm{hr}$ at $10^{\circ} \mathrm{C}$ to $140 \mathrm{oc} / \mathrm{kg} / \mathrm{hr}$ at $20^{\circ} \mathrm{C}$ when resting. For the same fish during periods of activity, the oxygen consumption ranged fram $235 \mathrm{cc} / \mathrm{kg} / \mathrm{hr}$ at $10^{\circ} \mathrm{C}$ to about $390 \mathrm{cc} / \mathrm{kg} / \mathrm{hr}$ at $20^{\circ} \mathrm{C}$. When Fry tested the oxygen consumption rate for salmo fario, he found that at $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ for resting fish the consumption was $60 \mathrm{cc} / \mathrm{kg} / \mathrm{hr}$ and $135 \mathrm{cc} / \mathrm{kg} / \mathrm{hr}$ respectively. The active respiratory rate at $10^{\circ} \mathrm{C}$ and

TEMPERATURE- ${ }^{\circ} \mathrm{C}$

$5{ }^{5}{ }^{10}{ }^{15}{ }^{20}-25$
TEMPERATURE $-{ }^{\circ} \mathrm{C}$

SALMO KAMLOOPS

TEMPERATURE- ${ }^{\circ} \mathrm{C}$

FIGURE 3. Relation between oxygen uptake and temperature. Taken from Fry (12\%).
$20^{\circ} \mathrm{C}$ was about $200 \mathrm{cc} / \mathrm{kg} / \mathrm{hr}$ and $350 \mathrm{cc} / \mathrm{kg} / \mathrm{hr}$ respectively. Several other experimenters have also demonstrated that the oxygen required by salmonoids is affected by temperature and activity ($12 \mathrm{~b} ; 13 ; 14$; 15; 16).

The activity of salmon can be seriously limited in oxygen deficient conditions. Table 2 gives the dissolved oxygen concentrations below which the activity of various fish, including certain salmonoids, begins to decline. To be sucoessful in a natural enviromment, salmon must be capable ô reslisting high currents, escaping fram predators, and foraging fot food. Such activities necessitate a high oxygen consumption that can be maintained only by high ooncentrations of ambient dissolved oxygen. Low concentrations of dissolved oxygen seriously festrict activity which may be measured by laboratory experiments.

Davis (17) demonstrated that reduction of dissolved oxygen causes a marked reduction in the swinming speed of juvenile ooho and chinook salmon. Oxygen concentration from saturation to levels of $7,6,5,4$, and $3 \mathrm{mg} / 1$ reduoed the mavdinum sustained swimming speeds of juvenile coho salmon by aboltt $5,8,13,20$, and 30 percent respectively. the corresponding percentage reductions of the swimming speed of chinook salmon were somewhat greatet and averaged $10,14,20,27$, and 33 percent respectively. Thus, activity as measured by swimming performance is considerably restricted at low dissolved oxygen concentrations.
tabis 2
OXXGEN CONCBNIRATIONS BEION WHICH THE ACTIVITY OF THE FISH NAMED BEGINS TO BE RESIRTCIED
taken fram Jones (16)

Kno	oxycen conctintation	Terip. ${ }^{\circ} \mathrm{C}$
coldfish	2.5 p.p.m.	20
Goldeye	9.0 p.p.m.	10
-	11.0 p.p.m.	15
Perch	7.0 p.p.in.	20
speckled trout	6-7. p.p.m.	5
......	6-7 p.p.m	10
*.6..	9.0 p.p.m	20
Lake trout (1 yr)....	abt. $2 / 3$ saturation	9.5-18
" (2 yr)....	abt. 3/4 saturation	9.5-18

Experiments by Davison (18) with juvenile coho salmon show that growth rate and conversion of food to body tissues are significantly reduced at low levels of dissolved oxygen. After five tests at oxygen concentrations of $4,5,6$ and $8 \mathrm{mg} / 1$ in $20^{\circ} \mathrm{C}$ water, the mean weight gains after approximately twenty-four days were recorded as 56,68 , 85 and 92 percent respectively. The increase in weight of each fish per gram of food consumed averaged 168, 188, 216 , and 220 mgms, respectively. warren (9) obtained results similar to Davison's and also reported that high oxygen concentrations produce the best growth rates and efficiency in conversion of food to body weight. The experiments of Davison (18) and Davis (17) Indicate that significant reduction in swimming speed and in growth tate of salmon occurs as dissolved oxygen concentrations are reduced below $6 \mathrm{tng} / 1$.

The dissolved oxygen concentration at which the activity of freeswimming salmon is completely resticted and is only capable of existence is referred to as the lifiting level, below which mortailty will occur. Limiting or survival ootioentiations of oxygen have been detemined experimentaily for striek free-swimning salmonoids at various temperatures (Table 3). The limiting oxygen concentration for Atlantic Salmon fingerlings is $1.51 \mathrm{mg} / 1$ at $15^{\circ} \mathrm{C}$ and $2.85 \mathrm{mg} / 1$ at $25^{\circ} \mathrm{C}$. For yearling Atlantic Salmon, limiting dissolved oxygen concentrations are $1.89 \mathrm{mg} / 1$ and $2.78 \mathrm{mg} / 1$ at $16^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$, respectively. For parr, the limiting oxygen concentratiohs at $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ are $2.15 \mathrm{mg} / 1$ and 2.90 $\mathrm{mg} / 1$, respectively. Although these data demonstrate temperature

TABLE 3
LTMITING OR SURVIVAL CONCRNIRAITLIS OF OXYGEN

> FOR SALMON AT VARTOUS TEMPERATURES

Species	Dissolved Oxygen mg/1	Temperature- ${ }^{\circ} \mathrm{C}$	State	Reference
Atiantic Salmon	1.51	15	Fingerling	(19)
	2.85	25	"	(19)
	1,89	16.0	Yearling	(19)
	2.78	25.0	"	(19)
	2.15	10	Parr	(5)
	2.90	20	- "	(5)
Sockeye Salman	2.4	21	Adult	(20)
Chinook Salmon	2.3-2.7	21-23	"	(20)
Pink Salmon	1.99	17	"	(19)
	3.36	25	"	(19)
Ocho (Silver) Salmon	1.2-1.24	12.1-12.7	Fry	(20)
	1.5-1.6	16	"	(18)
	1.65	20	\cdots	(18)
	1.80	22	*	(18)
	2.13*	23.5	"	(18)

[^2]effects on limiting oxygen ooncentrations, other variables such as growth, swimming, and normal overall activity as they apply to the natural enviranment are excluded. In nature, oxygen concentrations adequate to maintain productive levels of growth and activity are considerably higher than near lethal oxygen concentrations as determined by laboratory analyses. this factor is significant in evaluating the data presented in table 3. Recommended minimum dissolved oxygen requirements for salmon in as natural envirorment should be 2-3.5 mg/1 above the concentrations indicated.

Dissolved oxygen concentrations which are necessary for salmonoid fish to maintain healthy populations are high, particularly near spawning areas. Ellis (2i) demonstrated by fleld observation that streams which produce a good fish population do not have dissolved oxygen concentrations below $5 \mathrm{mg} / 1$. Trarzwell (22) noted that trout and salmon are not usually found in waters where minimum dissolved oxygen concentrations are less than $4-5 \mathrm{mg} / 1$. Havey (23) recorded that Atiantic Salmon of the Union River in Maine maintain good populations whien water temperatures are below $21.1^{\circ} \mathrm{C}$ and when dissolved oxygen concentrations are $5 \mathrm{mg} / 1$ and above. The National Technical Advisory Committee (4) recommends that for good growth and general well-being of trout and salmon, dissolved oxygen conoentrations should not be below $6 \mathrm{mg} / 1$, but in extreme cases may range between 6 and $5 \mathrm{mg} / 1$ for short periods provided that other water quality is favorable. The Committee also indicates that in streams which serve as migratory routes only, aissolved
oxygen concentrations may be as low as $5 \mathrm{mg} / 1$ for periods up to six hours, but should never be below $4 \mathrm{mg} / 1$ at any time or place. It is important to realize that sustained concentrations of oxygen below $5 \mathrm{mg} / 1$ would be inadequate for Atiantic Salmon and could cause a block to migration.

Introduction

Atlantic Salmon cannot bolerate very high temperature elevations. For example, temperatures of 27° to $28^{\circ} \mathrm{C}$ cause 50 percent mortality of Atlantic Salmon fingerlings in under five hours. Thermal requirements are especiaily exacting at early embryonic and larval stages during which time tissue and organs are not yet fully developed. With an increase in age, however, Atiantic Salmon are capable of tolerating higher temperatures (24). Themal tolerance refers to a temperatire zone in which existence is possible for extended periods and in which death is not due solely to teriperature changes. The upper limit of the thermal tolerant zone is defined by an incipient lethal temperature, beyond which mortality oocurs (25; 26).

Themal tolerance of fish is particularly affected by acclimating temperature, which is that temperatire to which fish are physiologicaily adjusted. In hatuine, acolimation is a continual year round process. For every accilmating teugerature, there is a corresponding lethal temperature defined as that temperature at which 50 percent of population will die (25 ; 26). A rise in acclimating temperature will produce a corresponding elevation in the lethal temperature until a point is reached at which the acclimating temperature reaches the lethal temperature. This point is temed the ultimate upper lethal températume $(16 ; 26)$.

Within the themal tolerant zone, there is a preferred temperature which is physiologically suited to the salmon and which provides desirable activity and growth. The preferred temperature is affected by the acclimation temperature and an increase in acclimation temperature will effect an increase in the preferred temperature (12a; 26; 27, 28).

Terperature also governs metabolism and thus affects oxygen consumption and growth rates. Temperature controls activity and movement in salmon populations. Temperature can also favor the growth and reproduction of undesirable species which grow at the expense of the salmon population.

Temperature Requirements During Embryonic Stages

Incubating temperatures of $0.5^{\circ} \mathrm{C}$ to $7.2^{\circ} \mathrm{C}$ apparently do not affect inortality in Atlantic Salmon embryos $(29 ; 30)$. In air-saturation, flowing water, continued exposure of Atlantic Salmon eggs and sac-fry in the hatchery to temperatures at or near $10^{\circ} \mathrm{C}$ caused excessive mortality (29). Markus (31) found that an incubating temperature of $12.2^{\circ} \mathrm{C}$ in air-saturated and flowing, water caused approximately 50 percent mortality of 450,000 hatchery-reared Âtlantic Salmon eggs. Most of the hatching sac-fry were either deformed or very weak. In most cases, hatching of Atlantic Salmon eggs will be unproductive when incubation temperatures exceed $9^{\circ} \mathrm{C}$

Range of thermal tolerance increases with age for Atlantic Salmon. Bishai (32) demonstrated that 50 percent mortality of Atlantic Salmon
alevins (sac-fry) reared in well-oxygenated water at 50 to $6{ }^{\circ} \mathrm{C}$ occurred after three days when water temperatures were raised to $24^{\circ} \mathrm{C}$ in six hours. At a test temperature of $20^{\circ} \mathrm{C}$, which is lethal for eggs, salmon alevins did not die, hor were there any slgns of distress.

Temperature Requirements During Juvenile and Adult Stages
Markus (31) foind that the best growth rates for hatchery reared Atlantic Salmon occurred in a temperature ranging from $15.6^{\circ} \mathrm{C}$ to $18.3^{\circ} \mathrm{C}$. Although acclimation affects thê preferred temperature, several authors indicate à final temperature preferendum exdsts which fish eventually select in a temperatime gradient regardiess of prior acclimation ($26 ; 33$). Javaid (34) working with 3.8 to 7.6 cm . underyearling Atiantic salmion in various temperatume gradients f found that at an accilmation tempertture of $15^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ the fuvenile fish initially selected temperatures of $15.7^{\circ} \mathrm{C}$ and $18.2^{\circ} \mathrm{C}$ respectively, but had a final preferendum of $17{ }^{\circ} \mathrm{C}$. It is also interesting to note that when Elson (34) subjected salmon parr to an electrical stimulus, the greatest response occurred at a temperature of $15^{\circ} \mathrm{C}$. Optinum temperatures for nomal growth of juventle Atiantic Salmon lie in a range of about $15^{\circ} \mathrm{C}$ to $19^{\circ} \mathrm{C}$.

Adult Atiantic Salmon appoat to havio optimim temperatures somieWhat lower than those for fuvienitas. Perguson (27) reported that landlocked salmon, Salmo salat sebego (exact age inknown) were found IIving in an area where the terperature ranged fram $13.5^{\circ} \mathrm{C}$ to $16.2^{\circ} \mathrm{C}$. saunders and Henderson (47) in a laboratory experiment found that a temperature around $15^{\circ} \mathrm{C}$ and a salinity near the isosmotic level
(ca. 10%) gave better food consumption and growth in post-smolt salmon than temperatures of $10^{\circ} \mathrm{C}$ or $18^{\circ} \mathrm{C}$ or salinities higher or lower than isomoticity.

Saunders also pointed out an observation of Elson who noted that when parr in the Pollett River in New Brunswick had stopped growing as shown by their scales when water temperatures fell below $4{ }^{\circ} \mathrm{C}$, salmon taken in Greenland waters at $2^{\circ}-4^{\circ} \mathrm{C}$ were still active and had not yet formed winter bands on their scales. Apparently adult salmon are capable of growth at temperatures far below what is considered optimum for parr in fresh water, and abviously are physiologically stuited to mich colder waters than are pre-smolt salmon.

Ebcessively high temperatimes couse stress in young salman and in time result in mortality. Elson* indicates that as temperatures Hise much above $27^{\circ} \mathrm{C}$ or $28^{\circ} \mathrm{C}$, salmon parr may desert their usual homes and drift downstrean; in doing so they may accumulate in cooler areas associated with inflowing springs and brooks. Figure 4 reconds the amount of time involved for a 50 percent mortality of fingerling Atiantic Salmon acclimated to various temperatures to occur. The short horizontal lines in Figure 4 indicate the incipient lethal temperature which denotes the boundary of the sone of tolerance (i2a; 12b) . At an acclimation temperatire of $20^{\circ} \mathrm{C}, 50$ percent mortality of the Atiantic Salmon occurred within six hours at $28^{\circ} \mathrm{C}$ and within

* Elson, P. F., Biological Station, St. Andrews, New Brunswick. (Personal Communication)

one hour at $29.6^{\circ} \mathrm{C}$. At an acclimation temperature of $13^{\circ} \mathrm{C}, 50$ percent mortality of the salmon fingerlings occurred within six hours at $26.7^{\circ} \mathrm{C}$ and within one hour at $28.3^{\circ} \mathrm{C}$. These data indicate that mortality of Atlantic Salmon occurs at $27-28^{\circ} \mathrm{C}$ in just a few houns, the exact time to mortality varying with the acclimation temperature.

Temperature is an important factor in the migration of salmon. Meister* of the Atlantic Salmon Sea Run Commission indicated that temperatures above $10^{\circ} \mathrm{C}$ will halt the migration of Atlantic Salmon smolts while temperatures of $12^{\circ} \mathrm{C}$ will preclude maturation of sexual products in adults. At $23^{\circ} \mathrm{C}$, Maine salmon will not enter rivers; although same movement occurs with fish in the rivers prior to the advent of the high temperature (Meister). Meister and Elsan both agree that temperatures above $20^{\circ} \mathrm{C}$ severely restrict success in fishing for adult salmon, and necessitate approoximately ten days of reduced water bemperatures before the fish will again respand to angling. Apparentily, activity of migrating adult salmon can be severely reduced at temperatures above $20^{\circ} \mathrm{C}$.

The loss of activity at temperatures of $20^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C}$ is in part a result of acclimation. Adult Atlantic Salmon returning from the cold sea to fresh water streams may not remain in estuary areas long enough for them to become acclimated to the warmer brackish and fresh water. Such salmon would be vulnerable to high themal elevations.
Huntsman (35) found that adult salmon retuming from the sea to
*Meister,
Orono, Maine. Atlantic Sea Run Commission, Univensity of Maine, (Pno, Maine. (Personal Cormmication)

Canadian streams and not fully ảcclinated to river temperatures died at $29^{\circ} \mathrm{C}$ to $29.5^{\circ} \mathrm{C}$ in a few holirs , while those salmon already in the river prior to the development of lethal temperatures died at $30.5^{\circ} \mathrm{C}$.

Stream temperatures do not have to attain lethal levels to cause undesirable effects for salmoh. Sustained temperatures in a range of $20^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$, although probably not directly lethal in themselves, favior the reproduction and survival of mone themal tolerant species that replace salmon through competition and predation. Temperatures above $20^{\circ} \mathrm{C}$ also enhance the growth of bacteria and other disease organisms that can be lethal to salmoh. Elson (see note, Page 29) indicates that in one conadian stream under study during two recent years, serious bacterial epidenics occurned during the wam, 10 w water of sumer. Pippy and Hare (48) polnted out that sustained high temperatures in a range of about $20^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ apparently contributed to: mortality of salmon froin bucterlal diseases: In addition to these : effects; temperature elevatichis cause an increase in oxygen demand (see Figure 3) while at the same time lower the amount of oxygen dissolved in water.

For good growth and fregration of salmonoids; the National Technical Advisory Committee (4) reooitnends that temperatures should not exceed a maximum of $20^{\circ} \mathrm{C}$. This teriperature meoxima is consistent with the information gathered upoch Atiäntic Salimon.

v. OIHER ENUIPONMENTAL FACTORS

忶
The term pH designates the logarithm (Base 10) of the reciprocal of the hydrogen ion concentration. For example, if the hydrogen ion concentration designated $\mathrm{H}^{+}=10^{-7}$ moles per liter, then the pH would equal 7. The National Technical Advisory Committee (4) indicates that in a pti range above 6, acids which dissociate to a high degree do not appear to be toxic to fresh-water fish; below a pH of 9 , alkalies that dissociate to a lange degree are also not considered hazandous to fish. In the same pil range from 6-9, however, weakly dissociated acids and alkalies, tf present in sufficient quantity, are toxic and can be lethal to fresh-water fish (36). Such substances, however, do not occur. naturally in lethal concentrations and are associated with industrial waste effluents. Thus, even at neutral or near neutral pH, waters may contain acids and bases which could be toxic to fish.

Fresh-water fish grow more rapidly and are more productive in water which is slightiy alkaline than water which is strongly acidic. Good well-rounded populations of fish are found normally in waters where the pH ranges from 6.5 to $8.5(21 ; 37)$; however in Maine, Atiantic Salmon are typically found in fresh water where the pH ranges from 5-7.

Carbon Dioxide
Salmonoids are tolerant of high concentrations of carbon dioxide.

Alderice (38) found that chutm salmon eggs were relatively resistant to high levels of carboh dioxide under low-dissolved oxygen concentrations. He recorded a 50 percoent mortality when the concentration or carton dioxide was ralsed to $90 \mathrm{mg} / 1$. Conoentrations of $40 \mathrm{mg} / 1$ of carbon dioxide had little effect upoh juvenile coho salmon (16). However, increases in the cartboh dioxide concentrations cause an increase in the dissolved bxygen requirements of salmonoids (16;38; 39). Carbon dioxide concentrations not exceeding $25 \mathrm{mg} / 1$ are recommended by the irational Techilcal Advisory Coninittee (4).

Threshold Concentrations of Copper and zinc
Laboratory tests carried but by Sprague (40a) in water with a total hardhess of $14 \mathrm{mg} / 1$ as $\mathrm{CaOO}_{3}{ }^{*}$. at $17^{\circ} \mathrm{C}$ clemonstrated that the incipient lethal levelst or threshold concentrations of copper and zinc sulfate solutions for juvenile Atiantic Salmon were $0.032 \mathrm{mg} / 1$ of copper alone, of $0.42 \mathrm{mg} / 1$ of tinc alone. The incipient lethäl level for muxtures of thic and opper are hall of the above ooncentrations. Similar results have been dbtalned for rainbow trout (figure 5).

In a ten-year study Saunders and Sprague (40b) analyzed avoidance reactions of spawning milgrations of Atlantic Salmon to oopper and zinc pollution from mining operations in the Horthwest Mirimachi River in

FIGURE 5 . Relation between thê hardness of the water and the threshold concentrafions of zinc, ond copper salts tor rainbow trout. Taken from Lloyd (41).

- Atlantic salmoh of North America are typically found in very soft math that hardness less than 20 ppm.
1 that leval or lethal threshold concentration, is that
* Inciplent lethal leval, or lethal threshold concentration, no langer level of the lethal identity beyond which

Canada. These observations are pertinent since they took place in the natural environment without the usual limitations inherent in laboratory experimental conditions. The authors expressed the pollution levels of copper and zinc in terms of "toodic units". The toxic unit can be expressed as the concentration of the pollutant actually found, divided by the lethal threshold oondentration abtained from laboratory experiments. A boodc unit of 0.5 wouta bê hāle as strong as the lethal threshold cancentration and a toodc unit of 2 would be twice as strong as the lethal threshold level.

During the first six yeans of study which precoded the muning pollution, 18 to 34 downstreath fetum of salnon was recorded, while in the four years following the begiming of the oopper and zinc pollution, a 10% to 228 downstredti retum of migrating salmon occurred. Avoidance reactions of adult Atiantic Salmon occurred at about 0.35 to 0.43 toxic units of $\mathrm{Cu}^{2+}+\mathrm{zn}^{2+}$. A level of 0.8 toxdc unit may cause a total block to migration. Of the salmon returning downstream because of pollution, about 311 teatscanded, 78 , were taken by fishing and 628 were not seen again. Estimated losses of the total salmon tuh were as high as 151. Anothar Interesting result that occurred after the minitrig poliution begtan wer a dildy ahd reduction of early run salmon (June-July) to the headwaters.

Levels of Pesticides for Certain Salmonoids

With the exception of, a few insecticides, there have been few research efforts to detemine the effect of pesticides on Atlantic Salimon. Laboratory research, however, has been performed with other salmonoids. Table 4 records median tolerance limits (TIm)* of three salmonoids to various pesticides. Because the values in Table 4 do not indicate maximu safe levels, concentrations of materials that are nompersistent (half life of less than 96 hours) or have nonculmulative effects after mixang with receiving waters should not exceed 1/10 of the 96 hour TIm value at any time or place. The 24-hour average of the concentration of such substances should not exceed $1 / 20$ of the rim value after mixding. For other toxicants, concentrations should not exceed $1 / 20$ of the 96 -hour 11 hit value at any time or place and the 24 -hour avarage of the concentration of these materials should tot exceed $1 / 100$ of the 96 -hour Ith after mixing. This level was established in 1968 by the National Technical Advisory Camittee (1). Die to existing stream conditions**, the suggested safe levels of toxicants may prove to be inadequate in some cases. For a nore camplete review of pesticides and their effects upon fish life, the reader may wish to refer to Mckee and Wolfe's stidy entitled Water puality criteria (42) and the Peport of the Committee on Water Quality Criteria (4).

[^3]

VI. REFERENCES

1. Hayes, F. R., "The Growth, General Chemistry, and Temperature Relations of Salmonoid Eggs." Quart. Rev. Biol. 24, 4, (1949)
2. Hayes, F. R., Wilmot, I. R., and Livingstone, "The Oxygen Consumption of the Salmon Egg in Relation to Develogment and Activity." Jour. Expt. Zoo, 116, (1963).
3. Alderice, D. F., Wickett, W. A., Brett, J. R., "Same Effects of Temporary Exposure to Low Dissolved Oxygen Levels on Pacific Salmon Eggs." Jour. Fish. Res. Bd. Can., 15, 2, (1958).
4. "Report of the Cormittee on Water Quality Criteria" prepared by the National Technical Advisory Camittee, Supt. of Documents, U. S. Gov't Printing Office, Washington, D. C. (1968).
5. Lindroth, A., "Vitality of Salmon Parr at Low Oxygen". Rept. Swedish Inst. of Fresh Water Res., Vol. 29, (1948).
6. Wickett, W. P., "The Oxygen Supply to Salmon tggs in Spawning Beds." Jour. Fish. Res. Bd. Can. 11, 6, (1954).
7. Peters, John C. "The Effects of Stream Sedimentation on Trout Embryo Survival." Bio. Prob. Water Poll. Third Seminar, Public Health Pub. No. 999-WP-25; (1964).
8. Coble, D. W., "Influence of Water Exchange and Dissolved Oxygen in Redds on Survival of Steelhead Trout Embryos." Trans. Am. Fish. Soc. 90 (1961)
9. Warren, D. F., "The Influence of Dissolved Oxygen Upon the Survival, Development, Growth, Activity and Movement of FreshWater Fishes." Dept. of Fish and, Game; Oregon State College, Prog. Rept., (1955-1957).
10. Garside, E. T., "Same Effects of Oxygen in Relation to Temperature on the Development of Lake Trout Enbryos." Can. Jour. 200., 37 (1959).
11. Silver S. J Warren, D. E, , Doudo Requirements of Developing Steelhead Trout and Chinook Salmon Embryos at Different Water Velocities." Trans. Amer. Fish. Soc.,
12. a. Fxy, F. E. J., "Temperature Relations of Salmonoids " Proc. Nat. Fish. Cult. 10th Meet., App. D., (1947).
b. "The Oxygen Requirements of Fish." Bio. Prob. Water Poll. 3rd Seminar, (1959)
13. Job, S. V., "The Oxygen Consutiption of Salvelinus fontinalis." Ontario Fish. Res. Lab., No. 73, Univ. of Toronto Bio., Ser. No. 61, (1955).
14. Chapman, W. M., "Ithe Oxygen Consumption of Salmon and Steelhead Trout." Wash. Dept. Fish., Bio. Rept. No. 37A, (1938).
15. Shaw, Paul, "The oxygen Consimption of Trout and Salmon." Calif. Fish and Game, 32, 1_{i} (1946).
16. Jones, E., "Fish and Rivier Pollution." Butterworth, Inc., Wash., D. C., (1964).
17. Davis, G. E., Foster, J., Warren, C. E., and Doudoroff, P., "The Influence of Oxygeh Concentration on the Swimming Performance of Juvenile Pacific Salmon àt Various temperatures." Trans. Amer. Fish. Soc., 92; 3; (1963) ${ }^{4}$
18. Davison, R. C. , Breese, Wo P. / Warren, C. P., Doudoroff, P. 1 "Experiments on the Dissolved Oxygen Pequirements of Cold Water Fishes." Sewage and Ind. Wastes; 31, (1959).
19. Privol 'nev, T. I_{i} ' Mrireshold concentrations of Oxygen in Watet for Fish at Various Temperatures ${ }^{\circ}$ " DOKL, IKAD, SSR., 151, 2, Jour. Wat. Poll. Con. Fedrs (1963).
20. German, E. R. "Revlew of fiferature bealing with the Oxygen Requirements of Freshwater Fishes." Calif. Inland Fish Adm. Pep. Vol. 58, (1958).
21. Ellis, M. M., "Detection and Measurement of stream Pollution." Bull. No. 22, U. S. Bureau of Fish.: Bull. Bur. Fish., 48, (1937)
22. Tarzwell, C. M. "Dissolved Oxygeti tequirements for Fishes." Oxygen Pelationships in Streans; Second Seminar, R. A. Taft San. Eng. Tech., Rep. W58-2 (1958).
23. Havey, Keith A. "Union Kiver Flish Management and Restoration." Maine Dept. of In. Fish äd Game, (Mimeographed) (1961).
24. Spaas, J. T., "Contribution to the Comparative Physiology and Cenetics of the Europeak Salmonidae. III Temperature Resistance Genetics of the European Salmanidae. III Temperatu
at Different Ages." Hydrobiologia 15, 1-2, (1961).
25. Brett, J. R., "Some Principles in the Themal Requirements of Fishes." Quar. Rev. of Bio. 31, 2, (1956).
26. Fry, F. E. J., "Effects of the Eniviranment on Animal Activity." Tive Stud., Bio. Serv., Vol. 55, (1947).
27. Fergusan, R. G., "The Preferred Temperature of Fish and Their Mid-Summer Distribution in Temperate Lakes and Streams." Jour Fish. Res. Bd. Can., 15, 4, (1958).
28. Fisher, D. C., Elson, P. F., "Selected Temperature of Atlantic Salmon and Speckled Trout and the Effect of Temperature on the Sesponse to an Electrical Stimulus." Physiol. Zoo., Vol. 23,
Fend (1950).
29. Dexter, R., "Atlantic Salmon Culture." U. S. Bur. of Sp. Fish. and Wild., (1967) . (Mimeographed).
30. Belding, D. L.; Penclor, M. J., "The Early Growth of Salman Parr in Canadian llatcheries." Trans. of Am. Fish. Soc., Vol. 62, (1932).

31 Markus, H. C., "Hatchery Peared Atlantic Salman Smolts in Ten Months." Prog. Fish. Cul., 24, 3, (1960).
32. Bishai, I1. M., "Upper Lethal Temperatures for Larval Salmonoids." Spo. Journal du Conseil, 25, 2, (1960).
33. Javoid, M. Yaqub and John M. Anderson, MThermal Acclimation and Trout S. gairdnection in Atlantic Salmon; Salmo salar and Rainbow Trout S. gairdneri." J. Fish. Res. Bd. Cañ., 24, 7, (1967).
34. Elson, P. F. and K. C. Fisher, "The Selected Temperature of the Atlantic Salmon 'and Speckled Trout and the Affect of Temperature on the Response to an Electrical Stimulus." Physiol. Zoo., 23, (1950).
35. Huntsman; A. G., "Death of Salmon and Trout with High Temperature." Jour. Fish. Res. Bd. Can., 5, 5, (1942).
36. Doudoroff, P., Katz, M., "Critical Review of Literature on the Toxicity of Industrial Wastes and Their Components to Fish." Sew. and Ind. Waste, 22, 11, (1950):
37. Tarzweli, C. Mo "Water Quallity Requirements for Fish Life." Proc. Nat. Symp. Qual. Stan. Nat. Waters, Univ. of Michigan, (1966).
38. Alderica, D. F., Wickett, W. W., "A Note on the Response of Developing Chum Salmon Eggs to Free Carbon Dioxide in Solution." Journ. Fish. Res. Bd. Can., 15, 5, (1958).
39. Basu, P., "Active Respiration of Fish in Relation to Ambient Bd. Can. 16, 2, (1959). and Carbon Dioxide." Jour. Fish. Res
40. a. Sprague, J. B.; "Lethal Levels of Mixed Copper-Zinc Solutions for Juvenile Salmon." Jour. Fish Res. Bd Can., 22, 2 (1965).
b. Sprague, J. B. and Sauiders, R. L., "Effects of Copperzinc Mining pollution on a Spawning Migration of Atlantic Salinon," Water Research, Pergamon Press., G. 13., Vol. 1 (1967).
41. Lioyd, R. "Factors That Affect the Tolerance of Fish to Heav Metal Poisoning." Bio. Prob. of Water Poll. ; Third Seminar, Public llealth Ser. Pub. No. 999-WP-25, (1962).
42. Nokee and Wolf, "Water Quallty Criterla." state Water Quality Cantrol Board, Sacramento, Callfornia; Pub. No. 3-A (1963).
43. Katz, M., "Acute Toolcity of Some organic Insecticides to Three Species of Salmonoids and the Treespined Stickleback." Trans. species of Salmanois Fish. Soc., 90, (1961).
44. Band, C. E., Lewis, R. H. F Fryer, J. L., "roxicity of Various Herbicidal Materials to Fishes." Bio. Prob. Water Poll. Second Seminar. Fish. Soc., 64, (1934):
45. Belding, D. L. " "Ihe Spabiling fablits of the Atiantic Salmon." Trans. Amer. Fish. Soc. 64 ; (1934).
46. Saunders, R^{2}. L_{i}) Gee $\mathrm{J}_{6} \mathrm{H}_{6}$, Movement of Young Atlantic Salmón in a Smail stream." Joutz Flsh. Rés. Bd. Can. 21; 1; (1964).
47. Saunders, R. L. and Hendersoh ; E. B., "Growth of Atlantic Salmon Smolts and Post Smolts in Relation to Salinity Temperature and Diet," Jour. Fish. Bd: Can., Report No, 149, (1969) .
48. Pippy, John H. C. and Háre, Gerata M., "Relationship of Rive pollution to Bacterial Infection in Salmon (Salmo salar) and Suckers (Catactoms ocimersoni) "" Trans. Amer. Fish SOC., 98 4, (1969).

VII. APPENDIX A

Life Cycle

Atlantic Salmon are an anadromous species which ascend cool freshwater rivers in order to spawn. Spaming grounds include the waters extending from just above tidal areas to headwater reaches. Spanning occurs in the fall, and the eggs hatch in the late winter or early spring. The newly-hatched salmon live in fresh water two or more years before they migrate to the sea. Here, the salmon remain for at least one year before they return to fresh water and spaining aneas. After spawning, same adult salmon immediately make their way back to sea while others remain in fresh water the whole winter before retivning the following spiling. Because of the great energy expended during the physiological preparations of reproductive angans and spawning itself, many of the salmoh which return to seal after spawning are so weak that they fall easy victims to predation and disease.

The time at which salmon migrate to spaning grounds varies with different streams. Many livers have distinct suns both in spring and fall; while in others, the migrations are limited to one peak run occurring either during the spring or fall. Regardless of when migration occurs; Atlantic Salmon spam in late October or early November in North America when the water temperatures drop to $5.6-4.4^{\circ} \mathrm{C}$ (23).

Female salmon deposit their eggs in gravel beds (redids) and cover them to average depth of ten inches. Shallow, swift-runing water aneas
with clean coarse gravel beds that contaln many stones fram 2 to 8 inches in size provide the most suitable spaming areas for Atlantic Salmon(45). This type of stream bed produces a stable environment and affords the burled eggs à constant supply of ooygenated water. Fine or loose gravel and sand is unsuitable because of its shifting nature and low porosity. Water depth of spaining areas, varying from 6 - 48 inches is also important and mist be sufficient to protect the spawning áreas from Ice and freezing (45).

The incubation of the eggs lasts about 5,-6 months depending upon temperature. The eggs will hatch in early spring when the temperatures are just beginning to rise. The newborn salmon are temed alevins or sao-fry and are so called because they hatch with their yolk-sac still attached. Once the yolk-sac is nearly absorbed, the fry or underyearlings make their way out of the over-lying gravel and begin to feed on their own.

The duration of the fresh water phase of the salman's life cycle is usuaily not langer than two or three years, and it is passed in the same ganeral area from which the salmon hatched. Juvenile salmon, temed parr, inhabit riffles and pools which contain large protective rocks under which they hide when alamed (45; 46). The parr are cham acterized by eleven black bars or "parr Marks" running vertically down the sides and by bright red spots arranged near the lateral line. Before migration to the sea, the parr undergo à process called smoltification. When the parr reach a length of about five inches, the following
spring, they lose their coloration and tum silvery on the outside. After this physiological change in preparation for life in salt water, the fish, termed smolts, are ready for their seawand migration. Smolts migrate in spring or early sumer when the water temperatures are cool.

At sea, the young salmon grow rapidly on the abundant food supply and usually gain an average of $4-5$ pounds a year (27). Although same salmon return to fresh water after spending only one winter at sea, most Maine salmon remain two winters at sea before returning to spawn. The salmon that return to fresh water after one winter are temed grilse while those that retum after two winters are termed bright or maiden salmion.

Subsequent to entering fresh water, Atlantic Salmon cease feeding and expend great amounts of energy in the ascension of rivers, and in the transformation of body material for the build-up of the reproductive argans. Lange amounts of energy are also expended during actual spawning. Without feeding, such activity causes an excess drain upan the salmon's reserve energy materials which results in a 31 to 40 percent loss of body weight. Consequently, the salman are very close to physiological death (45). Thus after spaiming, the salmon return to sea in an excessively weak condition. Such salmon are incapable of osmoregulation and are easy victims of predators and disease. Only 10% or less of the salmon return to spawn a second time.

VIII. APPENDIX B
 STANTEMENT OF INIENT
 AOOPERATIVE FOR
 FOR THE

The States of Connecticut, Massachusetts, New Hampshine and Vermont as well as the United States Bureau of Sport Fisheries and Wildlife and the United States Bureau of Camercial Fisheries agree to and support a fisheries program for the Connecticut River Basin. The following statement shall constitute the official intent of the above-named states and Federal Agencies.

Objectives

The abjectives of this program are to realize the full potential of the fishery resources of the River including both anadiomous and resident species. The intent of this program is to provide a public with high quality sport fishing opportunities in a highly uncomized area as well as to provide for the long tem needs of the population for sea food.

Anadramovs Fish

American Shad - Alosa sapidissima - Historically; the Comnecticut River supported shad runs as far unstream as Bellows Falls which lies in the River between Vermont and New Hanpshire, dpproximately 35 miles north of the Massachusetts border. The exact magnitude of the historic rum is unknown but it might have approached six million adult fish
at the mouth of the River. It probably would not be practical to restore the run to its historical nutbers but an evaluation of present spaining and nursery areas as far horth as Bellows Fails indicates that a run of up to two million fish could be realized. The two million figure is based on the production of 2.8 adult shad produced per 100 square yard unit of spaming habitat. Thie 2.8 Eigure assumes rather low production, as production as high as 6.5 adult shad per unit has been realized.

A run of two mullion shad would hequire passage facilities for one milition fish at Itolyoke; 850,000 at Tumens Falls; and 750,000 at Vemon. If the navigation dam under consideration by the Corps of Engineers is constructed at Hartford, Conrecticut; facilities would have to be provided for a run of two million shad. In addition to sustaining the futs, the passage facilities should provide ath annual harvest of 100,000 shad above Hartford, 50,000 shatd thbove tholyoke, 42,500 above Tumers Falls; and 37,500 above vemoh.

Atlantic Salmon - Salmo salar - The magnitude of the original salmoh rut in the Connecticut Piver is unknown, although there are many historical references that indicate that the fifi was sizeable and originally went as far as Beecher Falls near the Canadlan Border. Utillining a unit firea technique similar to that used with shadd and evaluating the River as far as the Cummerford Dam, reveals a potential run of adult salmon at the River's mouth of 38,000 .

This figure is based on the production of three smolts per unit area
with a survival to maturity of five percent. A realistic approach to natural production of salmon indicates that man-made dianges in the tributaries prevent the actual attainment of a natural run of 38,000 fish. However, there is no reason why the 38,000 figure cannot be realized or exceeded through a smolt stocking program.

The problem of salmon passage on the main stem does not require lengthy discussion as facilities adequate for the anticipated large shad runs will readily pass the number of salmon involved.

Other Anadramous Species - Various other species occur in the River that will benefit from a program desioned to develop shad and salmon fisherles. The only species that probably would use passage facilities to a large degree is the blueback herring, Alosa aestivalis. If a commercial fishery can be developed for this herring, passage facilities would have an additional benefit.

Pesident Species - In addition to establishing and maintaining runs of anadromous fishes, we also intend to maintain and enhance various resident species found throughout the basin'.

Benefits - It is always difficult when dealing with a resource that is not entirely commercial to establish the value of said resource. Nevertheless; àn attempt has been made although it should be realized that the value, for example, of an angler-caught Atlantic Salmion from the Comecticut River is probably far beyond anything that we could establish with simple dollars and cents.

Some data is available on the value of resident species, but more information is required and overall fishery values for the River will be subject of a later report.

Information indicates that the present average amual retail value of the shad comercial fishery is approsimately $\$ 150,000$. If economics and the market pemuitted, it appeares that this ammal value could be doubled with the increased predicted runs.

The present shad sport flshery has an annual value of $\$ 150,000$ based on 50,000 angler days. Predicted catches based on a run of $2,000,000$ fish indicate a sport's harvest of 100,000 fish in connecticut; 50,000 fram Holyoke to Tument Falls; 42,500 fram Tumers Falls to Vemon and 37,500 above Verrin. Based on current fishemnan day value of $\$ 3.00$ and ane fish per man per day, the predicted annual additional value gained fram proper management would anount to $\$ 537,000$.

A run of 38,000 salmon should produce a catch of 9,600 fish based on a 25 percent harvest. Cohsidarlng the extreme pressure that might be generated by a salman fin in the conhecticut River; this figure may be 10W. Uing the current Elgitit of $\$ 120 j^{\text {mog }}$ per angler calught salnion, the cmual value would atibint to $\$ 1,152,000$. The potentlai donbined amitual valie for hew shad and salmah sport Elsherles anounts to $\$ 1,689,000$.

Problems and iveeds - To attain the objectives that have been discussed, many problems tuust be sumbunted and mich work must be done.

The water quality of the River must be maintained and improved. All of the Connecticut River States are now active in classifying their waters as to water quality and it appears that the standards to be set will be suitable for shad and saimon. The threat of thermal pollution is a very real one, with one nuclear plant shortly going into operation in Connecticut and another one proposed at Vemon, Vemont. The Connecticut Yankee Atomic Power Company, as a condition of their canstruction permit, is presently supporting a study to determine the effects of their heated disciarge water on shad. We need more infor mation regarding themal pollution tolerance and effects on salmon and this type of work will be outlined in the Research Plan to be dram up by the Tecinical Cammittee for Fisheries Management of the Connecticut kdver Basih. Although subject to future resaarch finding, it appears that any increase in the water temperature at vemon could seriousily hinder saiman and shad restoration in the upper basin.

The conps of Engineers is cansidering the construction of a dam at Hartford for navigational purposes. The dam will create fish passage problems and perhaps more important, eliminate fishing sites and exceilent shad spaning areas. We must oppose the construction of this dall because it would be inoonsistent with the aims of the fishery restoration program.

Based on the present fragmentary data available on the Northfield Pump Storage Project, It appears that this project poses definite limitations to an anadramous fish restoration program. These limitations
involve the physical loss of eggs, larvae and young fish of both anadromous and resident species, and th orientation problem for both upstream and downstream migrants attributed to pumping large volumes of water. Studies designed to minimize the potential adverse effects to fishery resources should be undertaken in development of the design for the Northfield Pump Storage Project. In related studies; fish screens, barriers and deflectors and flow regimen must be thoroughly investigated.

If the runs outlined are to beoome a reality, there are also major problems to be solved fot the passage of both upstiream and downstream migrants over existing dâns. Larger fuhs may hequire modification of the Enfield Dam; facilities mist be developed by Holyoke, Tumers Falls and vernon for shad and a fishiway for salmon will be required at Bellows Falls. There are many unsolved ptoblems concerning fish passage facilities particularly with regard to shäd. Members of the Technical Comittee have made a start on these problems and a full-fledged research project will be forthconiting in the hear future. Cansiderable work miust be done on the various tributarlês to evaluate fish passaige needs.

Lack of low flow aughaentation is another problem, and the Technical Camittee proposes to develop these heeds and to work with the Corps of Engineers and private companies to solve this situation.

A thorough review must be made of the many proposals to build multipurpose dams in the basing particularly with regard to their effects on the fishery restoration program.

When the proposed fisheries became a reality, the four States involved will cooperate to establish regulations that will maintain the fisheries as well as assure that each State receives its just share of the fishery harvest.

There is presently a need for fishemen access sites on the River and the need will greatily increase as the program progresses. Connecticut and Massachusetts have already made progress in providing acoess and all of the states will develop a lange scale program in the near future.

We endorse and support the Technical Committee for Fisheries Management of the Connecticut River Basin as the group designated to design and implement needed research programs as well as to develop and reconmend sound fishery management procedures. The Committee shall consist of representatives from the Connecticut Board of Fisheries and Game; the Massachusetts Division of Fisheries and Game, the Massachusetts Division of Marine Fisheries, the New Harpshire Fish and Game Department, the Vermant Fish and Game Department, the United States Bureau of Sport Fisheries and Wildilfe and the United States Bureau of Camercial Fisheries.

Aprll 20, 1967
By: Director, Connecticut Board of Fisheries and Game Director, Massachusetts Division of Fisheries and wildilife Director, Massachusetts Division of Marine Fisheries Director, Liew Hampshire Fish and Game Department Commissioner, Vermont Fish and Game Department
Regianal Director, United States Bureau of Sport Fisheries
and Wildlife and Wildlife
Regional Director, United States Bureau of Commercial
Fisheries Fisheries

APPENDIX V

THE ECONOMIC BENEFITS OF THE RESTORATION OF ATLANTIC SALMON TO NEW ENGLAND RIVERS

by
David L. Kay, Tommy L. Brown, and David J. Allee November 1987

Human Dimensions Research Unit
Department of Natural Resources
New York State College of Agriculture and Life Sciences Cornell University, Ithaca, New York

APPENDIX V

Table of Contents

Page
Introduction 1
Program Benefits 3
Comparisons with Wildife Valuations in Other Studies 6
Program Costs 6
Description of Questionnaire Responses 8
Respondent demographics 8
Respondent outdoor recreation experience and familiarity with Atlantic Salmon 10
Reasons for interest in Atlantic Salmon 11
Alternative Calculations of Benefit 12
Summary and Conclusions 13
Bibliography 14
Appendix I: Mail Questionnaire 15
Appendix II: Nonresponse Bias 26
Appendix III: Nonrespondent Follow-up Questionnaire 36
APPENDIX V
List of Tables
Table Title Page
Average willingness to pay for Atlantic Salmon Restoration: In addition to fishing license fees 4
Average willingness to pay for Atlantic Salmon Restoration: Maximum fishing license fees 6
Estimated costs of Atlantic Salmon Restoration on New England Rivers 7
New England population proportions distributed by state, 1984 US Census figures and 1986 survey responses 8
Age of respondents 9
Reasons for not buying a Maine salmon license for people who knew of its existence 11
7 Median and mean willingness-to-pay estimated from equations predicting the probability of agreeing to pay for Salmon restoration 13

Introduction ${ }^{1}$

New England is graced with close to three dozen major rivers or river systems, each of which empties into the Atlantic Ocean. At the time Europeans began to colonize the region, wild salmon populations were plentiful in at least 28 of the rivers, ranging from the Housatonic River in Connecticut north to the Aroostook River in Maine. It has been estimated that the number of salmon entering New England rivers annually at that time might have been greater than 300,000 individual fish. ${ }^{2}$

Two and a half centuries of human population growth and economic development devastated New England's Atlantic Salmon population. Overfishing, water pollution, and (above all else) dam construction accounted for the salmon's retreat. Were Atlantic Salmon to be restored now to their full historical range, upstream fish passage facilities would have to be provided at a minimum of 65 dams, and downstream fish passage facilities at almost 100 dams. ${ }^{3}$

Today only seven of the original twenty-eight Atlantic Salmon rivers support fairly stable but small wild Atlantic Salmon populations. Adult salmon in varying numbers return annually to eight additional rivers. The total number of salmon returning to all New England rivers adds up to less than 7,000 fish. Of these, only about 1,000 are not of hatchery origin. 4

Atlantic Salmon restoration activities were first initiated well over a century ago, and revitalized with the formation of the Maine Atlantic Salmon Commission in 1947. Since then, state and federal agencies have coordinated efforts with private sector groups to promote, instigate, and explore the feasibility of a regional restoration program. Between 1967 and 1983 over 76 million dollars were spent on restoration efforts in New England. Given the fruits of these accumulated expenditures, the U.S. Fish and Wildlife Service believes the feasibility of the Restoration Program has now been demonstrated. However, the costs of a planned 25 years of further restoration activities exceed $\$ 100$ million. ${ }^{5}$

The Fish and Wildlife Service is poised to make a decision about the future of the Atlantic Salmon Restoration Program. Either substantial restoration efforts will continue as planned, or the Program will be cut back to minimum levels of legislatively mandated activity. Although many factors will influence this decision, it must ultimately rest on some

1 Financial support for this study was provided by Region Five of the U.S. Fish and Wildlife Service via Cooperative Agreement 14-16-0091553, Work Order No. 5 with the Cooperative Fish and Wildlife Research Unit, Cornell University.

2 US Fish and Wildlife Service, 1984, pp. 9-10.
3 Ibid, p. 28.
4 Ibid, p. 9.
5 Ibid, p. 27.
comparison of the advantages and disadvantages, or costs and benefits, of the alternatives.

The costs and benefits of each alternative can and should be broadly defined by the Fish and Wildlife Service. Nevertheless, it is common to consider costs and benefits within the comparatively restricted vocabulary of economics. While this vocabulary necessarily distorts or excludes consideration of some deeply held values that are important to a comprehensive assessment of Atlantic Salmon restoration, it does permit an important level of argumentation in the persuasive language of money. The strength of an economic cost-benefit analysis is that it can reduce a complex set of economic relationships to a single decision parameter. This strength can be a weakness to the extent that the single parameter belies the richness of projection, analysis, assumption, judgment and prejudice that supports it.

The practice of conducting formal economic cost-benefit analyses of public investments has become increasingly commonplace, and has indeed been required for most federal programs since Executive Order 12991 was issued in 1981. But public programs that involve the protection or preservation of natural resources (e.g. the Atlantic Salmon Restoration Program) are of a class that poses special conceptual and practical difficulties for cost-benefit analysis. Because the economic "good" in question is not (and possibly could never be) traded in an established marketplace, there is no readily available economic measure of its value (e.g. market price). Thus, even though the dollar costs of investing in preservation or restoration activities may usually be estimated with some degree of precision and confidence, the measurement of benefit has been more difficult and more controversial. "Contingent valuation" methods address this difficulty.

A form of economic cost-benefit analysis using contingent valuation techniques has therefore been applied to the decision facing the Fish and Wildife Service about the Atlantic Salmon Restoration Program. The contingent valuation methodology used in this study is an economic tool that has recently received a great deal of scrutiny and growing acceptance by the economics profession. It is the only method that can assign a "total economic value" to projects like the Atlantic Salmon Restoration Program. ${ }^{6}$ Contingent valuation methods are based on questionnaires and survey responses to direct questions, and hence display many basic presumptions and assumptions more transparently than other methods economists normally apply.

6 This measure of total economic value is grounded in a theory of individual preference. The measure represents - at least theoretically the maximum amount of money which an individual would be willing to sacrifice rather than do without the Atlantic Salmon restoration program. Thus, any value the individual can translate into a maximum "willingness-to-pay" will be counted. The values are total because they include value that may be based in current or prospective use (e.g. consumer surplus and option values, respectively) plus any value the individual may place on Atlantic Salmon that may be wholly independent of use of the resource (eg. "existence value"). Traditional benefit measures, based on estimated areas under a demand curve, account only for consumer surplus.

The purpose of this paper then is to report on estimates of the public value, or benefits, that would be associated with continuation of the restoration program. Numerical estimates of benefit will be presented first, together with some estimates of cost. It is clear, even under moderately conservative assumptions, that the total economic benefits of Atlantic Salmon restoration outweigh the costs. 7 The questionnaire sources and methodology used to develop the benefit estimates are described next, followed by a brief discussion of their validity.

Program Benefits

The benefits of the Atlantic Salmon Restoration program were calculated from a survey of New England households. After being presented with some initial information, questionnaire respondents were asked whether or not they "cared one way or the other whether there are Atlantic Salmon in any New England rivers". It was presumed that persons answering "No" to this question would place zero economic value on the restoration project. Everyone answering "Yes" to this question was asked to estimate the maximum amount they would be willing to pay in order to ensure that Atlantic Salmon would be found in the fourteen New England rivers primarily targeted by the Atlantic Salmon Restoration Program. ${ }^{8}$ Persons who said they expected to someday fish for Atlantic Salmon were asked to express this value in two parts. First, they were asked about the most they would be willing to pay for an Atlantic Salmon fishing license valid only for these fourteen rivers. Second, if they noted that the economic value of finding Atlantic Salmon in those rivers exceeded the maximum amount they were willing to pay for a fishing license, they were asked how much additional money they would be willing to pay through other means (e.g. increased taxes) for continued restoration.

Persons who indicated that they had no intention of ever fishing for Atlantic Salmon were asked only to estimate the maximum amount they would have been willing to pay for restoration through increased taxes, electric bills, or other such payment vehicles.

A surprisingly large proportion (82%) of persons responding to the mailed questionnaire noted that they "cared" whether Atlantic Salmon were found in New England rivers. However, a nonrespondent follow-up survey

7 This does not necessarily mean that there is an economic imperative to continue this project, since an agency with limited funds might determine that other projects were even more worthy of investment. No attempt has been made to compare expenditures on Atlantic Salmon restoration with other project choices.

8 See map, Appendix I. The Fish and Wildlife Service asserts that, with continued restoration effort, Atlantic Salmon can be successfully reestablished in all fourteen streams within a 25 to 50 year period. The minimally mandated levels of restoration (including some Federal support of state fishery agencies and certain administrative activities) would be required to sustain existing populations in a few of the seven other rivers shown, given that state restoration efforts also continued.
revealed that the mail questionnaire was more likely to be returned by persons who care about Atlantic Salmon. On the basis of the nonresponse analysis, a very conservative adjusted proportion of persons who "care" about Atlantic Salmon was estimated to be $58.3 \% .^{9}$

Not everyone who cares about Atlantic Salmon was willing or able to sacrifice money to further the restoration program: 43\% of those "caring" respondents expecting never to fish; 24% who might someday fish; and 6% of those certain they would someday fish for Atlantic Salmon on the 14 rivers in question did not express a positive willingess to pay.

Table 1. Average willingness to pay for Atlantic Salmon Restoration: In addition to fishing license fees.
Will respondent
fish for AS?

Certainly will
Might
Probably won't

Mean WTP
$\$ 31.93$
$\$ 10.81$
$\$ 27.45$

Respondents who care about AS restoration

Total Willing-ness-to-pay
(Millions)
$\$ 13.6$
$\$ 8.5$
$\$ 27.9$
SUM $\$ 50.0$

As shown in Table 1, given that a respondent said he or she cared about Atlantic Salmon, the respondents expecting to "certainly fish" for Atlantic Salmon someday were willing to pay an average (inclusive of the zero values just noted) of $\$ 31.93$ above and beyond their maximum willingness to pay for a fishing license. Persons who said they "might" fish for Atlantic Salmon someday said they were willing to pay for an average of $\$ 10.81$ above and beyond their maximum willingness to pay for a fishing license. Persons who were not expecting to ever fish for Atlantic Salmon were willing to pay an average of $\$ 27.45$ in increased taxes or other revenues. 10

9 This assumes that persons about which no information was available (either because they could not be reached or would not cooperate) did not care about Atlantic Salmon. Appendix II has details of the nonresponse analysis. A second conservative assumption about the benefit estimates is that the sample was restricted to New England residents. This effectively assumes that no one who lives outside this region is interested in New England's Atlantic Salmon. This is assuredly an inaccurate simplification.

10 The willingness to pay asked about was for a maximum one time payment. This payment could be thought of as a. "present value" that would be equivalent to a stream of annual payments that have been discounted to the present (see section on costs below).

Extrapolating from census reports, we estimate that there are $4,442,522$ occupied households in New England 11 We estimate that 86% of these households were in the sampling frame, 12 and that all of the uncovered households have zero willingness to pay for Atlantic Salmon restoration. This implies that 2,227,392 households ${ }^{13}$ "care" about Atlantic Salmon restoration. The total willingness to pay for Atlantic Salmon is then found by combining this information with that in the first two columns of Table 1 .

The data presented in Table 1 do not include those values elicited about willingness to pay for Atlantic Salmon licences. Such values were asked of respondents who indicated they certainly would, or might, someday fish for Atlantic Salmon. These respondents were asked to predict the maximum amounts they would pay for a license that allowed them to keep no salmon, one salmon, five salmon, ten salmon, or more than ten salmon. The survey informed respondents that the state of Maine currently sells Atlantic fishing licenses, with an annual limit of five fish, at a cost of $\$ 10$ for in-state residents and $\$ 30$ for out-of-state residents. The averaged maximum amount that these respondents suggested for any of the five licenses is reported in Table 2.14

[^4]12 The 1980 Census indicates that 95.48 of New England households have telephones. In 1973, it was estimated that 14.7% of New England households with phones had unlisted numbers. This is lower than the national average of 17.8% (Blankenship, p. 41). These figures suggest that about 81\% of New England households have a telephone or a listed number. However, our sample was drawn from a commercially supplied phone list supplemented by auto registration that covers 86% of all households nationally (Survey Sampling, Inc.). We adopt the 86% figure as a seemingly conservative approximation for New England.
1358.3% who "care" * 86\% coverage * 4,442,522.
14 These numbers are also conservative. Respondents were actually asked to give the maximum amount that they would be willing to pay annually over a three or five year period in order to reserve an Atlantic Salmon license at the end of that period. Following Brookshire, Eubanks and Randall, this approach was adopted to 1) try and minimize the conceptual possibility of "free riding", and 2) try and allow more time for continued restoration activities that might enable license limits to be legitimately raised above the current level of 5 salmon per year. The numbers reported in Table 2 used only a single year's payment. Using this figure is equivalent to discounting payments from years two and up at 100%. This is done on grounds of conservatism and because there are indications that the three or five year payment mechanism was not understood by some respondents.

Table 2. Average willingness to pay for Atlantic Salmon Restoration: Maximum fishing license fees.

Will respondent	Mean
fish for AS?	WTP
Certainly will	$\$ 31.92$
Might	$\$ 22.55$

Respondents who
will fish for
Atlantic Salmon
35.1%
64.9%

Total Willing-ness-to-pay
(Millions)
$\$ 13.6$
\$17.7

SUM $\$ 31.3$

The grand total willingness to pay for Atlantic Salmon restoration is the sum of the license fee figure from Table 2 and willingness to pay other increased fees from Table 1.15 This grand total, at $\$ 81.3$ million, exceeds the estimated costs (see below) of continued restoration with adoption of any rate of discounting future expenditures that exceeds three percent. ${ }^{16}$ Given that the benefit estimates have many conservative assumptions built into them, the economic costs of Atlantic Salmon Restoration appear to be clearly less than the benefits.

Comparisons with Wildlife Valuations in Other Studies

The results for mean willingness-to-pay appear to be in the range found by other researchers using a variety of contingent valuation techniques to estimate the economic value of wildife. Brookshire, Eubanks and Randall found a range from $\$ 9.70$ to $\$ 29.16$ for mean bids big game hunters were willing to pay for grizzly bear and bighorn sheep hunting licenses under various conditions; while non-use related mean bids ranged from $\$ 6.90$ to $\$ 24.00$. Boyle estimated mean willingness-topay bids for bald eagle preservation between $\$ 10.62$ and $\$ 75.31$; while estimated mean bids for preservation of a less popular animal, the striped shiner, were close to $\$ 5.00$. Other studies of the economic value of Canada Geese (Bishop, Heberlein, and Kealy) and of elk (Brookshire, Randall, and Stoll) found mean bids that are generally bracketed by this range.

Program Costs

The economic costs considered for the Atlantic Salmon Restoration program are of three varieties. First, there are the construction costs associated with building upstream and downstream fish passage facilities. These were assumed to be incurred in the single year in which the Fish and Wildife Service plans to construct each fish passage facility.

15 The validity of this summation depends on the extent to which the nonangling valuations reported by anglers are truly increments to their willingness to pay for a fishing license.

16 The official discount rate for federal water and land related resource projects during fiscal year 1986 was $85 / 8 \%$ (Water Resources Council).

Table 3. Estimated costs of Atlantic Salmon Restoration on New England Rivers.

Value of foregone electricity production
(Total of 313,000 Megawatt-hours between 1986 and 2036)

	Dollar value at 12 cents
piscount	
Rate	kilowatt-
	(millions of
	hour

> Dollar value
> at 9 cents
> per
> kilowatt
> hour
> (millions of
> 1986 dollars)

Combined construction, operation and maintenance
costs for fish passage
facilities on New England rivers (1986 to 2036)
(millions of 1986 dollars)
\$38.4
1\%
2\%
3\%
4%
5%
6%
7\%
8\%
9\%
10\%
$\$ 29.5$
\$23.1
\$18.5
\$15.0
\$12.4
$\begin{array}{ll}\$ 10.5 & \$ 7.9\end{array}$
\$28.8
$\$ 109.7$
$\$ 22.1$
\$ 93.5
\$17. 3
\$ 81.2
\$13.9
\$ 71.6
\$11.2
\$ 64.0
\$ 57.9
$\$ 8.9$
$\$ 7.7$
\$ 6.7
15%
$\$ 5.9$
$\$ 3.4$
$\$ 6.7$
\$ 52.8
$\$ 5.8 \quad \$ 45.1$
\$ 48.6
$\$ 5.0$ \$ 42.0
\$ 4.4 \$ 39.3
\$ 2.6
$\$ 29.9$

Second, there are annual operating and maintenance (O\&M) costs of each facility. These costs were assumed to be incurred each year following the year of fish passage construction through the end of a fifty year program period (ie. the year 2036). Third, there is the cost of foregone hydroelectric power that is incurred because the fish passages must divert some water around the turbines. These costs were assumed to begin the same year as construction begins, whether for an upstream or downstream passage. 17

The program cost sensitivities to varying rates of time discounting are detailed in Table 3. All estimates of construction and $O \& M$ costs and

17 Although upstream passages normally divert more water, some water is required for downstream passages. Upstream and downstream passages are not necessarily planned for the same year at each dam. Since the estimates of annual foregone megawattage did not distinguish between upand downstream facilities, the annual energy loss was conservatively assumed to begin at the date of construction of the first type of fish passage. A high value of 12 cents per kilowatt-hour was applied to the energy losses. This is a penny or so higher than the current highest marginal residential electricity prices in New England. (Gene HeinzeFry, personal communication; see also Heinze-Fry, 1984.)
annual foregone megawatt-hours were provided by the U.S. Fish and Wildlife Service for each dam, as was a timetable for implementation.

Description of Questionnaire Responses

The contingent valuation estimates were derived from a questionnaire that collected much related information besides that already reported. In the following discussion, some of this information is presented and compared where possible with known characteristics of the New England population from which the questionnaire sample was drawn.

The questionnaire was divided into six sections. 18 The first section asked several questions regarding the familiarity of the respondent with Atlantic Salmon, and also asked for basic fishing and outdoor recreational experience. The second section provided a brief (two paragraph) description of the situation and history of Atlantic Salmon in New England. It also stated that the Atlantic Salmon Restoration Program would 1) leave the fish in only 7 of the smaller Maine rivers if reduced to minimally mandated levels, or 2) eventually secure a salmon population in 14 additional New England rivers if restoration were continued. A map detailed the rivers affected. The third section asked respondents whether they care one way or the other that Atlantic Salmon can be found in New England rivers, and if so, why. The fourth and fifth sections separated probable salmon anglers from probable non-anglers, and provided the core of the contingent valuation information discussed previously. Anglers were presented more detailed information about the purchase of several types of fishing licenses, then queried as to their willingness to purchase such licenses. Nonanglers, and anglers whose economic self-valuation of Atlantic Salmon exceeded their willingness to pay for a fishing license, were asked similar contingent valuation questions using "payment vehicles" other than a fishing license. The final section asked respondents a standard series of demographic questions (age, sex, income, etc.).

Respondent Demographics

In 1984 the 12.5 million residents of New England were distributed in households across the six states of the region as shown in Table 4. As can also be seen from Table 4, this distribution is closely reflected in the questionnaire responses.

Table 4. New England population proportions distributed by state, 1984 US Census figures and 1986 survey responses.

$$
\text { State } \quad \text { Census (1984) Survey (1986) }
$$

CT	25.0%	23.0%
ME	9.1%	11.8%
MA	46.2%	46.5%
NH	7.7%	9.0%
RI	7.7%	6.3%
VT	4.2%	3.5%

[^5]Although just over half of the total New England population is female, 77% of the respondents to the mail questionnaire were male. The primary reason for this difference is that questionnaires were addressed to the household member in whose name the telephone was listed. These persons are overwhelmingly male. Since males tend to be more interested in fishing than are females, it is also possible that some females passed questionnaires on to more interested household males.

The 1980 Census figures show mean New England household sizes to have ranged from 2.7 persons per household in Rhode Island to 2.76 persons in Connecticut. The Atlantic Salmon survey results indicate an overall New England average household size of 2.9 persons (68% of households are comprised of two or fewer persons). The small positive difference may well reflect the "baby boomlet" that has gathered force in the seven years separating the surveys.

The age of survey respondents is presented in Table 5. The average age of the respondents was 46 years (median of 43). The median age of New Englanders in 1980 was 31.2 years. Respondent ages are much greater than for the population as a whole for obvious reasons: children and young people are unlikely to have their own telephone and hence are not included in the directories from which the sample was drawn. Census data on household heads only shows an age distribution closer to that found in the sample. Of course, it makes most sense anyway to direct questions regarding willingness to pay for salmon restoration at non-dependent adults.

Table 5. Age of respondents.

Age group

Over 70 years	8.1
66 to 70 years	6.4
31 to 65 years	67.3
19 to 30 years	16.9
18 years or less	1.3

Even after adjusting for the observed nonresponse bias (see Appendix II), the survey results show that substantial proportions of the sample were fairly well educated professionals with sizable household incomes. Just under two fifths (39\%) had obtained a college degree, which was slightly more than the 37% who had terminated their educations at or before their high school graduation. The remaining 24% finished some college.

Similarly, one quarter of the responding New Englanders could be classified as managers or professionals. A second quarter of the sample noted that they were already retired. The remaining half of the respondents were engaged in a variety of occupations, though approximately 4% said they were unemployed.

Over a fifth of respondents (21\% - unadjusted for nonresponse bias) answering the income question reported total 1985 household incomes of
$\$ 50,000$ or greater. A similar proportion (23.7\%) reported annual incomes under $\$ 20,000$. The median 1985 household income reported by survey respondents was in the range between $\$ 30,000$ and $\$ 39,999$.

Respondent outdoor recreation experience and familiarity with Atlantic Salmon

Salmon are a popular and well known fish, and the Atlantic Salmon Restoration Program is one which is recognizably of general interest. 19 Still, an unexpectedly high 69% of mail questionnaire respondents claimed they knew even before receiving our survey that Atlantic Salmon could be found in some New England rivers. 20 Furthermore, just over half of the respondents said they had personally seen some kind of salmon at least once in their lives. Of this half, most had viewed salmon at a visit to some kind of special observation center such as a dam or museum, but almost as many had seen salmon while fishing (not necessarily for salmon).

Many respondents (22\%) had fished specifically for some kind of salmon at one time or another. While the majority of these salmon anglers had fished for either coho or chinook or other kinds of salmon, approximately 7% of all survey respondents said they had themselves fished for Atlantic Salmon. Furthermore, 34% of the respondents had eaten some kind of salmon that "they or someone else had caught while fishing for sport". 21

Since there were only a few thousand Atlantic Salmon licenses sold in 1986 by the state of Maine, it was a fair assumption that few or none of the randomly selected New England residents would have actually purchased one of these licenses. In fact, only 30% of the respondents explicitly expressing an interest in fishing for Atlantic Salmon someday were even aware that it was possible to buy a Maine fishing license for Atlantic Salmon. The persons who were aware were asked why they had not purchased a license. Table 6 lists the reasons given. Note that distance from home was by far the most common, and that as more rivers are restored, these distances will decline for many New Englanders.

When asked about general outdoor recreation activities in 1986 , over one-third (34%) of the respondents indicated that they had engaged in some kind of freshwater fishing during the year. A somewhat smaller proportion (28\%) had enjoyed saltwater fishing during the year, while 13%

19 The New York Times, for example, carried several general interest stories on the restoration efforts during the course of this research (see July 27 th, 1986 and January 25, 1987 papers).

20 It was not possible to adjust for suspected nonresponse bias to this question and many of the other questions next discussed, except as noted.

21 Less than half of these had caught the fish themselves.

Table 6. Reasons for not buying a Maine salmon license for people who knew of its existence.

COST OF LICENSE	19%
DISTANCE OF RIVERS FROM HOME	68%
SCARCITY OF SALMON IN RIVERS	31%
SIZE OF SALMON	7%
LICENSE LIMITATIONS ON FISH	5%
COST OF GEAR	11%
CROWDING AT FISHING SITES	34%

had hunted in 1986.22 Forty-four percent of respondents had been camping or hiking during the year, and a substantial majority of 718 had been boating or swimming in lakes, rivers or the ocean in the past year.

Respondents were asked to describe the type of area in which they lived. Approximately one-fifth of them said they lived in large cities (primarily Boston), and slightly less than a fifth in the suburbs of large cities. An additional fifth of the respondents said they lived in small cities, while the largest single proportion of the New England respondents (about a third) said they lived in small towns. Finally, the remaining tenth classified their surroundings as rural.

Reasons for interest in Atlantic Salmon

Respondent who indicated that they care about Atlantic Salmon restoration were asked additional details about their interests in the fish. The vast majority (918) had no special interest in any smaller subset of the 14 rivers included in the restoration program. Of the few who did name specific rivers, the Connecticut River was most often mentioned by far. Similarly, 83% of respondents said their interest in Atlantic Salmon was neither more nor less than in other wildlife. These results intimate that some of the value of Atlantic Salmon that was developed earlier in this report might also be at least partly a proxy measure for willingness to pay for wildlife preservation in general. ${ }^{23}$

Less than one-third of the respondents who cared about Atlantic Salmon said they expected to personally see or fish for them someday.

22 Statistics from the 1980 National Survey of Fishing, Hunting, and Wildlife Associated Recreation showed approximately 760,000 exclusive freshwater anglers over 16 years of age, about 489,000 saltwater anglers, and about 507,00 anglers in both salt and freshwater. The data show that the number of hunters was about one-third the number of anglers. (Tables 43 and 45)

23 When asked to list something of more or less equal value to Atlantic Salmon upon which they already had spent money, most respondents did not answer. Of the 31% who did, about one fourth of them made comparisons to other fish or fishing expenditures, another fifth made comparisons to other kinds of wildlife expenditures, while another fifth gave answers in a more general conservation or environmental category.

However, more than three-fourths said they would be pleased to know that Atlantic Salmon could be found in New England rivers even if they never did see or fish for salmon themselves. Just as many (over three-fourths) agreed with the statement that, "I think the return of Atlantic Salmon is an important sign that river pollution has been cleaned up". And only slightly fewer (73%) felt that there was a need to act on restoration now for the benefit of future generations of people. A lower proportion, but still the majority (61\%), agreed with the statement that, "I think that Atlantic Salmon should be returned to New England rivers to restore the lost balance of nature".

Alternative Calculations of Benefit

An attempt was made to validate the estimates of Atlantic Salmon valuations reported in Tables 1 and 2 through alternative calculations. Instead of calculating mean willingness-to-pay from the highest values reported by survey respondents, related calculations were derived from a "Yes/No" question. Questionnaire recipients were asked whether they would be willing to pay a certain preselected dollar amount for Atlantic Salmon restoration. The dollar amount selected varied across individuals. Hanneman (1985) has hypothesized that individuals are more likely to be able to answer a yes/no question than to give a specific maximum figure. This type of question also avoids the possibility of starting point bias, where respondents anchor their maximum answers to the initial dollar figure presented them. Bishop and Heberlein (1979) first implemented this procedure, while Hanneman (1984a) has developed it in a utility-theoretic framework.

As suggested by these authors, logistic regression was used to predict how the probability of being willing to pay for restoration varies with the dollar amount presented to the respondent. The estimated logistic equation serves as the basis for calculating willingness-topay. 24 As can be seen from Table 7, the dollar values that are generated by this process are higher than shown in Tables 1 and 2.25 The values in Tables 1 and 2 are preferred only on grounds of developing a conservative estimate of benefits.

24 Calculations of mean and median willingness to pay depend upon the explicit or implicit assumption of a particular utility function. The values reported in Table 6 implicitly assume a simple utility function that is linear in income and a constant. Hanneman (1984a) shows that under this assumption the median and mean are equal.

25 All respondents had the opportunity to answer the willingness to pay questions in the discrete choice form and then as a maximum value. In a number of cases (37-or about 7% of all respondents) people agreed to pay an amount that was higher than the maximum bid they then entered in the following question. In about half as many cases (20) people refused to pay an amount that was lower than the highest amount they subsequently entered. In this sense, more people revised their bids downwards than upwards when given a chance to reconsider their answer to the question in the yes/no format.

Table 7. Median and mean willingness-to-pay estimated from equations predicting the probability of agreeing to pay for Salmon restoration.

Median and mean payment
Willingness topay for a special licence
$\$ 43.25$ allowing five salmon to be kept

Willingness to pay increased taxes or $\$ 40.44$ other fees to help restore Atlantic Salmon

The measurements of willingness to pay presented earlier presume that New Englanders must purchase, in effect, the right to enjoy the benefits of Atlantic Salmon. An alternative, and equally valid, microeconomic perspective starts from the presumption that New Englanders begin with the right to enjoy the benefits of Atlantic Salmon in the region's rivers. From this perspective, the value of the restoration program must be measured as the minimum payment that New Englanders will accept (eg. in tax savings), on average, to forgo successful restoration. Note that values are not constrained by income here. Empirical estimates of "willingness to sell" typically yield values that are an order of magnitude greater than that of payments. ${ }^{26}$ They are also more difficult to assess because it is harder to present a realistic or believable contingent situation in which repondents would sell their "rights". Although no dollar estimate of willingness to sell will therefore be reported, it will be noted that only 5 out of 364 relevant respondents said they would rather take the dollar savings offered (which ranged from \$1 up to $\$ 600$) in return for discontinuation of the Atlantic Salmon Restoration Program.

Summary and Conclusions

The data which has been reported reveals a strong and widespread interest in Atlantic Salmon restoration throughout the New England area. The benefit calculations indicate that this interest translates, at least within the artificial context of the contingent valuation questionnaire, into a substantial dollar value. Because even conservative estimates of this dollar value exceed, when expanded over the New England population, the Fish and Wildlife Service's estimates of program costs, it can be concluded that there are economically as well as politically convincing grounds for continuation of Atlantic Salmon restoration in New England.

[^6]
Bibliography

Bishop, Richard C. and Thomas A. Heberlein. 1979. Extramarket Goods: Are Indirect Measures Biased?" Agricultural Economics. 61 (December):926-930.
"Measuring Values of American Journal of

Bishop, Richard C., Thomas A. Heberlein, and Mary Jo Kealy. 1983.
"Contingent Valuation of Environmental Assets: Comparisons with a Simulated Market." Natural Resources Journal. 23 (July):619-633.

Blankenship, A. B. 1977. "Listed Versus Unlisted Numbers in Telephone Survey Samples", Journal of Advertising Research. 17(February):41.

Boyle, Kevin J. 1985. Essays on the Valuation of Nonmarket Resources: Conceptual Issues and Empirical Case Studies. Thesis. University of

Brookshire, David S., Larry S. Eubanks, and Alan Randall. 1983.
${ }^{\text {"Estimating Option Prices and Existence Values for Wildlife Resources." }}$ Land Economics. 59 (February):1-15.

Hanneman, W. Michael. 1984a. "Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses. American Journal of Agricultural Economics. 66 (August):332-341.

Hanneman, W. Michael. 1984b. "Willingness to Pay and Willingness to Accept - How Much Can They Differ?". Working Paper No. 328. Giannini Foundation of Agricultural Economics, University of California.

Hanneman, W. Michael. 1985. "Issues in Contingent Valuation Studies". 14(April):5-13.

Heinze-Fry, Gene R. 1984. The Economics of Home Solar Water Heating. A.E. Research 84-12, Cornell University, Ithaca, NY.

US Bureau of the Census. "Summary Characteristics for Governmental Units and SMSA's", 1980 Census of Population and Housing. Washington, DC.

US Bureau of the Census. "Local Population Estimates", Current Population Reports. Washington, DC.

US Fish and Wildlife Service. August 1984. Draft Environmental Impact Statement for the Restoration of Atlantic Salmon to New England Rivers. Newton Corner, Massachussetts.

US Fish and Wildlife Service. 1980 National Survey of Fishing, Hunting, and Wildlife Associated Recreation. Issued 1982. Washington, DC.

$$
\mathrm{v}-15
$$

APPENDIX I

Mail Questionnaire

ATLANTIC SALMON RESTORATION:

A PUBLIC OPINION SURVEY

I. FIRST WE WOULD like to get a sense of how familiar you are with ATLANTIC SALMON. BY ATLANTIC SALMON we mean only those salmon that spend part of their lives in northeastern rivers (see our map) and part of their lives in the Atlantic ocean.

1. Did you know before today that Atlantic Salmon could be found in some New England rivers? []No []YES
2. Have you ever seen any kind of live salmon? []No []YES

If YES, how did you see the fish? (check answers that apply)
[] WHILE FISHING
[]VISIT TO A SPECIAL OBSERVATION CENTER
[]BY CHANCE IN OPEN WATER
[]OTHER (explain: \qquad)
3. Have you ever fished for any kind of salmon? []No []YES If YES, for what kind of salmon? (check answers that apply)
[]DON'T KNOW
[]ATLANTIC SALMON
[]PACIFIC SALMON (eg coho or chinook)
[jother (explain: \qquad)
4. Have you ever eaten any kind of salmon that you
or someone else caught while fishing for sport? []No []YES
5. Which of the following outdoor recreation activities have you participated in during the past year? (check all that apply)
[]FRESHWATER FISHING (other than for salmon)
[]SALTWATER FISHING
[] HUNTING
[]HIRING OR CAMPING
[]BOATING OR SWIMMING IN LARES, RIVERS, or OCEAN
6. How would you describe the area in which you live?

```
[ ]RURAL
[ ]SMALL TOWN or VILLAGE
[ ]SMALL CITY (less than 50,000 people)
[ ]LARGE CITY (more than 50,000 people)
[ ]SUBURB OF A LARGE CITY
```


II. IN THIS SECTION we present a little more information about Atlantic Salmon in New England's rivers.

Many years ago large numbers of Atlantic Salmon lived in most of New England's rivers. That is no longer true. As the number of people grew, the number of salmon fell. The decline was caused by over-fishing, water pollution, and the building of dams that blocked many rivers. Today, hydro-electric dams are the biggest barrier to the return of the Atlantic Salmon.

There are now small but secure numbers of salmon in 7 of the shorter Maine rivers (see map, dotted lines). State and federal programs have already begun to restore Atlantic Salmon to other New England river systems. The programs could lead to secure levels of salmon in each of these 14 additional river systems within $25-50$ years (see map, solid lines). of course, if the programs are stopped, no salmon will be found in these rivers. The programs work by:

* releasing young salmon into the rivers;
* providing ways, such as "fish ladders", for the salmon to safely get past barriers like dams;
* improving the condition of the rivers in ways that benefit the salmon; and
* regulating the type and amount of salmon fishing allowed.

Assuming the program continues, within $10-15$ years there should be several thousands of adult salmon returning to the connecticut River and the Merrimack River, and even more to the penobscot River. Fewer fish would return to the other 11 river systems.

III. NOW WE WOULD like you to answer some questions about how important it is to you to have salmon in New England rivers.
7. Do you care, one way or the other, whether there are

Atlantic Salmon in any New England rivers?...................[]NO []YES
If No, skip ahead to The Final section on the last page.
If YES, in which of the rivers do you care about the presence of Atlantic Salmon? (See our map, then check one answer)
[] MOST OR ALL OF THEM
[] ONLY THE RIVER WHICH IS CLOSEST TO MY HOME:
[] ONLY THE FOLLOWING RIVERS: (please list the river names)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8. How does your interest in Atlantic Salmon compare to your interest in other wildilfe, including other wild fish? (check one answer)
[] I HAVE COMPARATIVELY MORE INTEREST IN ATLANTIC SALMON
[] MY INTEREST IS ABOUT THE SAME AS IN OTHER WILDLIFE
[] I HAVE COMPARATIVELY LESS INTEREST IN ATLANTIC SALMON
9. Which of the following statements or opinions apply to your interests in Atlantic Salmon? (check all answers you agree with)
[] I VERY PROBABLY WILI SEE OR FISH FOR WILD ATLANTIC SALMON
[] IT WOULD PLEASE ME JUST TO RNOW that ATLANTIC SALMON WERE IN NEW ENGLAND RIVERS EVEN IF I COULD NEVER FISH FOR THEM OR SEE THEM MYSELF
[] IT MATTERS TO ME THAT WE ACT NOW SO THAT FUTURE GENERATIONS OF PEOPLE WILL FIND ATLANTIC SALMON IN NEW ENGLAND RIVERS
[] I Think the return of atlantic salmon is an important
[] I think that atlantic salmon should be returned to new england rivers to restore the lost balance of nature
[] I THINK THAT THE EFFORT TO RESTORE ATLANTIC SALMON TO the 14 NEW ENGLAND RIVERS IS A mistake (please explain)
IV. NEXT, WE ARE INTERESTED in finding out how strongly you value the return of Atlantic salmon to any or all of the 14 rivers that are affected by the Salmon Restoration Program.
10. Might you ever fish for Atlantic Salmon on any of the 14 river systems affected by the Program to restore Atlantic salmon (see map)?
[] I ALMOST CERTAINLY WILL (continue on next page)
[] I MIGHT (I PROBABLY WON'T (continue on next page)
(skip to section ∇, Q. 20 on page 6)

FISHING: Because of the need to protect Atlantic salmon from over-fishing, the amount of fishing is tightly controlled. You must have a license to leqally fish for Atlantic salmon on any river, even if you do not plan to keep any salmon. The number of fish you may keep is also limited, and only fly fishing is allowed. About 2,500 Atlantic Salmon licenses were sold for fishing in Maine this year.

11. Did you know you could buy a license to fish for Atlantic Salmon in Maine this year?.............. []NO []YES

If YES, which of the following strongly influenced your decision to buy or not buy the license this year?
(check any that apply)
[] COST OF A SALMON LICENSE
[] DISTANCE OF THE SALMON RIVERS FROM HOME
[] NUMBER OF SALMON IN THE RIVERS
[] SIRE OF THE SALMON
[] LICENSE LIMITS ON THE NUMBER OF FISH CAUGHT
[] THE COST OF SALMON FISHING GEAR
[] CROWDING AT SALMON FISHING SPOTS

We would like to know whether you would buy an Atlantic Salmon license if the Program to restore Atlantic Salmon were stopped, and salmon lived only in the 7 rivers not affected by the Program.

The existing license allows you to keep up to 5 Atlantic salmon each year. This year a license cost $\$ 30$ for people who do not live in Maine, and $\$ 10$ for people who do live in Maine.
12. Assume that the Program to restore Atlantic Salmon is stopped. Then Atlantic Salmon fishing will only occur on the 7 rivers not affected by the Program (dotted lines on map). If the price $(\$ 30$, or $\$ 10$ for Maine residents) and the limit on the number of fish (up to 5) stays the same, how likely is it that you would buy a license in the next few years?
[] I ALMOST CERTAINLY WOULD BUY A LICENSE.
[] I PROBABLY WOULD BUY A LICENCE.
[] I'M NOT SURE IF I WOULD BUY A LICENSE.
[] I PROBABLY WOULD NOT BUY A LICENSE
[] I ALMOST CERTAINLY WOULD NOT BUY A LICENSE
13. What is the very highest price (if any) you would seriously consider paying for such a license?.... \qquad
What is the very highest price (if any) you are almost certain you would be willing to pay for such a license?... \qquad
4.

Out of a total of about 750 Atlantic Salmon caught on all New England rivers this year, almost 600 were caught by people traveling to the Penobscot River. Still, the average fisherman on the Penobscot must now fish almost 20 times to catch one salmon. The Atlantic Salmon Program will increase the number of salmon in each of 14 river systems - including the Penobscot (see map).
15. What is the greatest distance you would be willing to
travel away from home for the sole purpose of fishing
for Atlantic Salmon?
\qquad miles

Any decision to go ahead with the Program must consider the number of people who will be interested enough in fishing to buy an Atlantic Salmon license. If there are not enough people interested in buying licenses, the Program may have to be stopped. We next ask if you would be willing to pay a kind of "special restoration fee" for a license to fish the 14 river systems affected by the Program.

Assume for the purposes of this questionnaire that only people
paying the special fee would be allowed to fish for salmon on
those river systems, though you could still buy a license to
fish on the other 7 salmon rivers.
Because of the small number of salmon now in the 14 rivers,
fishing would have to be very restricted until more fish have
been restored to them.
16. Would you be willing to pay a special fee of s
each year to reserve a license for fishing on the
restored salmon river systems _years from now?
[]NO []YES
Would you pay this fee if it...
....did not allow you to keep any salmon you caught? []NO []YES
....allowed you to keep just one salmon you caught? []No []YEs
....allowed you to keep up to five salmon you caught? []No []YES
....allowed you to keep up to ten salmon you caught? []No []YEs
....allowed you to keep more than ten salmon?
[]NO []YES
17. What would be the very highest yearly fee you could be charged to reserve a license for \qquad years from now before you would feel that the license for the 14 river systems wasn't worth the cost - if such a license....
...did not allow you to keep any salmon you caught? \$ \qquad
...allowed you to keep one salmon each season?
...allowed you to keep five salmon each season?
...allowed you to keep ten salmon each season?
...allowed you to keep more than ten salmon?
\qquad
\$ \qquad
\$ \qquad
18. If the yearly fee to reserve a license turned out to be set $\$ 5$ higher than the amounts you just listed as your highest, how likely is it that you might reconsider and decide to pay for a license anyway?
[]VERY UNLIRELY
[]SOMEWHAT UNLIRELY
[] UNCERTAIN
[]SOMEWHAT LIKELY
[]VERY LIRELY
19. Is the total value of having Atlantic Salmon in the 14 rivers worth any more to you, in money terms, than the highest dollar amounts you have said you would be willing to pay for a fishing license?.

If NO, skip to question 28 on last page.
If YES, continue here.

V. AS YOU MIGHT expect, the Program to restore Atlantic salmon will cost money to complete. For this reason we will be asking you to think a little about the full dollar value, to you personally, of having salmon in New England's rivers. Your answers to the following questions will help policy makers decide whether or not to continue restoring Atlantic salmon to the 14 river systems shown on our map; and how to best pay for the program if it is decided to continue.
20. Can you think of anything you already spend money on that has about the same value to you as the Atlantic Salmon program does? please describe it if you can:
21. Have you donated any money for wildife protection

6.
22. Several methods might be used to raise extra money for the Salmon Restoration Program. Of course, not everyone is affected in the same way by each method of payment. Of the type of payment that you normally must make anyway, which would you prefer to see used to pay for the Atlantic Salmon Program?
[]FEDERAL INCOME TAXES
[]StATE INCOME TAXES
[]SALES taxEs
[]ELECTRICITY BILLS
[JOTHER (explain: \qquad 1
[]NONE - I'M NOT WILLING TO PAY ANYTHING (skip to last page)
23. Would you be willing to pay $\$$ \qquad more next year to help bring Atlantic Salmon back to the 14 affected river systems - if it were decided to raise money using the payment method you just said you would prefer?............. []No []YES
24. What is the very highest extra payment you would
be willing to pay rather than see the Program stopped?..... \qquad

If too little public support for the program to restore Atlantic Salmon to New England rivers is found, it could be stopped. Then some of the money that has already been budgeted for the program would not be spent. This money could then be returned to you as lower taxes, as lower electricity bills, or maybe even as a special cash payment to people who do not normally pay such bills.
25. Imagine for a moment that you could be guaranteed a one-time "rebate" of $\$$ \qquad if the Program was stopped. Would you then prefer to see the Program continue or to get those money savings?
[] CONTINUE THE PROGRAM
[] GET THE SAVINGS AND HAVE THE PROGRAM END
26. Try to think carefully about what you would do with a rebate if you got one - and then answer this question:

What would be the very smallest one-time rebate you would prefer to get rather than see Atlantic Salmon continue
to be restored to the 14 river systems?..................... \qquad
27. If you happened to be near one of several dams with Special Visitor's Centers at the right time of year, you would be able to watch the annual migration of Atlantic Salmon in progress. Assuming the Program continued and you were able, would you have any interest in stopping to watch Atlantic Salmon swim past and to learn more about them? []NO []YEs

If YEs: What is the very most you would be willing to spend on an entry ticket? \$ \qquad
VI. THE FINAL SECTION - Your answers to this section will help us predict the number of people interested in Atlantic salmon in all of New England. Your answers will be kept strictly confidential, and will never be linked to your name.
28. In what year were you born?

29

30. What was your main occupation this year (if student, unemployed, or retired, please indicate)
31. In what city or county and state is your home? \qquad COUNTY OR CITY 2. How many other people live with you in your household? OTHERS 33. What is the highest year of school that you have completed?
[] 1-6 YEARS
[] 7-9 YEARS
[] 10-11 YEARS
[] HIGH SCHOOL GRADUATE
[] SOME COLLEGE
[] COLLEGE GRADUATE
[] SOME GRADUATE SCHOOL
34. What was your approximate total household income, before taxes, in 1985?
[] \$0-9,999
[] $\$ 10,000-19,999$
[]\$20,000-29,999
[] $\$ 30,000-39,999$
[] $\$ 40,000-49,999$
[$] \$ 50,000-75,000$
[] more than $\$ 75,000$

Kindly return this questionnaire within two weeks of receiving it. Simply seal it in the enclosed stamped self-addressed envelope and deposit in ony mail box. The postage has been provided.

THANK YOU FOR YOUR TIME AND EFFORT!

NONRESPONSE BIAS

The questionnaire mailed to 1500 New England residents was eight pages long and relatively demanding of participants. Moreover, it was not anticipated that Atlantic Salmon restoration would be a subject of deep interest for most questionnaire recipients. These considerations led us to expect a relatively low response rate. ${ }^{1}$ The 42% response rate discussed in the body of the report confirmed that expectation.

Because of the large proportion of nonrespondents, it was not possible to rule out a priori the possibility that our data were seriously biased or unrepresentative of the full population. In order to ascertain whether or not there were significant differences between respondents and nonrespondents, a telephone follow-up survey was conducted. A number of key questions - concerning nonrespondent interest in Atlantic Salmon, their willingness to pay for restoration, and a few standard demographic parameters - were extracted from the mail questionnaire and adapted slightly for the telephone (see Appendix III for questions).

At the time of sample selection for the nonrespondent survey, 772 of the initial questionnaire recipients had not responded. Because the original sample had been selected from telephone directories, telephone numbers were available for all of these nonrespondents. Attempts to interview nonrespondents continued in a randomly determined order until 118 contacts were made with persons willing to answer at least the key question: did they care one way or the other whether or not there were Atlantic Salmon in any New England rivers? Sixteen additional persons who had not returned the mail questionnaire were contacted, but they refused to answer even this question. Attempts to reach another 41 nonrespondents failed because the person had moved, died, or discontinued phone service at the given number. Finally, another 41 nonrespondents were called but never successfully reached after a minimum of at least two further calls (see Table II-1).

Administering the questions over the phone generally took less than a minute if the individual indicated no interest in Atlantic Salmon, and less than five minutes if some interest was expressed and all the followup questions asked.
$1_{\text {Closely }}$ related issues for telephone surveys are discussed in Sharp, Laure M. and Joanne Powell. 1983. "Respondent Burden: A Test of Some Common Assumptions". Public Opinion Quarterly. Vol 47:36-53. Much of the literature cautions against expecting returns from more than 30\% of the general public with mail questionnaires, but many authors demonstrate that persistent follow-ups can generate 70% response rates and higher. (See citations in Goyder, John. 1985. "Face-to-Face Interviews and Mailed Questionnaires: The Net Difference in Response Rate." Public Opinion Quarterly. Vol. 49:234-252; see also Brown, Tommy L. and Bruce T. Wilkins. 1978. "Clues to Reasons for Nonresponse and its Effect upon Variable Estimates". Journal of Leisure Research. Vol. 10:226-231 and Brown, Tommy L., Chad P. Dawson, Deborah L. Huston, and Daniel J. Decker. 1981. "Comments on the Importance of Late Respondent and Nonrespondent Data from Mail Surveys." Journal of Leisure Research. Vol. 13:76-79, for experiences with recreation and land use questionnaires.)

Table II-1. TELEPHONE FOLLOW-UP RESPONSE RATES

772	nonrespondents; from which random selection produced
118	at least partially cooperative random contacts;
16	total noncooperators;
41	deceased or otherwise unreachable parties; and
41	nonrespondents who could not be reached after several repeat calls; comprising a total of
216	nonrespondents called and
556	nonrespondents not called.

The statistical depiction of nonrespondents that follows is therefore based on a sample of 118, accounting for 15% of all nonrespondents, or 55% of the nonrespondents called. Are these 118 nonrespondents representative of the remaining nonrespondents, especially with respect to interest in the Atlantic Salmon Restoration program? Because of the random calling order used, it can be assumed that the 216 nonrespondents called are collectively representative of the 556 not called. But there is not enough information available to unambiguously determine how closely the 118 cooperators may resemble the remaining 98 nonrespondents called.

Some assumptions must therefore be made. ${ }^{2}$ It should be a reasonable if not entirely accurate ${ }^{3}$ assumption that the 41 nonrespondents who could not be reached would not have differed significantly in their responses from the $134(118+16)$ nonrespondents with whom personal contact was made (ie. about 5 of the 41 would probably have refused to cooperate, the remainder would have mirrored the interest in Atlantic Salmon of the 118 cooperators.) Thus, a total of about $10 \%[(16+5) / 216]$ of the nonrespondents would be reasonably classified as noncooperators. We have

2 Some techniques exist for trying to avoid such informal assumptions, eg. by predicting nonrespondent characteristics on the basis of a small amount of known information (see Daniel, Wayne W. 1975. "Nonresponse in Sociological Surveys". Sociological Methods \& Research. Vol. 3:291-305; and Smith, Tom W. 1983. "The Hidden 25 Percent: An Analysis of Nonresponse on the 1980 General Survey", Public Opinion Quarterly. Vol. 47:386-404). However, Smith notes ultimately that "we come close to the conclusion that nothing works in estimating nonrespondent bias".
${ }^{3}$ Smith (ibid) found that availability of respondents for interview was in fact related to labor force participation, socioeconomic status, age and marital status, health, and sex. Ignoring the difference in the types of people likely to be available for phone compared to mail interviews probably overstates the real differences between the mail nonrespondents and mail respondents, since the attempt to contact the mail nonrespondents was made over the phone.
essentially no relevant information about the noncooperators. Still, the most conservative and probably reasonable assumption about them would be that they have no interest in Atlantic Salmon restoration. Similarly, the most conservative assumption about the 41 deceased or otherwise unreachable contacts is that they also have no interest in Atlantic Salmon restoration. This assumption is perhaps overly conservative, since even the deceased nonrespondents might have had an interest in Atlantic Salmon at the time the sampling list was compiled; and some of the unreachable nonrespondents who have changed phone numbers or moved surely do have an interest in Atlantic Salmon.

In conclusion, the reader should bear in mind that for only 55\% ($118 / 216$) of the nonrespondent subsample is analysis based on direct telephone responses. Since only 42% of persons receiving the mail survey returned a questionnaire, this means that there is little or no information on approximately 345 of the 1320 persons who received questionnaires. After accounting for the 180 undeliverable mail questionnaires, the figure rises to 525 of the initial 1500 questionnaires sent out; i.e. 35% of the population of households have been assigned by assumption to either the "no interest in Atlantic Salmon" group or the "just like the respondents" group. Thus, while the nonresponse follow-up increases knowledge about the magnitude and importance of possible bias, it does not eliminate the problem altogether.

Before proceeding to the mail/telephone follow-up response comparisons, a related consideration must be addressed. The corporation that selected the initial sample of 1500 (Survey Sampling, Inc.) warns that its data base covers only 86% of all households nationally. This coverage is based on listed phone numbers as supplemented in 26 states by auto registration data. Although 1980 census statistics show that 95.48 of New England households had phones, 4^{4} mail coverage is lower because no addresses can be associated with unlisted telephone numbers. ${ }^{5}$

MAIL RESPONSES COMPARED TO TELEPHONE RESPONSES

The answers of the 559 mail respondents and the 118 telephone follow-up respondents were compared for 20 specific items. It was not possible to conclude that there were no significant differences between the two groups.
${ }^{4}$ Table 149, Detailed Characteristics, US Summary, 1980 Census of Housing.
${ }^{5}$ Telephone directories of listed numbers only have been shown to disproportionately exclude households of lower socioeconomic status, a problem generally most problematic for surveys in urban areas. A recent study confirms that "telephone directories provide an acceptable and efficient sampling frame for general population mail surveys of rural areas". (Kviz, Frederick. 1984. "Bias in a Directory Sample for a Mail Survey of Rural Households". Public Opinion Quarterly. Vol. 48:801806.) Over the whole of New England, this source of bias is probably small compared to other sources of bias.
V-30

Table II-2. Questions asked of every cooperator.

Variable Described	$\frac{\text { Mail }}{\text { Results }}$	$\begin{aligned} & \text { Follow-up } \\ & \text { Results } \end{aligned}$	Difference*
Educational Level	($\mathrm{n}=540$)	($\mathrm{n}=79$)	
High School Grad	29\%	428	Large
Some College	25%	248	Small
College Grad	46\%	34\%	Large
Occupation	($\mathrm{n}=529$)	($\mathrm{n}=93$)	
Professional	22\%	13\%	Large
Retired	20\%	29\%	Large
Other	48\%	48\%	Small
Age	($\mathrm{n}=543$)	($\mathrm{n}=95$)	
Over 50 years	40\%	43\%	Small
31-50 years	42\%	42\%	Small
Up to 30 years	18\%	15\%	Small
Sex	($\mathrm{n}=556$)	($\mathrm{n}=118$)	
Male	77\%	73\%	Small
Female	23\%	27\%	Small
State of residence	($\mathrm{n}=544$)	($\mathrm{n}=118$)	
Connecticut	23\%	35\%	Large
Maine	12\%	8\%	Small
Massachussetts	47\%	37\%	Large
New Hampshire	9%	7\%	Small
Rhode Island	6\%	6\%	Small
Vermont	3\%	7\%	Large
Cares about Atlantic Salmon Restoration	($\mathrm{n}=556$)	($\mathrm{n}=118$)	
Cares	82\%	60\%	Large
Doesn't Care	18\%	40\%	Large
"Large" and "Small" the two samples is s at a 95\% confidence categories within a hence sequential sta the number of respon of item nonresponse.	cate whe stically rval. N tion are ical tes s differ	not the d icant for the diff dependent ategories question t	ence between -tailed test es between ch other; nvalid. Als stion becaus

Table II-2 lists the six items that applied to every respondent: state of residence, sex of respondent, interest in Atlantic Salmon restoration, educational level, occupation, and age of respondent.

The differences between the two groups generally followed expected patterns. The people who did not read through and answer the complex 8 page mail questionnaire but who were willing to answer some questions over the phone were markedly less well-educated than the mail questionnaire respondents. Given reports of $13 \%-26 \%$ functional illiteracy among the general public, ${ }^{6}$ it seems likely that the written survey was simply overwhelming for some people. Similarly, the mail survey respondents were more likely to be working professionals than the telephone follow-up respondents, a finding which is probably directly related to both the observed educational differentials and the difficulty of catching working professionals at home with telephone calls. Both differences are indirect indications that income levels of the mail respondents are probably higher than for the telephone follow-up sample, though because of expected respondent sensitivity about revealing incomes, this question was not asked over the phone.

It is also consistent with other studies that the telephone sample of nonrespondents contained a greater proportion of retirees than the mail survey. Retirees can be expected to be less active in general than working people. Some have greater difficulty in seeing the printed page, and some have less tolerance for the exertion, both mental and even to some extent physical, required to fill out a complicated questionnaire. While these problems are normally thought of in the context of age, it is noteworthy that despite the discrepancy in retirement status, the age and sex distributions of the two groups are very similar. Better understanding of the discrepancy would require a more sophisticated look at the relationships between age and retirement. ${ }^{7}$

The fact that a significantly lower (higher) proportion of mail respondents were from Connecticut (Massachussetts) is curious. The discrepancy may be due to different levels of coverage of restoration efforts by the Connecticut and Massachussetts media.

The most important discrepancy between the two samples is the much higher proportion of mail survey respondents claiming they care whether or not Atlantic Salmon will be found in New England rivers. Again, the discrepancy is in the direction expected: people with less interest in the issue should be less motivated to expend effort on a mail
${ }^{6}$ US Bureau of Census figures cited in Publishers Weekly (May 23 , 1986, Vol. 229:30) indicate that 13% of the English speaking population over 20 years of age is "functionally illiterate", as determined by a more liberal criterion than the sixth grade reading level often used to peg "functional illiteracy" at 26\%.
${ }^{7}$ Again, it is possible that differences between the samples have been distorted because of a telephone nonresponse bias.
questionnaire; whereas the effort and attention required to give a short telephone response is much less. 8

Because several of these discrepancies are significant, ${ }^{9}$ the mail survey's single variable results have been adjusted where possible. Only a subset of the mailed questions were asked over the telephone. Because of the absence of some variables in the telephone follow-up survey, it is not possible to test or carry over all nonresponse adjustments into an analysis using multivariate models.

Table II-3. Interest questions asked only of cooperators who "care" about Atlantic Salmon.

Variable Described

Will see or fish for Atlantic Salmon

Yes 32\%
No
Atlantic Salmon pleasing even if will never fish for or see them
Yes 77%

No
Mail
Results

Follow-up Difference* Results

$$
(n=66)
$$

448
56\%
Large
Large
Act now for future generations

Yes	73%	98%	Large
No	27%	2%	Large

* "Large" and "Small" indicate whether or not the difference between the two samples is statistically significant for a two-tailed test at a 95\% confidence interval.

[^7]Responses to all of the questions displayed in Table II-3 show significant differences between mail and phone follow-up respondents. Though fewer phone follow-up cooperators cared about Atlantic Salmon restoration, Table II-3 reveals that the respondents who cared about Atlantic Salmon were more likely to expect to personally see or fish for them. It might then be concluded that these people were more likely to care about Atlantic Salmon because they had a direct or "use" interest in the fish. However, these same people also expressed much stronger indirect or altruistic interests in Atlantic Salmon: essentially all the people who cared about Atlantic Salmon indicated that they cared whether or not they would ever see or fish for Atlantic Salmon, and because they were interested in passing on a legacy to future generations. While these results can be taken at face value, a cautionary note might again be made with reference to differentials in the way people respond over the telephone and through the mails. Dillman, a survey research expert, has noted informally that there seem to be consistent differences in the way people answer identical questions over the telephone versus in a mail questionnaire versus in face-to-face interviews. In particular, people may be influenced by the relatively shorter time allowed for consideration of an answer in an interview, and tend to give more extreme responses on scaled variables. 10 The lower educational levels of the telephone follow-up respondents may relate to their greater interest in Atlantic Salmon restoration, since through analysis of mail responses it was determined that lower levels of education were positively correlated with willingness to pay to restore the fish.

Table II-4. Recreation participation questions asked only of respondents who "care" about Atlantic Salmon.
Variable Described
$\underline{\text { Mail }} \underline{\text { Results }}$

Follow-up Results

Difference*
They fished or hunted
during the past year
($n=449$)
($\mathrm{n}=63$)
48\%
Small
They boated or swam in lakes, rivers or the ocean during the
past year
($n=449$)
77\%
76\%
Small

* "Large" and "Small" indicate whether or not the difference between the two samples is statistically significant for a two-tailed test at a 95% confidence interval.
${ }^{10}$ Lecture, 1986, Cornell University.

$$
\mathrm{V}-34
$$

Table II-5. Willingness to pay questions asked only of respondents who "care" about Atlantic Salmon.

Variable Described

Mail Results	Follow- Results
$(\mathrm{n}=449)$	$(\mathrm{n}=60)$
48%	43%

Would prefer to pay
increased state

income tax	$(n=449)$	$(n-60)$
Yes	32%	40%

Would prefer to pay
increased electric bills $\quad(n=449) \quad(n=60)$
Yes
12\%
8\%
Would prefer to pay

in some other fashion	$(n=449)$	$(n=60)$
Yes	17%	8%

Would prefer to not

pay anything	$(n=449)$	$(n=60)$
Yes	10%	18%
Willing to pay the amount we specified	$(n=102)$	$(n=25)$
Yes	79%	79%
Average maximum will- ingness-to-pay for Salmon	$(n=88)$	$(n=24)$

* Answers to these questions are reported only for that portion of each sample that cares about Atlantic Salmon and that expected to see or fish for them someday. Because of differences in the routing of anglers through the two surveys, even these subgroups are not strictly similar, so statistical comparisons could be misleading (see text that follows).

Table II-4 displays the differences in mail and telephone follow-up responses regarding recreational behavior for those persons indicating interest in Atlantic Salmon. Despite the differences noted for other variables, the recreational behavior of mail and phone respondents is similar.

Table II-5, finally contrasts the two groups with respect to questions about willingness-to-pay to continue the restoration program. The telephone follow-up did not differentiate willingness-to-pay questions for anglers versus non-anglers. Mail respondents expecting to fish for Atlantic Salmon someday would have first answered questions about willingness-to-pay for fishing licenses before answering (or skipping over) these questions, whereas all phone respondents interested in Atlantic Salmon would have answered only these willingness-to-pay questions. Since anglers as a group expressed greater total willingness-to-pay for Atlantic Salmon restoration in the mail responses, 11 it follows that had all anglers in the mail questionnaire directly answered the general willingness-to-pay question, then the $\$ 38.47$ figure would have been higher. Since $\$ 38.47$ and $\$ 50.37$ are in any event not statistically different from each other with high levels of statistical confidence (for the given sample size), it will be assumed that there is no nonresponse bias in the mail sample estimate of maximum willingness -to-pay, given that the respondents have said they "care" about Atlantic Salmon restoration. Similarly, the revealed preferred methods of payment are assumed to be accurately depicted in the mail sample results.

11 Total willingness-to-pay of persons saying they were certain they would fish for Atlantic Salmon someday was almost twice as high as persons saying they might someday fish for Atlantic Salmon, which was in turn somewhat higher than the total willingness-to-pay of nonanglers.
v-36

APPENDIX III

Nonrespondent Follow-up Questionnaire

The U. S. Figh and Wildiife Service must decide whether or not enough people ere intereated in Atlantic Salmon to justify continuing vith their plans. They've already begun to reatore this fibh to many of the riversin New England where Atlantic Salmon used to live. But the Fish and Wildilfe Service may decide it is better not to apend the public's money on almon reatoration if not many people are intereated. So...

1. Do you care one way or the other vhether there are Atlantic Salmon in any New England rivera?
[] NO - skip to question 7.
[] YES - continue.
2. Nov please tell me if any of the following statements about Atlantic Salmon apply to you:

NO YES

3. If the program to reatore Atlantic Salmon is continued, several methods might be used to raise extra money. Which of the folloving four kinds of paymenta vould you prefer to see used to pay for the Atlantic Salmon Program? You may choose more than one, or norie of these, but please choose a method of payment you normally make yourself. The choicea are: (read the four)
[JFEDERAL INCGME TAXES
[]STATE INCGME TAXES
[JSALES TAXES
[JELECTRICITY BILLS
(Dont read) (JNONE - I'M NGT WILLING TG PAY ANYTHING (EKIP to Q. 6)
V-38
4. Using an increase in [choice from 0 . 3], vould you be willing to pay s more next year only - in order to help the Salmon Restoration Program succeed in bringing Atlantic Salmon back to New England rivers?
[]NO []YES
5. What is the very hiqhest extra payment you vould be willing to pay rather than see the Program atopped?
6. Now, could you please tell me if you have participated in any of the folloving outdoor recreation activities during the past year?

```
[ ] HIKING GR CANGEING
[ ] FISHING GR HUNTING
[ ] BOATING OR SWIMMING IN LAKES, RIVERS, or the OCEAN
```

7. In what year were you barn?

YEAR
8. What was your main occupation this year (buch as unemployed, laborer, secretary, doctor, etc.)
9. And finally, what 18 the highest year of school that you have completed?
[] 1 -6 YEARS
[]7-9 YEARS
[]10-11 YEARS
[]HIGH SCHOOL GRADUATE
[JSOME COLLEGE
[JCOLLEGE GRADUATE
[JSOME GRADUATE SCHOOL

THANK YOU VERY MUCH FOR YOUR COOPERATIONI

[^0]: *The life cycle of the Atlantic Salmon is contained in Appendix A

[^1]: The apparent water velocity is an estimate of the true velocity of the water flowing through the speming bed (redd) and is calculated by dividing volume discharge per unit time by the cross-sectional

[^2]: - Concentration represents mean of best dissolved oxygen which ranged from $2.05-2.2 \mathrm{mg} / 1$; anly 97 percent survival recorded in this range.

[^3]: * Median tolerance limit (IIm) - The concentration of the tested material in experimental water at which just 50 percent of the test animals are able to survive for a specified time of exposure.
 ** High water temperature or low dissolved oxygen concentration generally increase the action of toxicants.

[^4]: 11 This extrapolation was calculated from 1980 ratios of occupied housing to state population totals (Bureau of Census, 1980 Census) applied to 1984 population figures (Bureau of Census, Current Population Reports). The calculations are therefore probably a conservative estimate of households at the time of the survey (late 1986).

[^5]: 18 A copy of the questionnaire is found in Appendix I.

[^6]: 26 Hanneman (1984b) suggests that, in general, large empirical differences between the measures may be indicative "of a general perception on the part of the individuals surveyed that the private market goods available in their choice set are, collectively, a rather imperfect substitute for the public good under consideration."

[^7]: ${ }^{8}$ Similarly, questionnaire respondents who returned their questionnaires promptly were more likely to "care" about Atlantic Salmon than those who responded only after several follow-up letters (chi-square value of 18.08).
 ${ }^{9}$ Since most of our research interest is directed only at the portion of the public with some interest in Atlantic Salmon, nonresponse bias was also investigated for the mail and phone sample subsets of only those persons indicating interest in Atlantic Salmon. Since most respondents were interested in the fish, the same patterns of mail and phone differences appear in the subsamples.

