The Equity of Distribution of Costs and Benefits in New England Anadromous Fish Programs ${ }^{1}$

Anne L. Warner ${ }^{2}$

An examination is of the costs and benefits of the Atlantic Salmon Restoration Program and their distribution leads to the conclusion that the current arrangement is
 neither equitable nor efficacious. It is proposed that it would be fairer and more effective for the government to assume responsibility for fish passages at existing dams, subject to PURPA. While this seems fairer, it may not be politically feasible.

INTRODUCTION

The Atlantic Salmon Restoration Program is the best known of a group of programs to preserve and restore anadromous fish in the rivers of New England. It is also the best documented. For this reason, I will use it as a paradigm for the entire effort. The program consists primarily of fish passage construction and the breeding and stocking of large numbers of smolts. Other activities, such as biological research and habitat improvement, are minor by comparison. There is no overall plan for the anadromous fish programs. There are strategic plans available for the Connecticut and Merrimack river basins, but these address only salmon, and treat each river system in isolation. The U.S. Fish and Wildlife Service has no written plans at all for shad or alewives, which are being "restored" to many more streams than are salmon. The Draft Environmental Impact Statement, which the Fish and Wildlife Service issued in August, 1984, is the only document available which discusses all of any single aspect of the program. It covers the entire salmon effort on a region-wide basis. Because it is the only comprehensive document available, I have used it as my program definition. The goal of the program ${ }^{3}$ is to "restore reproducing Atlantic salmon runs" to New England's rivers. The implication is that after some years of stocking and the completion of the necessary passages, the salmon will be on their own, coming and going with only minimal human intervention ${ }^{4}$, and breeding lots
${ }^{1}$ Paper presented at the Symposium on Small Hydropower and Fisheries, (Denver, Colorado, Mayl-3, 1985.)

Anne L. Warner is a principal in Hydromechanics, a water resources and hydropower consu1tant, Londonderry, N.H.

4 Stolte, 1984 , page 1.
4 The Fish and Wildlife Service operates within or around a philosophical ambivalence. On the one hand, they abhor human intervention to improve fish
of little salmon in privacy in their own natural homes. Unfortunately, this is far from any probable actuality. To maintain reasonable population levels, stocking must be continued indefinitely throughout New England. This is not necessarily bad. After all, virtually all trout in the Northeast are stocked (and usually caught the same season). It does mean, however, that this program is a permanent establishment, or is of such long duration that the difference is moot.

Many environmentalists and environmentally concerned people evaluate the effects of development activities and environmental programs from a false baseline. They think and talk as if all such activities started from a "state of nature." This is no more realistic for modern environmental analysis than it was for eighteenth century political philosophy. In the environmental case, it leads to confusion between the concepts of mitigation and of enhancement. A new dam on a river with existing populations of migratory fish does affect a resource, the fishery. A fish passage in its design is indeed a mitigative measure, reducing the harm done by interrupting the stream flow. Turbine installation at a century-old dam, however, does not have any impact on the no longer existant migratory fish. A fish passage in such a project is a means of environmental enhancement, a genuine improvement of the situation as it now exists. The entire anadromous fish effort in New England is an enhancement activity, a valiant attempt at terraforming to improve the status quo.

As government programs go, this one is not ex-
mobility, eschewing "trap and truck" schemes in favor of relatively high-tech fish ladders and elevators. On the other hand, they perpetrate permanent breeding and stocking programs in order to maintain "natural" recreational fisheries, at least one of which (this one) is of unprovable effectiveness. See also Eicher, 1985, page 86 .
pensive. The current plan projects ${ }_{5}$ expenditures of $\$ 113$ million over the next 25 years. Included in this sum is $\$ 44$ million in private funds for the construction and operation of fish ladders and elevators. These private funds are provided by dam owners and operators, who are required to build and operate fish passages to the Fish and Wildilife Service's specifications. For the first decade of the program's existence, before 1978, this was not a problem. The dam owners involved were major regulated utilities, who simply transmitted the costs to the general public (i.e.: their customers) by including them in their rate bases, and made their normal profit on that investment, also. Since the passage of the Public Utilities Regulatory Policy Act in $1978{ }^{6}$ and the progress of the program into smaller tributary streams, this situation has changed. Fish passage construction is now being required of dam owners who have no ability to pass the costs on to customers, and who may, in fact, be forced out of business by the expenditure.

The benefits claimed for the salmon program are small, diffuse and very difficult to measure. They do not accrue to the people who must pay the costs, and only one of them can be characterized as a direct benefit to anyone or any group. The only benefit discussed in detail in the Draft Environmental Impact Statement is based on the travel cost to fish for salmon on the existing runs of northern Maine. This benefit accrues to a very small group of dedicated fishermen.

Are the costs and benefits of this program directly comparable? Are they fairly divided? That is, do those pay the costs receive appropriate benefits? And do those who do get the benefits pay a fair share of the costs? Does the current arrangement of costs and benefits contribute to the success of the program? In order to discuss these issues, it is necessary to define the categories and criteria I intend to use. This is not a matter of more or fewer dollars to some group, it is an issue of distributive equity and of the nature of the benefits derived from this program. Therefore, this is not a quantitative discussion, but a philosophical one, and numbers will be used only for illustrative purposes.

CONCEPTUAL STRUCTURE

I will examine the nature of costs and benefits, generally, and attempt to achieve a usable definition for equity. I will then discuss the specifics of this program, classifying the costs and benefits, and identifying the source or beneficiary of each. This discussion should lead to a conclusion about the equity and efficacy of the current program arrangements.

First, what are costs and benefits, and how
5) Stoite, 1984, page 23.
6) Public Utilities Regulatory Policy Act, Public Law 95-617 \& 96-294.
can they be categorized? Costs include any money required to accomplish the goals of the program. In addition, they include any non-monetary resource which is used up or tied up (i.e.: committed) so as to preclude its use for other purposes. It is tempting to ignore such costs, for example, the cost of lost generation due to water diversions for fish passages, but to do so can distort the program analysis seriously.

Benefits include, but cannot be limited to, any direct monetary profit which results from the program. A1so, improvements to or increases of resources which cannot be denominated in monetary terms must be considered benefits. Most environmental improvements fall into this last category.

Both costs and benefits come in two flavors, direct and external. Direct costs and benefits are the ones dealt with by classical economics. They can be counted in dollars and directly attributed to a product, project, or person. Direct costs are the costs of all the materials, supplies, labor, machinery and overhead used to create and distribute a product or service. Direct benefits, in classical economic terms, are limited to those who have paid the costs. Thus, the purchaser of a left-handed widget is assumed to have paid the full cost of its manufacture, and to receive the full measure of its benefit, to the exclusion of any others who might desire that benefit. In the economists' construct of perfect competition, the market, also called the "invisible hand", forces an optimal distribution of costs and benefits so that the economic pie is perfectly and completely divid ed. In this construct, change is a zero-sum game with any increase in someone's profit necessarily creating a decrease in someone else's. On the other hand, costs and benefits which do not clearly accrue to a specific project, product or beneficiary are both possible and actually rather common. One classic example of such a cost is water pollution from a manufacturing operation. Society as a whole must bear the cost of having polluted water or of cleaning it up, while the manufacturer and his customers reap the benefit of cheaper widgets. Similarly, an improvement in the appearance of one home can benefit the entire neighborhood in the form of increased land values. Economics texts call these non-direct costs and benefits externali: ties, or external economies and diseconomies. I' going to call them external costs and benefits, so as to clarify later comparisons. Externalities an not controlled by the invisible hand of perfect competition. Indeed, in many cases, they are not controlled at all. Another important feature, fo= our purposes, of many of the externalities associated with environmental projects, is that they arc not consumed. Air or water pollution, if untreat ed, harms, to a greater or lesser extent, everyone who contacts it. Similarly, enhanced real estate values or beautified scenery benefit all who are exposed to them.

The foregoing characteristics of costs and benefits are inherent to them. In addition to su intrinsic qualities, all costs and benefits accrur to someone or some group. The costs and benefits
of widget making accrue to the manufacturer until a customer pays him the costs in order to gain the benefits. As was said earlier, externalities are not controlled, that is the benefits can accrue to people other than those who pay the costs who, in turn, may receive little or no benefit at all. External costs and benefits can accrue to individuals, to specific groups, or to the public at large. Benefits which do the latter are called "public goods." Similar costs, for reasons known only to economists, are not called "public bads." They are left nameless, perhaps in the hope that they will go away if ignored. Acid rain, for example, is currently residing in this category.

All this is prelude to the real topic under discussion, equity. The concept of equity is basic to our society and to economic thought. The concept is strongly affected by the frame of reference within which it is discussed. What discussion is available in the economic literature is usually scaled to equity between nations. The finest level of detail available discriminates between different income levels within a country. Discussion of equity between apparently similar groups are very hard to find.

According to the 0xford English Dictionary, equity means "fairness, impartiality, even-handed dealing." The word derives from the latin 'aequus, aequites', which means, simply, equal. Equity, however, does not mean equality. Equity involves treating all participants in an action with equal fairness, not necessarily just alike. Aristotle, in his Laws, says "Injustice arises when equals are treated unequally, and also when unequals are treated equally." Our problem here is to determine the nature of the groups to whom costs and benefits accrue, whether they are, indeed, equal and whether or not they are being treated equally.

DATA

The costs and benefits we will consider are those 1isted in the Draft Environmental Impact Statement, with one addition. I will start with the benefits. The only one seriously considered in the Impact Statement is recreational fishing. The value of this benefit is calculqted using a "tra-vel-cost" method, at $\$ 109$ daily. A total is then calculated for salmon fishing in New England, including all such angling. There are some problems concerning details of this computation. There is no question, though, that the consumer surplus associated with sport fisheries is a benefit of the program.

Other benefits listed in the Draft Environmental Impact Statement are improved resource management, increased non-angling tourism, improved instream mobility (of all fish), and augmented ocean fisheries. None of these are quantified, although one, at least, can be. Some researchers claim that as much 80% of the released stock are
${ }^{7}$ Stolte, 1984 , page 76.
caught by commeŗcial marine fishing operations from other countries ${ }^{\text {. A simple calculation from the }}$ hatchery release numbers and the price of imported salmon ($\$ 6-8$ per-pound fresh, $\$ 17-35$ per pound smoked) would yield a monetary value for the ocean catch. One other benefit, not claimed by the Fish and Wildife Service must be included in our inventory. Many environmentally concerned people would see as the greatest benefit of this program the improved strength and resilience of a healthier, more diverse ecosystem.

So, we have five benefits claimed by the Fish and Wildife Service and one more which must be acknowledged on their behalf. Two of these, the recreational and commercial fisheries, are capable of enumeration and monetary valuation. The other four can not, and perhaps should not, be quantified. They are, however, real and should be considered. If there are other benefits which both the Fish and Wildife Service and I have overlooked, they are most likely to be unquantifiable and without specific source or beneficiary. They will not change this argument. All six listed benefits of the program are external benefits, that is they are not limited to those who pay for them, nor is their acquisition or consumption regulated by any market mechanism.

To whom do these benefits accrue? Primarily to the public at large. The consumer surplus associated with recreational fishing accrues to a relatively small group of dedicated sportsmen. Potentially, anyone may join this group. If everyone does, then the group becomes congruent with the general public. If no one new joins, we have this group as it now is, very small, very vocal, and rather affluent. Somewhere between these two extremes is a reasonable picture of the beneficiaries of improved fishing, a not large segment of the general public who are devoted to fishing for one special fish. The augmented ocean catches accrue to the commercial fishing fleets of Canada, Ireland and Norway. There is no U.S. based marine salmon fishery. For this reason, it is arguable that the ocean catch improvement is not a benefit at all. It is certainly no benefit to the U.S. economy. Improved instream mobility actually accrues directly to the fish, and indirectly to the public at large as part of the improved ecosystem. Better resource management, increased tourism and improved ecological health accrue only, and directly, to the public at large. Thus, a.ll of the claimed benefits of this program fall into the category of "public goods." The only benefit which accrues to a definable group is "free" to that group, thus it is still an external benefit, in that the costs are paid by someone other than the beneficiaries, and those who do pay have no control over the benefit. Since it is, theoretically, available to the whole society, I feel that it is, in fact, a public good.
8) Sununu, John H., 1985, Comments of the State of New Hampshire on Draft Environmental Impact Statement for the Restoration of Atlantic Salmon, unpublished.

The costs of this program are, not surprising$1 y$, much easier to define, count and discuss than the benefits. The two biggest items on the list are the construction and operation of hatcheries and fish passages. Other costs which are, or should bg, quantified and justified are fisheries research, cleanup of water pollution from the hatcheries, and lost generation due to water use by the fish passages. Non-quantifiable costs include lost fishing due to the expected need to curtail sport fishing while the salmon population is becoming established , and the loss or reduction of currently existing fish populations due to ecological competition .

Direct costs of the program, which are enumerated but not detailed in the Draft Environmental Impact Statement, are those associated with hatcheries, fish passages and research. Hatchery and research costs accrue to the Fish and Wildlife Service, while fish passage costs are borne by dam operators. In New England, where most hydro development involves existing dams, the cost of fish passage construction is frequently a major expense. Not only does this cost a hydro developer extra money, lowering his return on investment, its operation reduces the available water for generation. Contrary to the claim of the Draft Environmental Impact Statement, the foregone revenues from this lost generation is a real cost of the program, and must be calculated and included any economic analysis of the program.

The cost of lost generation is not only an external cost accruing to the hydroelectric industry, it involves an additional cost accruing to society as a whole, in that every kilowatt not generated with local, renewable resources is replaced by generation using fossil or nuclear fuel, or is imported from Canada. The difference between these costs must be calculated. Other external costs of this program are pollution and its effects, losses of other fish species, and restriction of fishing opportunity.

I have listed seven costs of the salmon program. Two of them, the costs of hatchery activities and of research, accrue to the public by way of the Federal government. These can be viewed as directly purchasing the public goods of fishery resources and knowledge. Three and a fraction accrue to the public, but are economically uncontrolled external costs. These are water pollution, lost or reduced fish populations, lost angling opportunities, and the marginal cost of obtaining replacement energy for the foregone generation. The remaining costs, fish passage expenses and the immediate revenue losses from foregone generation accrue, as externalities, to the hydro industry.
${ }^{9}$ Stolte, 1984 , page 75 , note omission of research from list of project costs included in beneffot-cost analysis.

11 Stolte, 1984, pages 42, 81-82.
11 Stolte, 1984, pages $42,80,85$.

Is the hydroelectric industry a single, unified economic group? No. It is clearly subdivided into three different classes, the public (i.e.: government) utilities, the regulated, investorowned major utilities, and the small power producers operating under PURPA. Each of these subgroups has a different economic position and outlook. The public power authorities, mostly municipalities in New England, are subject to state regulation of their retail rates, and FERC regulation of their wholesale ones, if like the Power Authority of the State of New York, they sell at wholesale. They are allowed to recover their costs in full, without any profit. The investor-owned major utilities are regulated by the same agencies. They, however, are allowed a specific rate of return (profit) on all costs included in their rate bases, which usually means virtually all costs actually disbursed. Small power producers sell to regulated utilities, at rates set by individually negotiated contract with the purchasing utility. These costs are related to the "avoided" costs of the purchasing utility according to a formula set by each state public utilities agency. There is no provision for any reasonable return on investment or any profit margin. Unlike regulated utilities, small hydro producers have no protected profit, in fact, they may not be able to recover their actual investment. Therefore, the hydroelectric industry should be viewed and considered as three separate groups.

EVALUATION

The benefits of this program are all externalities. They all apply, at least potentially, to all citizens equally, and thereby fall into the category of public goods. (There is one possible exception: ocean fishing, which accrues to no citizen of this country, nor to its society, but exclusively to the societies and industries of other countries.) It has been argued that sport fishermen constitute a small, select, special interest group. Since there are no bars to entry into this group for any interested person, it should really be considered as "public-at-large." So the whole society, rather than any individual or group receives the benefits of this program.

The direct, monetary costs are divided about equally between the government and the private hydropower industry. The external costs, both monetary and unquantifiable, are also divided, between society and the hydro industry, with the hydro industry drawing all the monetary external costs. Thus, hydro developers are bearing half the costs of this program, from which they derive no benefit, with all of those benefits accruing to society as a whole.

With these distinctions in mind, let us consider two questions concerning imposing fish passage costs on the hydroelectric industry. One: is it equitable? and two: is it effective?

The answer to the first question is: No. It is not equitable (fair) to impose identical costs

Which confer no benefits equally on unequal groups. deall hydro producers have no ability to recover whese costs, unlike regulated utilities. This is zlearly a case of equal treatment of unequal Froups.

The imposition of fish passage costs on hydro Etevelopers appears to stem from the belief that they enjoy protected profits from their licensed mene of the public resource. Before PURPA, this was Irue. It no longer is. It is also argued that mydro developers get tax credits to defray this mort of investment. This is not the case. Energy tax credits are intended to encourage high risk Investment in all types of energy. They exist for all energy investments, and are actually higher for wind power, which has no corresponding environmental requirements.

The second question, concerning efficacy, must also be answered with an unequivocal: No. This is not an economically effective way to achieve salmon restoration. What is currently being done amounts to the imposition of what economists call a "Pigovian tax." Pigou theorized that, in the context of perfect competition, the production of public goods and bads could be optimized by imposing taxes and subsidies such that a business's total costs reflects accurately the sqcial cost or benefit created, as well as his own ${ }^{12}$. This is the principle behind effluent taxes on water polluting indusIries, for example. There are two objections to applying this theory to fish passages at hydroelecIric dams. The first is that the public utility system in this country is not even imperfectly competitive. The profit margin of the major utilities is not affected, so they experience no change in their economic incentives. . The second is that, within this theory, the production of a public good should be subsidized, not taxed. This maintains the firm's total profit to compensate for the revenues foregone in producing the public benefit.

It can be easily shown that, under current conditions, no dam owner has any incentive to further this program. Any delay in building, starting or maintaining a fish passage is to the advantage of the power producer. After all, what can the Fish and Wildife Service do if an elevator malfunctions? Even more vexing is the problem of cancelled projects or bankrupt or uncreditworthy producers. Both situations leave an existing dam without a fish ladder. It is neither ecologically, economically nor politically feasible to simply destroy non-conforming dams. At the same time there may be very serious problems of ownership and liability which make compliance unenforceable. There are no simple answers to the questions raised by this analysis.

PROPOSALS

Having spent all this time and paper explaining what's wrong with the current cost-benefit arrangement in this program, I will now propose some possible improvements. These are suggestions, meant to stimulate discussion and hopefully legislation. They are intended as openers, not the final word.

One measure discussed whenever hydro people gather is charging user fees of salmon fishermen. The Fish and Wildlife Service's Duck Stamp Program is usually cited as a precedent for this. The fishermen are already paying a Federal excise tax on all their gear. This is the source of the "Din-gell-Johnson" funds used for this and other fisheries programs. So, in reality, they already pay a user's fee. Hunters pay a similar levy, as well as an additional user's fee for specific kinds of game, such as the Duck Stamp for waterfow1. So, it would seem that a "salmon stamp" would be a reasonable charge. Such a fee would be equitable vis-avis other sportsmen, and would make the only direct beneficiary of this program pay more of its real costs.

Another possible change would be to provide subsidized or low-interest government loans for fish passage construction costs. For marginal small power producers, something like this is needed as an absolute minimum. No banker in his right mind will loan money to a low-profit business for a capital expenditure which will only reduce the firm's available revenues. A PURPA producer who ardently backed the salmon program would still have great difficulty funding the required construction. If no other change was made, this would at least render cooperation by the small power producer a real possibility. It would improve the fairness situation, but is only a partial answer.

The Federal Power Act, in its original wording, made a distinction between new construction, where fish passages could be integrated into the plans, and the addition of such facilities to preexisting dams. It specified that where fish passage or navigation facilities were not included in the original plans and license, the owner should simply convey to the government tifle to all necessary real estate and water rights ${ }^{13}$. Responsibility for actual construction and operation of the facility then devolved on Washington. I would propose that the Federal government reassume responsibility for retrofitting fish passages at existing dams and for operation and maintenance of the system. Such a return to the original philosophy of this law has many advantages.

Treating fish navigation in the same mannér as boat navigation makes coordination of these functions much easier. The Corps of Engineers is currently evaluating extending navigation much farther

[^0]upstream on the Connecticut River. The history of the St. Lawrence Seaway demonstrates that fish utilize navigation locks with ease. The reverse is, of course, ridiculous, but the point is that if the Corps decides to pursue this, pending fish passages will be rendered superfluous.

Federal ownership and operation would mean improved efficiency in many ways. Because of the inequities in the current situation, hydroelectric developers have strong incentive to drag their heels, and no reward for active furtherance of the program. Coordinating fish passage operations with the upstream progress of the run would be very easy if one agency controlled the entire sequence. If fish passage watching actually became a popular pastime, the government is better able to cope with the liabilities involved in public access than is any private developer. Finally, enforcement problems would be eliminated. The program could be scheduled and kept approximately on schedule, since lack of cooperation and ordinary private sector business delays would no longer be a factor.

Economic arguments also favor such an arrangement. The Pigovian tradition is the major body of economic theory agruing fop private production of public goods and services ${ }^{14}$. A11 the permutations of Pigou's theory, however, share the precondition that they only function in a situation of perfect competition. By law, the electric power industry is noncompetitive. In situations lacking perfect competition, it is generally conceded that no economic manipulation can ${ }^{\text {induce }}$ optimal production of public externalities ${ }^{15}$. The real world demonstrates the truth of this inability. For instance, it is virtually impossible to tax industry effectively to reduce pollution to desirably low levels. It is usually cheaper for a firm to cheat and pay the fine only if it gets caught. This is just one illustration of why many economists believe that the government is the best supplier of public goods and services. The rationale behind this theory is that it transfers the costs of the public goods to their true beneficiaries, the public.

Government ownership and operation of the fish passage system would, then, be more equitable, simpler, and more economically efficient. It has a great deal to recommend it as an a1ternative to forced business closures, breached dams, and abandoned facilities which can easily result from attempting to enforce this sort of construction program on businesses with limited resources.

SUMAATION

I have shown that the cost-benefit distribution of the salmon program, as it is currently constituted, is far from fair. This comes from both sides of the equal treatment coin. Equals,

14 Whitcomb, 1972, pages 9-18.
15 Mansfield, 1975, pages 520-521.
that is sport hunters and fishermen, are treated unequally. That is, anglers pay less of the actual cost of maintaining their prefered game populations than do hunters. There is no evidence of any difference in the ability to pay, the desirability of the activity, or the pleasure derived. On the reverse side, all hydroelectric generators are treated equally, although it clear that they are divided, as a matter of law, into different groups, with different resources and responsibilities.

If we attempt to consider the rest of the anadromous fish restoration effort, the inequity is the same or is amplified. Many more fish passages are required, but the resultant fishery is not considered as valuable, so the economic analysis does not improve, and may become less favorable. This matter should be studied and discussed.

I have proposed that the economic inequity of this program would be improved by some combination of user fees for anglers and financial relief for small hydro developers. This, of course, would require Federal legislation. It may not be possible. A paper like this is the best of all possible worlds. I can remake any part to suit. Federal ownership and operation of fish passages, which logic labels as the fairest and simplest solution to many of the salmon program's problems, is almost certainly not politically viable. But the judgement about fairness should be separated from the judgement about feasibility. Only if we seriously consider what constitutes an ideal solution, can we arrive at reasonable and effective trade-offs, and at programs that can succeed.

LITERATURE CITED

Be11, Daniel. 1976. The Cultural Contradictions of Capitalism. 301 p. Basic Books, Inc., New York

Eicher, George J. 1985. Fishways: Cost Effective Alternatives. Hydro Review $4(1): 84-88$.

Mansfield, Edwin. 1975. Microeconomics: Theory and Applications. Second Edition. 534 p. W. W. Norton \& Company, Inc. New York.

Samuelson, Paul A. 1967. Economics: an Introductory Analysis. 821 p. Seventh Edition. McGraw-Hill Book Company. New York.

Squire, Lyn and Herman G. van der Tak. 1975. Economic Analysis of Projects. 153 p. The Johns Hopkins University Press. Baltimore.

Stolte, Lawrence, et al. 1984. Draft Environmental Impact Statement for the Restoration of Atlantic Salmon. $105+22$ p. U.S. Fish and Wildlife Service. Newton Corner, Massachusetts.

Whitcomb, David K. 1972. Externalities and Welfare. 157 p. Columbia University Press. New York.

International Council for the Exploration of the Sea
C. M. $1972 / \mathrm{M}: 2$

Anadromous and Catadromous Fish Committee

Contents
Page
A. INTRODUCTION 1
B. WEST GREENLAND FISHERY 1

1. Statistics and Composition of the Fishery 2
2. Origin and Destination of Salmon at West Greenland 4
(a) Recaptures of Fish at West Greenland Tagged in Home Waters 4
(b) Recaptures of Fish Tagged at West Greenland and in the Labrador Sea 5
(c) Other Studies 6
3. Assessments of the Effects of the West Greenland Fishery 7
C. NORWEGIAN SEA FISHERY 9
4. Statistics and Composition of the Fishery 9
5. Origin and Destination of Salmon in the Norwegian Sea 10
6. Assessments of the Effects of the Norwegian Sea Fishery 11
D. HOME WATER CATCHES 13
E. FUTURE RESEARCH 16
7. International Tagging Experiment at West Greenland 16
8. Other Research 17
F。 FUTIURE MEETING 17
G. TABLES 1-11 18
H. APPENDICES 29
9. Resolution adopted at the ICNAF Meeting in 1970 concerning Regulation of Salmon Fishing 29
10. Resolution adopted at NEAFC Meeting in 1970 conceming Regulation of Salmon Fishing 30
11. Second Report of the Planning Group for the International Tagging Fxperiment at West Greenland in 1972 32
12. List of Working Papers 45
Figures 1 and 2。

Report of the ICES/ICNAP Joint Working Party on North Atlantic Salmon

March 1972

A. INTRODUCTION

1. The Working Party met in the Department of Agriculture and Fisheries, Dublin on 21 st - 24 th March 1972. The following were present.

A.W. May	Canada
C.P. Ruggles	Canada
O. Christensen	Denmark
Sv. A. Horsted	Denmark
J. Mbiler Jensen	Denmark
I.R.H. Allan	England and Wales
A. Swain	England and Wales
P. Davaine	France
R. Vibert	France
F. Thurow	Federal Republic of Germany
T. Gud..onsson	Iceland
Miss. Twomey	Irish Republic
A.E.T. Went	Irish Republic
K.U. Vickers a	Northern Ireland
L. Rosselard	Norway
W.R. Munro	Scotland
B.B. Parrish (Chairman)	Scotland
K.A. Pyefinch (Rapporteur)	Scotland
R. Hennemuth	USA
J. M.pller Christensen	ICES

a Present for part of the meeting only
Ap llogies for absence were received from G.J. Ridgway (USA) and A. Bozdanov (USSR). A representative from Iceland attended for the first time.
2. The Working Party received the latest informati:n available on the West

Greenland and Norwegian Sea salmon fisheries, made further assessments of the effects of these fisheries on total and home-waters catches and considered In detail the plans proposed by the Tagging Planning Group for the International tagcing programme at West Greenland in 1972.

B. WEST GREENLAND FISHERY

3. At its annual meeting in 1970 , ICNAF adopted a resolution seting out a number of regulatory measures for the salmon fishery in its Convention area during 1971. This resolution is set out in Appendix 1. These measures, which came into force on 1 January 1971, included a limitation of the asgregate
tonnage of the fisshing vessels employed or the catch taken by each cortracting Goverment to the 1969 level and the pronioition of the use of any monofilamert nets rot acquired jefore 1 st July 1970．The everts in the West Greeniarim Zishery in 197i，desit with below，are corsicierea in whe light of these measures． 1．Suatistics and Composjition of the Eishery
4．The saimon catches at west Greenland ir the years 1900－71（the dara ion
1971 are provisional）are sinown in mable 1．In 1971，as in the previous year，it was rot possible to separate the catch by Greenland vessels into its drift－net ance zill－net components．

5．The total catcin in 1971，according to present iniormation，was 20615
metric tons，which is a substantial increase over the catch for 1970 （ 2146 metric tons）and is the highest catch yet recorced at Vest forecmanai． Thougit inis catch canrot be completeiy separated into drift－ret ancie einl－ret components，the former was，almost certainiy，the larger．On the basis of the catches made by research vessels，the size and age composition of the suimon stock exploited were very similar to those in previous years．The stock consisted aimost entireiy of one－sea－winter fish which had migrated to sea as twom or tinnee－ years－old smolts．The remainder consisted of Ȧish older than one－seaminter．The sex ratio（ 3.1 females： 1 maie）was also similar to that in previols years． 6．As in previous years，the total catch shown in Table 1 incluces a smai？ catch（less than 10 metric tors）taker at Angmegssalik or the east coust of Greenland．The distrioution of the fishery in 1971 is shown in T゙ニE゙．．．Tis indicates that the crift－net fishery exterded all along the west coust，from ine Disko area in tine north to the vicinity of Julianenab in the south aniu that ごこi－ netting was carnied out at a number $0 \hat{i}$ places along this length of coast． 7．Whe table below shows the number of vessels（exciucing Greenlancragisterea vessels）which have taken part in the West Greerlanà drif̂t－net fishery from its inception in 1965.

Year	Number of Vessels				
	Denmerk	Faroe	Norway	Sweden	Total
1.965	0	1	1	0	2
1966	0	1	1	0	2
1967	4	4	3	0	11
1968	10	2	4	1	17
1969	15	6	11	2	34
1970	13	7	10	1	31
1971	11	3	8	0	22

8. This shows that the number of non-Greenlandic vessels participating in the drift-net fishery in 1971 was fewer than in 1970 (assuming that no Swedish vessels fished at West Greenland in 1971), yet the total catch taken by them was approximately 350 metric tons greater. This must mean either that the abundance and/or availability of salmon in the offshore area was substantially greater in 1971, giving rise to higher average catch rates per vessel, and/or that the total effective fishing effort was higher despite the fewer vessels, due to an increase in their fishing power and efficiency. Although insufficient data are available for the changes in fishing power and efficiency to be determined accurately it is known that in recent years improved, more efficient drift-net gear has been adopted progressively by the fishing fleet. Changes in the gear winch may have contributed to the \mathbb{H} eater efficiency are:-
(a) The use of monofilament nets, which comparative fishing experiments have shown to give higher catch rates than the polyfilament nets used previously. Monofilament nets were first used by a few vessels in 1969 and their use increased rapidly thereafter and, in 1971 , most of the drift nets used were monofilament.
(b) The introduction, by some vessels, of a floating, unbuoyed drift-net head line instead of the normal buoyed one. Limited comparative fishing experiments have shown that nets rigged in this new way gave higher catch rates.
(c) A progressive adoption of the most efficient drift-net mesh size.
(d) An increase in the number of nets shot per day by some vessels, through the use of monofilament nets during daylight.
9. Although the combined effects of these factors cannot be estimated eccurately the available data suggest that between 1968 and 1971 they, together with a general increase in crew 'skill and experience', resulted in at least a doubling of the average fishing power and efficiency combined of the individual fishing operation and that, therefore, in 1971 the total effective fishing effort by the drift-net fleet was not lower than in 1970. Thus it seems likely that the increase in drift-net catch in 1971 was not primarily due to greater stock abundance, as the average catch per vessel would suggest.
10. Theso data indicate clearly the limitations of the vessel tonnage regulation
introduced in 1971 as a method of stabilising effective fishing effort in a fishery in which majur technological and other developments afiecting fishing power and efficiency were taking place. Nevertheless the measures introduced did prevent the entry of additional tonnage into the fishery.
11. Origin and Destination of Salmon at West Greenland
(a) Recaptures of Rish at West Greenland Tagged in Home Waters
12. Recaptures during 1963-71 of salmon tagged in home waters either as natural
(wild) or hatchery-reared smolts and as kelts are shown in Tables 2,3 and 4 . These tables include new uata and revisions of data presented in earlier reports of the Working Party.
13. The latest data show that, in 1971 as in previous years, fish tagged in the main salmon-producing countries were recaptured at West Greenland. The Working Party draws attention to the recoveries at West Greenland of salmon tagged as wild smolts in the extreme south-west of France in 1969 and 1970. Additional tags were reported from Norway bringing the total for that country to eleven recaptures Prom the West Greenland area. Salmon occurring in West Greenland ere, therefore, now knowin to originate on the European side from about latitude $63^{\circ} \mathrm{N}$ to about $44^{\circ} \mathrm{N}$, which is almost the southern limit of the species. Attention
is also drawn to the high number and recapture rate, in 1971 , from hatcheryreared smolts tagged in the USA in 1970. Seven of these tagged fish, together with one from Canada, were taken in the small east coast catch mentioned in para. 6, which indicates that salmon from North American rivers had migrated far up the east coast of Greenland.
14. Some fish tagged as kelts in home waters have been recaptured at West Greenland, usually in the autumm following release and, in particular, there was a substantial increase in the number of Canadian tagged kelts recaptured in 1970 and 1971.
15. The Working Party agreed, as at its previous metings, that it was not possible to obtain reliable estimates of the proportions of the salmon stock at West Greenland originating from individual countries from the tag recapture data. However, the latter continue to indicate that the major part of the West Greenland salmon stock is derived from rivers in Canada, Great Britain and Ireland.
(b) Recaptures of Fish Tagged at West Greenland and in the Labrador Sea
16. In 1970 and 1971 , British, Canadian and Danish scientists conducted further tagging experiments at West Greenland. Seven local recaptures were made from 1 to about 30 days after release. Of the fish tagged in 1970 , four recaptures were made in home waters (Canada 2, Ireland 1 and Scotland 1). During the 1971 experiment a hatchery-reared fish tagyed in the USA in May 1970 was recaptured in Diskofjord and released after re-tagging.
17. Additional tagging was conducted in 1970 and 1971 by Canadian scientists in the Labrador Sea and a total of 86 fish was tagged in the area. Eleven recaptures have been reported; 6 in the northeast of Newfoundland and 5 in Chaleur Bay on the borders of the Canadian provinces of Quebec and New Brunswick.
18. Table 5 gives details of the recaptures of fish tagged at West Greenland and
in the Labrador Sea from 1965 to 1971 inclusive. This show that 38 recaptures have been reported in home waters, 27 of which were of salmon tagged In the West Greenland area. Of the latter, 12 were recaptured in North America
(Canada) and 15 in Europe (Great Britain, Ireland and Spain). Attention is drawn to the recapture in the River Ason in Saain, which is near the southern limit of the species on the eastern side of the Atlantic.
(c) Other Studies
19. Investigations were continued in 1970 and 1971 on biochemical characters and parasite fauna (as biological tags) in relation to the study of the origin and mixing of salmon at West Greenland.
20. Canadian investigations of blood serum protein in association with parasite studies have provided promising results. Blood samples of 204 Atlantic salmon taken in the Labrador Sea and the West Greenland areas in the autumn of 1970 were analysed by Canadian scientists, using methods described in pravious reports. Forty-nine per cent of the fish were identified as North American in origin and fifty-one per cent as European, a result similar to the proportionate returns of salmon tagged at West Greenland and recaptured in home waters (para. 17). Further work is in progress to check these results.
21. Research on transferrin nolymorphism which was carried out in England, had indicated that a certain proportion of the salmon can be distinguished as to the continent of origin. An analysis of 984 blood samples collected in the West Greenland area in 1970 showed that $18(2 \%)$ could be specifically identified as fish from the UK, $159(16 \%)$ as fish from North America though the remaining $807(82 \%)$ could not be allocated between the two populations. Further research on these latter fish is in progress. With the co-operation of a Danish commercial fishing vessel, 1,830 blood samples were collected in the West Greenland area in 1971 and these are now being anal ysed. Work on various biochemical aspects of this problem is also currently being undertaken in other countries.
22. Work on parasites as biological tags was continued in 1970 and 1971 . The Canadian results indicate that the abundance of the parasite Anisakis simplex in North American salmon at West Greenland and in home waters is consistently lower than for European salmon, whereas the parasite Eubothrium crassum is more
prevalent in West Greenland and in North American than in European salmon. 22. Other methods for the separation of stocks are being investigated. Of these, the use of srale characteristics, which has proved so successful in the case of Pacific salmon, appears to be promising. Work in this field is in progress in a number of countrites but the results are not yet sufficiently advanced for the full value of tris method to be assessed.
23. Assessments of the Etfects of the West Greenland Salmon Fishery
24. Previous assescments by the Working Party of the effects of the West Greenland fishery on home-waters stocks and catches of two- or more sea-winter salmon have been based on estimates of the changes in total weight (i.e. the resultant of natural mortality and growth) which would have occurred in the salmon comprising the $\|$ est Greenland catch had they not been caught there and, if surviving, had returned to homewaters in North America or Europe (ICES, C op. Res. Rep., Nos. 8, 12, 21). The losses to the combined North American and European home-waters stncks for a "iest Greeniand catch of around 2,000 metric tons, as in 1969 and 1970 , was estimated in this way to lie in the range $1,100-$ 2,700 metric tons, and to the home-waters catches of between $650-1,600$ metric tons (using upper and lower values of instantaneous natural mortality rate of 0.02 and 0.1 per month respectively). The same general levels of estimated losses were obtained frm the simulation of home water catches of two- or more sea-winter salmon in Canada and the UK returning from West Greenland, assuming they had ail been present in the f'ished area there (for details see ICNAF Comm. Doc. $71 / 14$ and ICNAF Res. Doc. $71 / 72$). It is evident from the West Greenland catch data in Table 1 that the losses to the homewaters stocks and catches resulting from the West Greenland fishery in 1971 , estimated by the same method as in previous years, was probably somewhat greater thin the above estimates for 1969 and 1970.
25. In the absence of accurate measures of the relative contributions of salmon from different countries to the West Greenland stock it is not possible to
estimate reliably the losses on an individual country basis. However, the information available from tag recaptures (paras. 14 and 17) and biochemical studies (para. 19) suggests that, in recent years, the stock at West Greenland was composed of salmon from North America (almost entirely Canada) and Europe (mainly Great Britain and Ireland) in roughly equal proportions, suggesting tentatively that the home-waters losses are also roughly equally divided between them.
26. The results of detailed studies of the recaptures at West Greenland of salmon tagged as smolts in Canadian rivers show that individual rivers make markedly different contributions to the exploited stock at West Greenland. They indicate that only a small proportion of the natural swolt production in rivers running into the Bay of Fundy contributes to the West Greenland stock but, for other Canadian rivers where smolts have been tagged, especially in the Gulf of St. Lawrence, the contribution has been substantial. This means that Canadian home-water losses also differ markedly between river stocks. On the basis of available tag recapture data and taking into account the differences in stock size, these losses may be greatest for the stocks in the rivers running into the Gulf of St. Lawrence, of which the Miramichi is the largest. 26. The above assessments of home-waters losses refer to the direct, immediate effects on the population of salmon which, if not caught and if surviving, will return to home waters in subsequent years. They take no account of the possible effect of a reduction in spawning stock size, resulting from the exploitation at West Greenland, on future smolt production in home waters. 27. Data from the Miramichi River stock in Canada show that there has been a steady decline in the abundance of two- or more sea-winter salmon entering the river since 1960 and of grilse since 1965 , resulting in a marked reduction in the egg production potential of the spawning stock to a level in 1969-71 at which smolt production is probably severely reduced. Although this deoline began amongst year-classes produced before the West Greenland flishery reached a high level and was therefore mainly due to other causes it is possible that the West Greenland fishery has contributed to the decline in the most recent years.

C. NORWEGIAN SEA FISHERY

28. At its annual meeting in 1970 , NEAFC adopted a resolution setting out a number of regulatory measures for the salmon fishery in its Convention area during 1971. This resolution is set out in Appendix 2. These measures, which came into force on 1st January 1971, included a closed season (1st July to 5 th May), closed areas ((i) east of Longitude $22^{\circ} \mathrm{E}$ and, (ii) between Latitudes 63° and $68^{\circ} \mathrm{N}$ east of the Greenwich meridian), a minimum size for salmon caught (60 cm .) and a minimum hook size (gape not less than 19 mm .). These measures have affected the catches in 1971 to such an extent that, in several respects, they are n longer comparable with the catches of previous years. 1. Statistics and Composition of the Fishery
29. Data on the catches taken and the number of vessels operating in the Norwegian Sea fishery in the years 1965-1970 and provisional statistics for 1971 are given in Table 6. These show that the rapid growth of the long-line fishery since 1965 was halted in 1971 as a consequence of the new regulations. In fact, the fishing effort was lower and the catch only amounted to about half that in 1970.
30. Information on the catch-per-unit-effort in the long-line fishery in 1968-1971 is given in Table 7. Judged from information on the fishery in 1969 and 1970 abundance and/or availability of salmon in the exploited area seems to rise gradually from February until April and decline during the remaining part of the season. The Danish catch-per-unit-effort data for May-June was approximately the same in 1969,1970 and1971. It should, however, be noticed that observations in 1970 and 1971 show a marked decline of abundance and/or availability of salmon during June. As the fishery in 1971 was extended over a longer period in June, the catch-per-unit-effort data for this month are not strictly comparable with those for previous years.
31. Owing to the establishment of closed areas in 1971, the long-line fishery was restricted to north of Latitude $68^{\circ} \mathrm{N}$ and west of Longitude $22^{\circ} \mathrm{E}$ from the

Norwegian fishery limit to a distance of 360 natical miles from the coast (Fig. 2). The main fishing was concentrated within 100 miles from the coast. No commercial salmon fishing was conducted in the vicinity of the Faroe Islands in 1971.
32. In previous reports, it has been pointed out that about 90% of the exploited
stock in the Norwegian long-line fishery in the period Pebruary to mid-May had already spent two or more winters in the sea but that, after mid-May one-seawinter fish formed an increasing proportion of the catch. As the fishing seas on in 1971 was restricted to May-June it was to be expected that, in comparison with previous years, one-sea-winter fish would form a greater proportion of the total catich. This was supported by Danish catch data which showed that about 15-20\% of the catch (15% of the landings) consisted of tris sea age group, compared with 10% in 1970. Prohibition of fishing in the closed areas, where the catches of former years were especially dominated by older salmon, probably also contributed to this increase. It would, however, probably have been greater but for the minimum fish and hook size regulations. The former resulted in some discarding of fish below 60 cm . in length.
33. As in previous years, the condition factors of the two-sea-winter salmon caught in the long-line fishery varied widely but were, on average, low compared with salmon of the same sea age caught at various localities in Norwegian coastal waters. However, the difference between the condition factors of the salmon in the two fisheries in $1971(10-15 \%)$ was less than in previous years $(20-30 \%)$.

2. Origin and Destination of Salmon in the Norwegian Sea

34. Information on recaptures in the Norwegian Sea fishery of salmon tagged as smolts in home waters is given in Tables 2 and 3 and, for tagging experiments in the Norwegian Sea, in Table 8. Data for 1971 indicate that, as in previous years, the great majority of salmon fished in the Norwegian Sea originated from and returned to Norwegian rivers, though some recaptures were recorded from rivers in the USSR.
35. During the spring in 1969, 1970 and 1971, Faroese and Scottish scientists undertook tagging experiments off the Faroes. A total of 666 salmon was tagged and 29 recaptures, shown in Table 9 , have been reported, 15 in Scotland, 5 in Norway, 5 in Ireland, 2 at West Greenland and 1 each in Ensland and the USSR. Most of the recaptures were made in the year of tageing. Of those recovered in home waters, 19 were grilse and 7 were two-sea-winter salnon (the sea age of the recapture in the USSR is not known). The two West Greenland recaptures are of particular interest as they suggest that the Paroes may be on one of the routes taken by European salmon on their way to Greenland.

3. Assessment of the Eifects of the Norwegian Sea Fishery

36. In 1970, data on the age composition of long-line samples showed that, as in previous years, about 90% of the exploited stock in the Norwegian Sea consisted of fish which had spent two or more years in the sea and that therefore the effects of this fishery on home-waters stocks and catches would be confined mostly to two- or more sea-winter salmon. Comparable data for 1971 showed that with the implementation of the seasonal and area closures, the proportion of these salmon in the long-line catch decreased somewhat, averaging approxately 80%.
37. The assessment of the effects of the Norwegian Sea fishery on total salmon yield (Norwegian Sea plus home waters) was approached, as in previous years, using data on the increase in weight of the fish from the period of peak fishing in the Norwegian Sea to the period of peak fishing in Norwegian coastal waters and on the proportion of fish present in the fished area which, if not caught there, would subsequently be caught in the home-waters fisheries. Although accurate measures of this proportion are not available it is possible to estimate a limiting value for it, above which the presence of the long-line fishery would lead to a decrease in the total catch from the population of two-sea-winter salmon. For 1970 , it was estimated to lie in the range $77-83 \%$ and for 1971 , when the peak of the fishery in the open sea occured later than in 1970 (due to the closure at the beginring of the season), it was approximately 90%. The
available data suggest that the average exploitation rate of two-sea-winter salmon in the river systems to which these salmon, if surviving, would return, was below these levels (estimates from a simulation model indicated that it lay between $50-80 \%$) and that therefore the Norwegian Sea fishery in both 1970 and 1971 resulted in a larger catch of two-sea-winter salmon than would have been taken in its absence. It should, however, be pointed out that the overall average 'quality' of the catch taken in the offshore fishery in both years was lower than that taken in home waters.
38. In the last published report of the Working Party (ICES Coop. Res. Rep., No. 24,1971), a provisional assessment was made of the losses to the two-sea-winter salmon st, ck in home waters resulting from the long-line fishing in the Norwegian Sea. On the basis that the loss due to natural mortality between the time the salmon are exploited in the open sea and their return to home waters is about the same as the increase due to growth, it was estimated that the losses to the home-waters salmon stocks to which two-sea-winter salmon in the Norwegian Sea retum would be roughly the same as (but not greater than) the Norwegian Sea catch. It follows, therefore, that in 1969 and 1970 , the estimated loss to the home-waters stocks was around $800-1,000$ metric tons. The corresponding estimates of losses to the home-water catches in these years were probably within the range $400-500$ metric tons.
39. Since, as shown in Table 6, following the implementation of the closea season and area regulations in the Norwegian Sea, the long-line catch in 1971 was substantially smaller tham in 1969 and 1970 , the estimated losses to the home-waters stocks and catches were correspondingly smaller. The catch of two-sea-winter salmon by the long-line fiching in 1971 was about 400 metric tons so the estimated loss to the home-water stocks of these fish was approximately of this magnitude and the loss to the home-water catch was within the range 200-300 metric tons. As in previous years, most of this loss would occur in the Norwegian home-waters fishery.
40. It must be emphasised that, as for the West Greenland fishery, these assessments louses concern only the immediate direct effects of the long-line fishery; they take no account of any possible longer term efiects from possible decreases in smolt productin and salmon recruitment, resulting from a fishinginduced reduction in spawning stock. At present, too little is known of the relation between spawning stock size, smolt production and recruitment of grilse and salmon to the Norwegian stock for these effects to be estimated.

D. HOME-WATERS CATCHES

41. Catch statistics for the home-water fisheries are given in Table 10 and catch-per-unit-effort data are given (in greater detail than in previous years) in Table 11. Information on changes in catches in individual countries is summarised below.
42. England and Wales The overall picture presented by the salmon and Erilse catches for 1971 is that of a reduction from the 1970 level; due mainly to reduced net catches, the rod catches having remained steady at the low level experienced over the past four seasons compared to the previous six seasons. The total catch for 1971 by all methods was, however, still above the average for the period 1960-70. The major component in the overall catches has again been the catch made by the comercial net fishery in the northeast coastal area. Apart from this, the remainder of the net catch for England and Wales has remained steady over the period 1960 to 1971. Severe reductions in the rod catches of the earlymrunning two-sea-winter fish have continued in many rivers, but not in ail. A factor in this decline may be the incidence of salmon disease (UDN). The counts of early-running two-sea-winter salmon in the River coquet (Northumberland) have shown an overall decline since 1968 (but a slight increase in 1971) and have formed a decreasing proportion of the total years' runs of salmon and grilse in that river. The data from the River Axe (Devon), where a count is also made, show a decline in two-sea-winter fish over the last three years.
43. France Though the catch cannot be given precisely, there are indications
that the total catch of salmon and grilse has decreased in recent years, mainly due to a decrease in the salmon, particularly in the River Adour. 44. Iceland The catch of salmon and grilse combined in 1971 (205 metric tons) was the highest yet recorded. Since 1960, annual catches have generally shown an upward trend, coinciding with a great increase in smolt rearing during that period.
44. Ireland The total catch (salmon plus grilse) in 4971 was similar to that of previous years. However, there was a sharp decline in the salmon catch compared with 1970, which was the first year in which a breakdown was available into salmon and grilse. Some long-term statisti os are available for a number of the ma,ior river systems and from these it is evident that the decline in early-run fish, winich was first noted in 1967, was much more marked in $19 \% 0$ and 1971 . There Was a slight decrease in the grilse catch in 1971 but it was still well above the average for the decade in the major salmon rivers where a breakdown in statistics is available.
45. Northern Ireland The commercial catch of salmon plus grilse in 1971 (including 50% of the Foyle total) was 191 metric tons. Tinis is a decrease of 36% from the previous year's catch and represents 58% of the average for the period 1967-70.
46. Normay Provisional f'igures for the salmon plus grilse catch in $1971(1,185$ metric tons) indicate that this was similar to the 1970 catch but that the catches in both years were below those of all previous years since the early nineteen fifties. On a weight basis, the 1971 catch consisted of about 36% grilse and 64% salmon. Compared with 1970 , the proportion of grilse had increased slightly.
47. Scotiand Provisional figures for the total Scottish catch (salmon plus grilse) for 1971 indicate that this was less than in 1970. The salmon catch was substantially lower than in any year since 1952 and only about 65% of the

1952-70 average. The grilse catch was similar to that in 1970 and, as in recent years it was well above the long-term (1952-70) average.
19. Canada The total home-water (salmon plus grilse) catch decreased by 260 metric tons in 1971 f'r m the 1970 level. The Labrador portion of the catch increased by 180 metric tons, but there was a decrease of 440 metric tons in the other areas represented within the Canadian total catch. Landings from certain regions have shown major decreases, namely Quebec (57% of 1970 catch) and the Maritimes (48% of the 1970 catch). It will be noted that, since 1970 , it has been pnssible to obtain more precise data on catch-per-unit-effort for the matior Atlantic salmon fisheries in the Maritime provinces of Conada (Table 11). The Working Party noted the serious decline in the Maritime and quebec commercial and anjling catches for 1971. The reduced runs of large salmon in the Miramichi and the resulting loss in potential egg deposition has prompted the Canadian pnvernment to impose severe restrictions on the commercial and sport fishery for this river in 1972. Spawning escapement has been below that believed necessary for adequate seeding of the rivers since 1969 and the autumn portion of the Miramichi run, including both salmon and grilse, has virtually disarpeared. 50. The total catch (salmon plus grilse) in 1971, was lower than in 1970 in all the main salmon producing countries except Norway, where it was about the same and Iceland where it was slightly higher.
51. Separate statistics for salmon and grilse catches have generally only been available for recent years but the salmon catches for some European countries, for the years 1969-71, sh in below, show a substantial decline in these years.

Country
England and Wales Ireland Norway Scotland

Salmon Catch (metric tons)		
1969	1970	1971
264	313	298
260	268	175
801	816	747
987	802	664
2312	2199	1884

Further, in some countries (e.g. Ireland, Scotland) the decrease in the salmn catch has been most marked in the early spring runs. The Canadian salmon catch was also lower in 1970 than in 1969 (Table 10), but data for 1971 are not yet available.
52. It should be noted that the grilse catches for the duropean countries listed above also decreased overall, in the years 1969-71, as shown below.
Country
England and. Wales
Ireland
Norway
Scotland

Grilse Catch (metric tons)		
1969	$\frac{1970}{113}$	214
1470	1519	1971
582	355	1467
954	622	438
3119	2710	646

Between 1969 and 1970, however, the Canadian grilse catch increased substantiaily.

E. FUTURE RESEARCH

1. Irternational Tagging Experiment at West Greenland
2. The Working Party considered the Second Report of the Planning Group for the International Tağing Experiment at West Grealand in 1972 (Appendix 3). It approved the proposed plans and budget for the experiment, and the arrangements proposed for its administration. They also approved the draft of the Guide Book and standard forms for research vessels and observers, participating in the experiment.
3. The Horking Party examined and approved a draft publicity pamphlet for the experiment and agreed that suitable allocations of copies of it should be supplied for distribution in Groenland and in those European and North American countries with an interest in the West Greenland fishery. It was also agreed that individual countries could purchase additional copies of the pamphlet, provided that they informed the ICES Secretariat about their requirements before the printing order was despatched. The Working Party also stressed the importance of additional publicity within countries through especially the press,
radio and television.
4. The Working Party endorsed arrangements drawn up by the Planning Group, for handing and preliminary analysis of data from the Tagging Experiment. These were set out in the First Report of the Planning Group whi ch formed an arpendix to the report of the Joint Working Party in 1971, and may be summarised as follows:- Canada will be responsible for handing the research vessel catch and effort data, Denmark the tag return and the commeraial fishery data and the United Kingdom the examination of all scale collecticns. It was also agreed that the ICES Hydrographer should be consulted about the analysis of hydrographic data collected during the tagging experiment. 56. It was agreed that if possible a film record of the experiment should be prepared and countries participating in the experiment were asked to examine this possibility.

₹. Other Hesearch

57. The Workin Party drew attention to the importance of continuir:g studies on salmin stocks in home waters, in particular, to investigati-ns of the exploitatiun rate in home waters, of the relationship between grilse and salmon and of the relationship between stock and recruitment and to the analysis of tag recaptures on a river system basis.

F. FUTURE MEETING

58. The Working Party recommended that they sfould next meet in Copenhagen, for five days, during the week beginning 26 March 1973.

Table 1. Catches at Fest Greenland, 1960-71, in metric tons and round fresh weight. (Based on data available at 31 March 1972).

a - Figures not available, but catch is known to be less than Faroes
b - Provisional
c - Including 7 metric tons caught on long-line by one of two Greenland vessels in the northern Labrador Sea early in 1970.
d - Up to 1968, gill net only, after 1968 gill net and drift net. The figures in brackets for the 1969 catch are an estimate of the minimun drift net catch.

Table 2. Nimber of natural (wila) smolts tagged in the years 1963-1971 and recaptured in West Greeniand and in other areas, including home-waters, up to March 1972. Figures in brackets are returns per thousand tagged.

Country	$\frac{\text { Year of }}{\text { Tamring }}$	$\frac{\text { Murber }}{\text { Tacred }}$	West Greer. ${ }^{2}$ and	$\frac{\text { Norrierian }}{\frac{\text { Sea and }}{\text { Faroes }}}$	Recantur Grilse	$\frac{\text { All Other Areas }}{\text { Salmon }}$	Total	$\frac{\text { Grand }}{\text { Total }}$
Canacia	1963	5,850	11 (1.9)	0	70	20 (3.4)	90	101
	1964	15,013	$9(0.6)$	0	204	72 (4.8)	276	285
	1965	16,485	73 (4.4)	0	175	193 (11.7)	368	441
	1906	9,509	25 (2.6)	0	120	104 (10.9)	224	249
	1967	17,809	17 (1.0)	0	121	166 (9.3)	287	304
	1968	55,724	127 (2.3)	0	1,212	425 (7.6)	1,637	1,764
	1969	42,879	84 (2.0)	0	377	174 (4.1)	$55 i$	635
	1970	37,054	106 (2.9)	0	281	-	281	387
	1971	45,558	-	-	-	-	-	3
Scotlara	1953	10,998	10 (0.9)	0	172	92 (8.4)	264	274
	:964	9,200	$6(0.7)$	0	110	66 (7.2)	176	182
	1965	9,239	10 (1.1)	0	74	49 (5.3)	123	133
	196́́	15,406	30 (1.9)	0	281	39 (2.5)	320	350
	1967	21,002	23 (1.1)	1	169	72 (3.4)	241	265
	1968	15,695	15 (1.0)	0	127	32 (2.0)	159	174
	1969	15,958	53 (3.3)	0	219	57 (3.6)	276	329
	1970	32,071	109 (3.4)	0	554	-	564	673
	1971	20,706	(3.4)	-		-	-	-
England and Wales	1963	9,485	8 (0.8)	0	15	38 (4.0)	53	61
	1964	17,129	10 (0.6)	0	30	97 (5.7)	127	137
	1965	5,873	12 (2.0)	0	35	57 (9.7)	92	104
	1966	3,219	5 (1.6)	0	28	37 (11.5)	65	70
	1967	4,118	10 (2.4)	0	23	56 (13.6)	79	89
	1968	5,790	20 (3.5)	0	43	48 (8.3)	91	111
	1969	8.611	47 (5.4)	0	27	38 (4.4)	65	112
	1970	7,320	16 (2.2)	0	29	-	29	45
	1971	5,619	-	-	-	-	-	-
NTorway	1963		0				4	4
	1964	1,485	0	0	67	26 (17.5)	93	93
	1965	2,178	0	0	40	18 (8.3)	58	58
	1966	1,362	0	2	27	16 (11.7)	43	45
	1967	3,601	0	4	59	29 (8.0)	88	96*
	1968	3,562	0	3	105	17 (4.8)	124	131*
	1969	4,273	$3(0.7)$	3	83	26 (6.1)	109	120*
	1970	7,603	0	2	217	-	217	222
	1971	5,573	-	-	-	-	-	
Iceland	1963	63	0	0	2	0	2	2
	1964	63	0	0	0	1	1	1
	1965	8	0	0	0	0	0	0
	1966	83	0	-	-	2	2	2
	1967	154	0	-	2	1	3	3
	1968	59	0	-	1	1	2	2
	1969	15	0	-	-	-	-	-
	1970	16	0	-	-	-	-	-
Ireland	1968	606	0	0	21	0	21	21
	1969	0	0	0	0	0	0	0
	1970	1,522	4	-	1	-	1	5
Sweden	1969	885	0	0	-	85	85	85
USSA	1969	500	0	0	0	0	0	0
France	1969	2,089	15 (7.1)	-	0	4 (1.9)	4	19
	1970	3,854	17 (4.4)	-	0	3 (0.7)	-	20
	1971	3,321						

Tadle 3
Number of hatchery-reared smolts tagged in the years 1963-1971 and recaptured in Fiest Greenland and in other areas, including home-waters, up to March 1972. Figures in brackets are returns per thousand tagged.

Taje 3 (Continued)

* Inoluding some fish from unknown localities.

Table 4 Number of kelts taered in the winters 1962/63-1971/72 and rece tared in Greenland and in other areas, including hore-waters, up to the end of 1970 .

Country	$\frac{\text { Winter of }}{\text { Tagginf }}$	$\frac{\text { Number }}{\text { Taggred }}$	Greenland	$\frac{\text { Recaptures }}{\text { Other Areas }}$	Total
Canada ${ }^{\text {a }}$	1962-63	653	2	65	67
	1963-64	1,518	0	91	91
	1964-65	1,995	1	141	142
	1965-66	7,169	0	653	653
	1966-67	7,510	1	688	689
	1967-68	3.710	2	395	397
	1968-69	3,707	4	163	167
	1969-70	4,539	10	208	218
	1970-71	5,412	16	333	349
	1971-72	5,012	-	-	-
England and Wales (River Axe only)	1962-63	159	1	12	13
	1963-64	185	2	10	12
	1964-65	184	1	11	12
	1965-66	$109{ }^{\text {b }}$	1	7	8
	1966-67	$178{ }^{\text {b }}$	1	11	12
	1967-68	188	2	6	8
	1968-69	81	0	3	3
	1969-70	113	0	12	12
	1970-71	7	0	0	0
Faroes	1970-71	24	0	0	0
Iceland	1962-63	114	-	14	14
	1963-64	167	-	9	9
	1964-65	154	-	5	5
	1965-66	357	-	15	15
	1966-67	745	-	75	75
	1967-68	441	-	17	17
	1968-69	369	-	19	19
	1969-70	314	0	21	21
	1970-71	785	0	105	105
Ireland	1962-63	2,264	2	31	33
	1963-64	2,351	2	70	72
	1964-65	2,695	2	34	36
	1965-66	2,972	1	40	41
	1966-67	3,175	0	77	77
	1967-68	1,034	0	24	24
	1968-69	498	0	10	10
	1969-70	1,088	0	28	28
	1970-71	477	0	36	36
Scotland	1962-63	413	1	2	3
	1963-64	134	0	2	2
	1964-65	233	0	6	6
	1965-66	1,376	4	19	23
	1966-67	901	3	18	21
	1967-68	117	0	$3^{\text {c }}$	3
	1968-69	152	0	$1{ }^{1}$	1
	1969-70	153	0	1	1
USA	1962-63	151	1	13	14
	1963-64	123	1	10	11
	1964-65	160	0	23	23
	1965-66	146	2	16	18
	1966-67	578	5	75	80
	1967-68	340	5	56	61
	1968-69	218	1	16	17
	1969-70	315	0	8	8
	1970-71	400	1	8	9
	1971-72	240	-	-	-
USSR	1968-69	566	0	10	10
	1969-70	1,147	0	0	0

a Ascending adults tagged during any year are included in the totals tasered for the corresponding winter (i.e. those tagged in 1962 are included under 1962-63, those tagged in 1963 under 1963-64 etc.), but recaptures of these adults in the year of tagging have not been included.
b In addition, 180 kelts were tagged by the Dee and Clyde River Authority in 1965-66 and 291 kelts in 1966-67. No recaptures were reported from the first experiment and two (from 'Other Areas') from the second.
c Includes 1 recapture at Faroes
d Recaptured at Faroes

Table 5 Recaptures (to March 1972) of fish tagged at Viest Greenland

Yeax	Number	Local Hecaptures			Distant Recaptures
Tagged	Tagged	Number	Days Absence	Number	Location
1965	223	3	1, 3, 26	1	Canada (Sw Newfoundland)
1966	729	28	$\begin{aligned} & 1-8(24) \\ & 10-50(4) \end{aligned}$	4	$\begin{aligned} & \text { Canada (Miramichi - 1) } \\ & \text { Scotland (River Tweed }-2 \text {) } \\ & \text { (River Spey }-1 \text {) } \end{aligned}$
1967	375	6	$\begin{aligned} & 1-2(3) \\ & \text { not known (3) } \end{aligned}$	4	$\begin{aligned} & \text { Canada (Labrador }-1 \text {) } \\ & \text { Ireland (River Slaney }-1 \text {) } \\ & \text { (River Barrow }-1 \text {) } \\ & \text { Scotland (River Tay }-1 \text {) } \end{aligned}$
1968	47	4	$\begin{aligned} & 1-3(3) \\ & 1 \text { month }(1) \end{aligned}$	1	Canada (Labrador)
1969	444	14	$\begin{aligned} & 4-35 \text { days } \\ & 340-398 \text { days } \end{aligned}$	13	```Canada (Labrador - 1) (NE Newfoundland \(-4^{\text {a }}\)) (Niramichi - 1) England (Taw \& Torridge Estuary-1) (River Wye - 1) Ireland (Waterville - 1) (River Slaney - 1) Scotland (near Montrose - 1) Spain (River Ason -1) Viales (River Teify - 1)```
1970	$27^{\text {c }}$	0	-	3	$\begin{aligned} & \text { Canada } \text { (Chaleur Bay }-1 \text {) } \\ & \text { (River St. Jean }-1 \text {) } \\ & \text { (Escuminac }-1 \text {) } \end{aligned}$
	224	3	4-22 days	4	```Canada (Labrador - 1) (Nova Scotia - 1) Ireland (Dunmore-East -. 1) Scotland (Solway Firth - 1)```
1971	$59^{\text {c }}$	0	-	8	$\begin{gathered} \text { Canada (NE Newfoundland - 6) } \\ \text { (Chaleur Bay - 2) } \end{gathered}$
	226	4	1-ca.30		-

a One recaptured in year of tagging
b Recaptured at Greenland in 1970
c Labrador Sea in spring

e Precise number unknow, but large numbers of small and medium-sized vessels participated.
f Excluding catches discarded because undersized.

Table 6. Catches in the Norwegian Sea long-line fishery and in the drift-net fishery within Norwegian fishery limits, 1965-71. Metric tons, round fresh weight.

Year	Country	No. of Salmon/ 1000 Hooks caught in						No. of galmon
		February	march	April	Nay	June	Total season	sampled
1968	Denmexk			92	100			5,539
1969	Denmaxk Germany Faroe		43	$\begin{aligned} & 57 \\ & 50 \\ & 79^{a} \end{aligned}$	$\begin{aligned} & 44 \\ & 46 \end{aligned}$	$\begin{aligned} & 29 \\ & 23 \end{aligned}$	$\begin{aligned} & 39 \\ & 42 \end{aligned}$	$\begin{array}{r} 25,891 \\ 5,459 \end{array}$
1970	Denmark Germany Faroe	42	50	$\begin{aligned} & 67 \\ & 66 \\ & 40^{a} \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 27 \\ & 16 \end{aligned}$	$\begin{aligned} & 49 \\ & 46 \end{aligned}$	$\begin{array}{r} 72,000 \\ 6,313 \\ 3 \in 6 \end{array}$
1971	Denmark Germany Faroe		$\begin{aligned} & 72^{c} \\ & 82^{a} \end{aligned}$	$39^{\text {2 }}$	$42^{\text {b }}$	$25^{\text {b }}$	60^{2}	31,105 499

a - Research catch, 20-80 nautical miles NE of Faroe Islands.
b - Includine catches discarded because undersized.
c - Research catch.

Table 8 Recaptures of salmon tagged in the long-line fishery in the Norwegian Sea (to March 1972).

Table 2 Recaptures of fish tagged in Faroe waters.

Year	Number	Recaptures					
Tagged	Tagged	Norway	England	Scotland	Ireland	Russia	Greenland
1969	74	-	-	2	-	-	-
1970	233	2	1	5	3	1	1
1971	359	3	-	8	2	-	1

[^1]Table 11 Estimates of catches per unit effort for some home-water fisheries.

a - Miramichi area, salmon only. Average of mean monthly catch/unit effort for both types of fear throumhout open seasons for wach type. Units of effort taken as 1 trap net or 200 fathoms of drift net, as defined in FRB Tech. Rept. No. 29.
b - Salmon and grilse per drift net
c - Pounds salmon and grilse per licence
d - Salmon and grilse per bag net
e - Catch per net per month
f - Catch Der crew rer month
g - Catch per net licence issued
h - Miramichi area, salmon only, pounds/unit day

H. APPENDICES

1. Resolution acooted at the ICNAF Meeting in 1970 concerning Regulation of Salmon Fishing

Recognizing that the proposal adopted at the 1969 Annual Meeting for the prohibition of the fishery for salmon outside national fishery limits, not having been accepted by all Contracting Governments, has not been fully effective;

Considering that interim measures are desirable in order to avoid the escalation of fishing for salmon throughout the Convention Area pending a more accurate assessment of its effects on coastal and river fisheries and on the stocks; and

Noting that Contracting Governments which have not participated in the fishery have no present intention of so doing;

The Commission also proposes that:

1. That each Contracting Government which has participated in the fishery for Atlantic salmon, Salmo salar L., take appropriate action to limit the aggregate tonnage of vessels employed or catch taken by its nationals in the fishery in the Convention Area to a level not exceeding the aggregate tonnage of vessels so employed or catch so taken in 1969;
2. That Contracting Governments which have not accepted the prohibition on fishing for Atlantic salmon outside national fishery limits take appropriate action to prohibit fishing for Atlantic salmon outside national fishery limits in the Convention Area before 31 July and after 30 November.
3. That the use for salmon fishing of any trawl net, any monofilament net or any troll be prohibited throughout the Convention Area provided that Contracting Governments may authorize the continued use of monofilament nets acquired before l July 1970.
4. That these measures be in force for the year 1971 subject to review within that period, in the event of substantial changes in the catches of Atlantic salmon in the Convention Area or in home waters or in the fish stocks.
5. Resolution adoptec at the NEAFC Meeting in 1970 concerning Regulation of Salmon Fishing
"Fishing for salmon shall be regulated by the following measures as provided for in Article $T(1)$ of the Convention.
6. Closed Season Art. $7(I)(c)$

In regions 1 and 2 of the Convention Area, outside national fishery limits, fishing for salmon shall be prohibited from July lst to May 5th, both dates inclusive.

Where salmon occurs within the national fishery limits of Contracting States, those States shall prescribe annual closed seasons during which fishing for salmon shall be prohibited.
2. Minimum size for salmon Art. $7(1)(b)$

No salmon of a size less than 60 cm , measured from the tip of the snout to the end of the tail fin shall be retained on board, but shall be returned immediately to the sea.
3. Mesin of Nets Art. $7(1)(\varepsilon)$

Drift nets, anchored nets and seines used for fishing of salmon shall have a minimum mesh size of 160 mm . The mesh size is to be measured in accordance with the mesh regulations already in force under Recommendation (1).
4. Other Measures for the Regulation of Fishing Gear Art. 7(1)(e)

In the fishery for salmon
a) any hooks used shall have a gape of not less than 1.9 cm ;
b) the leader attaching the hook to the line shall have a minimum strength comparable to 0.6 monofil nylon;
c) the 1 use of any trawl net, any monofilament net, or any troll shall be prohibited.

5. Closed Areas Art. $7(1)(d)$

Fishing for salmon in the Convention Area, outside national fishery limits, shall be prohibited.
a) between latitudes 63° and $68^{\circ} \mathrm{N}$ and east of longitude 0°
b) east of longitude 22°.

The regulations under 2,3 and 4 shall apply within the whole Convention Area, but outside national fishery limits.

This regulation for salmon fisheries shall enter into force on lst January 1971 and shall be subject to review by the Commission after two years or in any case if substantial changes occur in the catches of salmon on the high seas or in home waters, or in the fish stocks.

In addition to making this Recommendation, the Commission agreed to ure ail. Contracting States fishing for salmon on the high seas only to participate in the planting of smolts."

This Group heid theis secoma meeting at Coperhagen from 18 th to 20 th Jamuary，1972．Those prosent wero：

```
O. Christonser
S\nabla. &a. Horsted
A. H. Kay (Cha{rman)
A. L. Keister
B. びこ切-Hansen
J. Hipller-Christensen
J. l:,6ller-Jensen
W. R. Kiunro (Rapporteur)
G. J. RidEWRy
L. Rosseland
A. Svain
F. Tambs-Ijcha
R. Vibert
```

Donmaris
Denmarik
Carada
U．S．A．
Denmark
ICES
Denmark
Scotianz
U．S．A．
Norway
England \＆Walas
ICES
France

The Group began by reviewing，briofly，the results of the Denish／U．K． and Canaatan salmon work at Greenland in 1971，with partioulen reforence to the decisions which they asd to take in velation to the plans for the 1972 tagging oxperiment．

They then went on to reconsiaer，and to expand，the plans for the 1972 experiment，which were outiined in their first report（Appondix $\%$ to C．Ji．1978／w：2）．They also discussea in detail the drafts of the＇Guido Book for Participants in the ICES／ICNAF Salmon Tagging Programme at Greanland，1972＇ prepared by Dr．May and Ur．Horsted．

Kany of the Group＇s decisions have bean fully incorporated in the draft of the Guide Bock，which will be submitted to the Joint foricing Party at their meoting in Dublin in March 1972．The ooments which follow，set out under the headings adopted as the agenda for this meating，are intended only to cover those decisions＂winich were not relevant to the Guide Book and，where－considered necessary，to explain the reasons for some of the points incomporated in it． Yor a full appreciation of the results of this meeting，this roport shoula be read in conjunction with the draft of the Guide Book．

Revien of the Objectives of the Experiment

The Group considered that the objectives of this experiment, as set out on Page 1 of their previous report, still held good and that these were sdequately, if more briefly described in the Guide Book (Soction 1). Research Vessel and Scientific Staff Particioation ana Scheduling

Up-dated information on the availability of research vessels for this experiment is given in the Guide Book (Section 2.1), together with an anendici programme of research vessel distribution throughout the experiment, based on this latest information. Those organisations sending research vessels are asked to provide copies of their programe to other participants as soon as they are availabla and well in advance of their vessel's arrival in Greenland.

Apart from the scientific stafi ellocated by those organisations winich are provieing research vessels, the U.S.A. offered to provide scientific assistance up to a total of 24 man/veaks (probably as two teams of tro scientists). It vas also understood thet, as recorded in the previous report, Ireland might be able to provide one scientist for six weoks.

It seamed unlikely that outsids scientific assistance moulci oe required on the Danish or U.K. research vessels, but help from one or two U.S. scientists would be appreciated on the 'A.T. Cameron'. The Freach vessel could provide accomodation for two forejgn scientists but, if these places mere not required, they would be filled from their own staff. It seemed probabie that some accomodation would be availajle on the U.K. vessels, which could be utilised by scientists with specialist interests, if required. It Mas agreed that details of the se arrangements should be finalised at the liarcia meeting of the Joint Working Party in Dublin and that any organisation wishing to avail themselves of the U.S. offer should contact Dr. Ridgeway directly.

The Group recoived, through Dr. lay, a request from the University of lioncton for facilities to continue their PIROP seabird scheme by placing observers on research vessels taling part in the tagging programme. This
progranmo is concernod with studying the biology of seabiras while they are at sea end, perticularly, with the effects of drift-netting on Brunnich's guillemot. In recent years PIROP observers have been placed on Canadian and Frenci vessels operating in this area. Observers nould not necessarily be Canadian, but might be recruitod from appropriate organisations in the research vesselis oma country.

With the exception of the Denish vessel, on mhich accommodation was very limited, it Was aEreed, in principle, thet accommodation cculd be made available for a PIROR Observer on each research vessel and that this organisation should contact participating organisations directly regarding the placing of their observers.

Selection of Fixed Fishing Stations

At their first meeting the Group proposed that a set of fixed stations should be fished periodically throughout the experiment to provide information on the distribution of salmon throughout the fishing season. At this meeting the Group accepted the pattern of fixed stations suggested by Mr. Horsted (see Guide Book, Section 4.1 .3). In their first report the Group had proposed that these stations should be fished overnight but, after consiaerable discussion, it was decided that these should be fished during daylipht, in exactly the same way as during the rest of the experiment (Guide Book, Section 4.4). It wis felt that such an arrangement would provide catch data which would be directly comparable with the more extensive records which nould be available from the ordinary fishing programme and would also provide the best opportunity of maintaining progress towards the tagging target.

The programe for fishing these standard stations is set out in Section 4.1.2 of the cuide Book.

It Was apprecieted that scientists in charge of research vessels migit heve to moaffy their programas depending on circumstances at the time, particularly if the numbars of fish which they had been able to tag proved disapgointing.

Gear and Fishing Technique

The Group considered available information on the efficiency of various mesh sizes of net, including that obtained by the 'Adolf Jensen' and 'A. N. Cameron' in 1971, using 120 mmesh nots. They concluded that there Fas no particular advantage in fishing the latter and that, overall, 130 m nets seemed to give the best results. However, after considering evidence that there were differences in the size distribution of salmon in various areas off Greenland, and through the fishing season, it was decided that two meshes should be used and that these should be 130 mm and 150 mm stretched mesh.

In view of the increasing evidence from both commercial and research vessels that monofilement nets were more offective, particularly in dayliekt, it was decided that only monofilament nats should be used during the experiment. It was also felt that this decision wiuld simplify the provision Of spare nets to replace any which were lost or damaged.

Details of the standard design for these nets and the composition of the fleet of nets to be used are set out in the Guide Book in Sections 4.3 and 404, respectively. It was noted that the 'Adolf Jensen', because of the: limited space on board, would be unable to fish more than 80 nets.

Scheduling and Programe for Observers

From information provided at the meeting, it seemed likely that the requirement for placing observers on six comercial vessels could be met, as two Normegian vessels were willing to carry observers and it seemed probable that three Faroese and two Danish vessels would aiso accept observers.

The situation with regard to the orovision of observers was not finalised but Normay could probably provide two trained observers and Demmarik two or three. In eddition, three Feroese observers, who would not be memoers of the Faroese research staff, would be available for duty on Feroese vessels. It was boped that further details would be available in Dublin in Karch.

It wes agreed that the primery function of observers on commercial vesseis Mould be to ensure the recovery of all tags and to tae suitable fish from the catch. Since it wes considered that this would leave thern zittic or no tizu for other duties it was decided that they should not be asked to carry out eny other, more speciailsed tasiso

İ it should prove impossible to implenont the full programe of observer participation, it was suezested that the available effort should be concentrated towarks the ?ater nert of the season, when it was hopen that sabstantjal numbra of tagged inish would have been liberated.

Tras, Trgeing Tochnicue, Data from Tagged Fish

The tags to be usec will be, basically, as described in the Group's first report (sce also Guide Book, Section 4.5 .1), but Dr. Jiay uncertook to investigete the possibility of using a heavier gauge wire for attachment.

A total of 10,000 tags would be ordered and those woula be issueck to appropriate oreanisations by the end of June (1000 each to research vessals and 5,000 divided among observers). Tageing equipment, as specified in Section 4.5.1 of tha Guice Book, vould be supplied to both observers and research vessels, on request to the Biological Station at St. John's, Nowfounaland.

Fuill instmictions on tagging are given in the Guido Book (Sections 4.5 .2 anc 4.5 .3).

Other Biolosical Data end Specimens, Disposition of Fish

Research vessels mould be prepared to collect on roquest, biologicel 3ate. and material other than that set out in Section 40.5 .4 .1 of the Guiae Boci. Inüえi Zuals or organisations requiring such facilities shoula make their own arrangements with the relevant organisation and should provide any necessamy equipment.

The Group confirmed their previous decision that no iish caight by research vessels shoulc be sozä.

The Group reitcrated cheir viem thet cood comunications were vital to the success on the experimint. Full details of their jroposals for comanioution curing tho experiment are set out in Section 2.3 of the Guizo Book. All particijating oxamisations mere asked to provido, as soon es possible, details of tho raiio facilities oveizable on their vessels, for inclusion in Section 2.3.2.

It was reaitsea that recular oomact with ouscrvers might do difincuí to achieva ara that comimerial vessels might bo zeluctant to reveal details oi their position and catch over the radio, but it wes recommended that observers shouia atsempt to contact the "Azoî Jensen" daily ana report the geneaz ana An whin thoy were operating; the number of fish taceed; the number of recaptures reconced (1972 experiment tags and others, separately) and the probable tixe of thei= next combect. It was suacested that 1500 hours (Iocal tine) might be a suitable time for observers to report.

Recoräng, Renorting snd Erchanging Dato

Detsiis on the stamara recoras to be maintained by research pessels and Obse:Ters are provided in Section 4.504 .1 of tho Guide 3ook amo arrangements for subsequath hanainig of the date ane given in the follouine section.

ICES undertook to produce the thres standard foms recuired for date rocordrng and to investigate, and report in darch, on the possibility of procucine appropriate scale envelopes for the experiment, as illustrated in the Gutde Book.

mis item was nco discussed in dotail jut it pas abreec that those Errangoments set out on Page 27 of the Goup's first repori should be accepted. Purlicity
 Dr. May, was considered and aceeted and ICES undeatock to investigato the provision of a paiphict in four languages, for mhich Dr. Hay also submitted a
preliminary design.
It was arreed that a Norvegian text mould not be needed if a Darish one was provicied and that the pamphlet should, therefore carry the text in Derish, Greenlandic, French and English. A first estimate of the Likely reçuizemont Sor this pamphiet was 20,000 copies, but this figure should be reviewed in March.

The possibility of producing a film record of the experiment wes discussed briefly and it was sugeested that this topic should be raised again in March, with a view to standardizing technique on the various research vessols.

Budget and Financing

Although no formal promises of contributions to the special zund for this expemimert had yet been received by ICES, it was understood that the following countries had provisionally indicated their willingmess to subscribe, as follows:

United Kingroa	$\pm 8,000$
Ireland	$\therefore 3,000$
Canada	䓓 25,000
U.S.A.	䢒 10.000
approximately	± 21.000

Since considereble expenditure would arise prior to the beginning of the experiment, it was recomerded that contributors shoula be askea to pey their contrioutions to ICES before lst July. Becase of administrative difficulties, U.S.A. would not be able to make a contribution in advance but other amansaments woulc be made by them with ICES.

It was agreed that it would be simplest if ICES cia not open a seperate baik account for the "ICNS/ICNAF Salmon Tagsins Eroeriment Find", but that they would, of course, kesp separate accounts for the Fund. Office expenses incurred by ICES would not be charged to the Fund but these might be offset by any bank interest accruing from the Fund.

It was aiso agreed that savings on some of the items specified in the budget could be spent on other items, with the agreement of the Chairman of the Joint Working Party and, similarly, that expenditures from the contingency item in the budget, other than those mentioned specifically, shoulu be made only on the same authority.

The Group reconsidered tioe estimates of expenditure given in their first roport ari amended tineso in the light of such more rocent information as was available. Datails of these amended estimates are given below and are follomed by comments on the changes made in some items.1) Pags, tag preparation, tagging equipment andscalo packets.650
2) Travel for observers incluaing subsistence on siore at Greemand (12 round trips at $£ 250$). a $\$ 3000$
Subsistence on beard commercial vessels (90 days for 6 ooservers at 25 D.kr/day t 6×250) $21100 \quad 4: 00$
3) Ciotiing allowence for specially-recruited observers $(6 \times 400 \text { D.ker })^{\circ}$ C 150
4) Saieries of speciäliy-recruited observers (5 observers for 4 zonths at $£ 250 /$ month). 5000
5) Payment for fijsh tagged on commerciai vossels 9000
6) Eiquipment tor obsemers on comercial vessels (rianiks, measuring boards etc). 400
7) Puelicity (printed pamphlet) ${ }^{2}$ 350
8) Contingencies, incluains:a) Exenses incurnod in the attenciance of en ICSSrepresentative at the Joint Horijng PartyEeeting in Dubiin in Karch, 1972.
b) The shipment oi materials and specimens. ${ }^{B}$
Notes
a. The cost of travel per observer was increasec from \&200, as giver In the Zast roport, to 2250. The prasent estimato Pon this item mas thought to be a reaiistio over-estimate since some on the Farcese ooservers seem litely to travel at least cme may on commercial vessels.
b. Phe revised estimate for this item was based on a figure of 25 D.kre/dzy, together with a 'good will' payment of $£ 50$ to each vessal.
c. It was agreed that this provision shoula be applicable to syecially-recruited observers only and that it should be at the rato of $400 \mathrm{D}, \mathrm{k} /$ observer. Employing orgenisations shoula reclaim expenEitura wider tinis item from ICES. Q. The exact number of such observers could not be ostablishen at the meeting but the estimate given is besed on the assumption that funds would probably be requirea for three Faroese and two Derisi observers oily, for a pericd of foun months (including travel to anà エrom Greerlaria). The problams which could erise in relstion to accident insurance, healtin benofits etc, if observers were employed directly by ICES, Were discussed. The Group agreed that such en arrangement should be evoided and suegested trat obsemvers misht be recruited as temporary employees of the appropitate covermment oreanisation or that they might be employed and paid by the caistain of the commercial vessed, who mould be raimoursed by ICES.
e. It was agreed that the price paid for taged fish mould have to vary accoraing to the size of the fish, in order to avoid selection of only the smellor Aish for tagging. It was suggested that this should bo on the besis of a price/length curre, since accurate Weigits mouid not be avaiackle for taeged fish. IA captains of comercial vessels acreed to this arrangement, payment would be made to them by ICES on presentation of a bill countersigned by the appropriate observer.

Danish ank Normezian represenvatives provided details of 1971 selno: prices in relation to weight and the estimate of the cost of this Item was calculated on the basis thet the payment for an average Greeniand-caught salmon nould be 5.5 (3.5 kg at $20 \mathrm{D} . \mathrm{kr} / \mathrm{kg}+20 \mathrm{D} . \mathrm{kr}$) .

Sewbers mere asked to bring to the Dublin meeting of the Joint Woricing Party, any relevant data whicis they had on the total length/ gutucd weight relationship for salmon ceught at Greenlend. i. ICES obtained a very preliminary estimate oi 5,200 D.ere (£289) as the cost of producing 20,000 two-colour pamphlets. g. This item, which was shom separatoly in the estimates in the fizst report, Was transferred to 'contingencies".

In addition to the items mentioned above, the question of training observers was discussed. It was decided that it was not praoticable to mare special anrangements for training observers and that arrangements for a simple form on training shoula be left to employing organisations (a demonstration of tagging teciniques for rapresentatives of organisations employing observers, Fould be arranged at the Dublin meeting). This item was, therefore, deletod from the estimates.

IGES Administrative Eynotions

Kost of these have alroady been dealt with elsewhere in this report. Fowerdr: arrangenents for dealing with tag recaptures through ICSS, as suegested in the Group's first report, rexe also reviened. The possibility that tag rewerads should be paie from the Fund was discussed and it was agreed that euch en arrangement mould raise serious problems because of the differing levels of reward paid in the verious countries. It was, therefore, agreed that organisations should pay for the rewards for recaptures mado in their on territories, in eccordance with the arrangements set out in the provious report. Othex Items
a) Irdex maps of Danish charts for Greenland waters, EngIfsh translations of "Harbour Regulations for Greenland" anil copies of relevant parts of tho first draft of the "Guide Book" were issued for omerd transmission to research vessel captains.
r) Tho problom of comordinatine reeearch vessel procrames and controling E.: 3 activities of observers was discussed. With the agreement of kr . Horsted, it was decided that the senior scientist on board the 'Adolf Jensen', as the person who would have the most comprehensive knomledge of day-to-day events, should have overall responsibility for the co-ordination of the programme. He woula, therefore, have responsibility for, (a) co-ordinating and advising on research vessel movements and, (b) controlling the work of observers, with perticular reference to the avoidance of excessive expenditure or unvise expenditure on fish bought for tagging.
c) The Group considered that it was essential that a representative from ICES should be present at the meeting of the Joint Working Party in Dublin and recomended that the expenses of such a rcpresentative should be borme by the Tuni (see 'contingencies').
a) The future of the Group ras not discussed but it was recommended that the Joint forling Party should consider this question at their Dublin meetirg.

APPETDDX

Research vessels from Canacia, Denmarik, England, France and Scotland srill take part in salmon tagging at Greenland in 1972. Scientists will also be present from other countries. Some of these will be working on fishing vessels. Fishermen at Greenland and in other countries are being asked to co-operate in this oxperimont by rotuming tags and capture information quickly.

SaImo: from many countries on both sides of the Atlantic spend part of their Iives in the sea near Greenlando kany thousards of saimon have been tagged mhen leaving the rivers as young iish ena many hunareds of these tags have been retumed from the Greenland fisberies. Smaller numbers of salmon have been taeged at Greenlend, and some of tiese taes have been returned from coastal areas and rivers of Europe and North America.

All the countries which produce and fish for Atlantic salmon have agreed that a large tagging experiment at Greenlani is reeded to determine the pacts necossary to manage the Atlantic salmon rescurce for the best interests of all concerned. Very little is knorn about the life of salmon in the sea, and information is needea on distrioution, abundance, origins of fish, survival in the sea, and the numbers of semon that can sasely be harvested without causing a decrease in abundance. TegEing at Greerland, combined with other studies oi salmon at sea and in fresh water, and cooperation of fishermen all over the North Atlantic, mill provide the information needed.

Zags are of yellow plastic, are printed with tho letter X folloned by a number, and are attached bolow the large fin on the back. Lost of the salmon berrine these tags should be taken in 1972 at Greenland and in 1973 in other countries, but some may aiso be expected in 1973 at Greenland ând 1974 in other countries. In adajtion to this special experiment, salmon tagein also be done in other areas. It is of course just as important to return all these tags as well.

Tags may be retumed to any biologist or fisheries officisl in the countries where they are taken, or mailed directly to the address on the tag (International Council for the Exploration of the Sea, Charlottenlund, Demaric). Reward yayments will be made by the various countries taking part in the experiment. Every fisherman who returns a tag will also be sent information on the timo and place of tageine of the indivicual saimon.

4. List of Working Papers

Note In this list, reference numbers are only quoted for three papers to be circulated to the International Commission for the Northwest Atlantic Fisheries.

1. A report on the 1971 salmon long-lining cruise off the Faroes, by G. Struthers.
2. Scottish salmon tagging data 1963-1971, by D.A.F.S. Pitlochry.
3. Greenland salmon research programme, 1971-'Adolf Jensen', by W. R. Munro. (ICES/ICNAF Salmon Doc.)
4. Scottish salmon catch statistics, by W. R. Munro. (ICES/ICNAF Salmon Doc.)
5. Sex ratios of North Esk salmon in relation to age, by W. M. Shearer. (ICES/ICNAF Salmon Doc.)
6. The length, weight and age composition of commercial catches taken on the Rivers Tweed, Tay and Spey in 1971, by W. R. Munro and I. J. R. Hynd.
7. The length, weight and age composition of the salmon catch of the North Esk (Scotland) in 1971, by W. M. Shearer.
8. Sunmary of salmon parasite investigations 1970-71, by J. H. C. Pippy. (ICES/ICNAF Salmon Doc.)
9. First estimates of "salmon" versus grilse quantities in Canadian commercial catches, 1969 and 2970, by A. W. May and W. H. Lear. (ICES/ICNAF Salmon Doc.)
10. Gutted weight versus total length of Atlantic salmon at West Greenland, by A. W. May and W. H. Lear.
11. Preliminary observations on differences in fishery contributions of hatcheryreared Atlantic salmon (Salmo salar) smolts related to stock selection and release location, by J. A. Ritter and D. B. Lister (ICES/ICNAF Salmon Doc.)
12. Exploitation of Miramichi Atlantic salmon based on smolts tagged in 1968, 1969 and 1970, by G. E. Turner. (ICES/ICNAF Salmon Doc.)
13. A series of graphs prepared for discussion purposes for the March 1972 Joint ICES/ICNAF Working Party on North Atlantic salmon.
14. German long-line fishery off Norway 1971.
15. Research vessel fishing on salmon off Norway (catch, gear behaviour, age, tagging), by F. Thurow.
16. Data from counting installations on the Rivers Coquet and Axe, by M.A.F.F. London.
17. Salmon and grilse catches, by M.A.F.F. London.
18. Percentage of female salmon in the upstream migrations on the River Axe, Devon, by M.A.F.F. London (ICES/ICNAF Salmon Doc.)
19. Salmon tagging data for England and Wales, by A. Swain.
20. Salmon catches for England and Wales, by A. Swain. (ICES/ICNAF Salmon Doc.)
21. The derivation by analysis of covariance of indices of total migrant population size from angling catch returns from the River Wye, by A. S. Champion. (ICES/ICNAF Salmon Doc.)
22. The Danish salmon fishery in the Norwegian Sea in 1971 , by 0 . Christensen.
23. Geographical and seasonal distribution of the Danish offshore salmon fishery at West Greenland in 1971, by 0. Christensen. (ICES/ICNAF Salmon Doc.)
24. The Faroese offshore fishery for salmon at West Greenland 1971, by A. Reinert. (ICES/ICNAF Salmon DOc.)
25. The size composition and growth rate of salmon landed in West Greenland during the autumn, 1970, by J. Mфller Jensen. (ICES/ICNAF Salmon Doc.)
26. Grilse salmon relationship in two Irish rivers, by Eileen Twomey. (ICES/ICNAF Salmon Doc.)
27. Catches in 1971 and their seasonal break-down, by Eileen Twomey. (ICES/ICNAF Salmon Doc.)
28. Rates of exploitation in Irish waters, by Eileen Twomey. (ICES/ICNAF Salmon Doc.)
29. Use of scales to determine mainland origin of Atlantic salmon caught in offshore waters, by K. H. Mosher. (ICES/ICNAF Salmon Doc.)
30. Second report of the Planning Group for the International Tagging Experiment at West Greenland in 1972.
31. A Guide Book for participants in the ICES/ICNAF salmon tagging programme at Greenland, 1972.
32. Canadian tagging data.
33. Preliminary report of salmon tags of Maine (USA) origin recovered from fisheries in the ICNAF Convention area during 1971, by A. L. Meister.
34. Norway, salmon catches.
35. Salmon tagging in the Norwegian Sea 1969-1971, by L. Rosseland.
36. Norwegian salmon tagging data.
37. Distant and local exploitation of a Labrador Atlantic salmon population by commercial fisheries, by R. F. Peet and J. D. Pratt. (ICES/ICNAF Salmon Doc.)
38. Norwegian salmon tagging data.
39. Canadian catches of Atlantic salmon 1960-1970 (graph only).
40. Overfishing and depleted stocks of Northwest Miramichi salmon, by P. F. Elson. (ICES/ICNAF Salmon Doc.)
41. Sex ratios of salmon and grilse, by P. F. Elson.

International Council for the Exploration of the Sea
C.M. 1971/M:14

Anadromous and Catadromous
Fish Committee

GENETIC DIVERSITY IN SALMON

By
Dag Møller *)
Fisheries Research Board of Canada Biological Station, St. Andrews, N.B.

INTRODUCTION

Studies on the genetics of rabiation of Atlantic salmon (Salmo salar) were started at the Biological Station, St. Andrews, in 1968. Both blood typing and electrophoretic studies were carried out. Three main patterns of transferrins, Tf AA, Tf AC, and Tf CC, made up of two molecular types, were found in plasma of hatchery and wild salmon (Møller 1970a). Several papers dealing with gene frequencies have been published (Moller 1970a, b, and c). This report gives a survey of the material sampled and analysed up to now.

MATERIAL AND METHODS

Over 5500 blood specimens distributed on 56 samples from 38 localities in Eastern Canada and United States have been collected in 1969 and 1970 (Table 1, Figure 1). Blood specimens from both parr, smolt, grilse, and adult salmon are represented. The methods of sampling, handling, the electrophoretic technique used, and the interpretation of electrophoretic patterns have been described elsewhere (Sick 1965, Mø1ler 1966, 1970a).

RESULTS

Table 2 shows the observed distributions of the transferrin patterns compared to the expected distributions of the types according to the Hardy-Weinberg law of genotype distributions in large random mating populations. Only six of the 56 samples show significant differences between the two distributions (marked x in the table).

[^2]The frequency of the Tf ${ }^{A}$ allele varies greatly (Figure 2). The lowest value, .071 , was found in Aides Str., Nfld., while the highest value, .650 , was present in the sample from MacDonald R., Anticosti. Low values were found else in Labrador and Newfoundland, while high values were found south in New Brunswick and in Maine.

Great differences in frequencies over short distance (less than 200 km) (Figure 2) were observed between Mingan (.241) and MacDonald (.650); Middle R. (.536) and East R. (.292); and Big Salmon R. (.300-.360)/ St. John R. (.229-.425) and Dennis Str. (.500). In the first case the distance between the mouths of the rivers is about 80 km .

Figure 3, 4, and 5 illustrates the confidence intervals of the observed gene frequency of $\mathrm{Tf}^{\mathrm{A}}\left(\mathrm{q}^{\mathrm{A}}\right.$) in the samples. The vertical lines give the observed frequencies, and the horizontal ranges of the bars indicate the 95% confidence limits. All figures show significant differences of the gene frequencies between neighbouring rivers or between samples collected at different localities in the same river. Another noticeable feature is the similarity between samples collected at the same locality (sample 41-42, 45-46, 52-53, 54-55). Exceptions are some of the samples from Miramichi R. (Figure 4, sample 15 to 38) and St. John R. (Figure 5, sample 47 to 51).

Miramichi R. is probably the worlds biggest salmon river. The river has a heavy ramification, and the two main branches, NW Miramichi R. (sample 15 to 32) and SW Miramichi R. (sample 33 to 35) join just before the estuary (sample 36 to 38). Sample 21 to 27 were collected during the smolt run in 1970 at the river fench at Curventon in NW Miramichi R. The specimens were sampled once a week, some times twice a week. The differences between the samples 21, 22, 23, and 24 are insignificant (Figure 4). However, in the course of three days the frequency of smolts changed from .317 to .479 (sample 24 and 25). The cause of this jump could be that sample 25 represented smolts from the group of individuals up in Little River which were identified by the catch of parr (sample 16) during the same summer.
The significant differences of $q^{\text {A }}$ between sample 34 and some of the other samples representing adult salmon in the same river system were also very interesting. Especially since the sample from the estuary representing fish coming back from the sea
(sample 38) shows an intermediate value.

DISCUSSION

The existence of significant differences in the value of the gene frequency q^{A} between samples, together with the fact that the distribution of transferrin types, with the exception of six samples, are in accordance with Hardy-Weinberg law, are consistent with the general view that nearly all species are made up of genetically distinct populations.

The significant differences between observed and expected distributions in six samples could partly be caused by chance and partly collecting blood specimens from more than one population. Sample $17,28,29,34$, and 36 are collected in one river system with a complex structure. Together with the different values of q^{A} in the same river system, it is obvious to assume that the significant differences between observed and expected distributions in each sample are caused by the presence of several populations of salmon in the river system (Saunders 1967).

One question concerns the influence of artificial stocking on the genetic diversity. Over the years there has been a considerable degree of interchange of stocks within West Atlantic salmon which could have contributed greatly to the present heterogeneity. The difference between samples from St. John R. (sample 47 to 51) is difficult to interprete. The detected heterogeneity could pertly be caused by the heavy stocking in this river over the last few years.

Stocking, however, can not explain all the differences detected. Stocking is not reported between rivers in Labrador (sample 1), Newfoundland (sample 2 to 4), or Anticosti (sample 7 and 8). It is not possible to detect any real difference between areas without stocking or areas where stocking has occurred. One would believe that an exchange of individuals between rivers would break down the isolation mechanisms and lead to panmixia. This does not seem to have occurred. The reason for this could be the common occurrence of the efficient homing instinct or some other possible premating mechanisms. Investigations indicate that populations have their own migration routes at sea. The difference between Mingan (sample 5) and MacDonald (sample 7) can hardly be explained without the existence of an isolating mechanism (see Figure 2).

By any means the complex genetic diversity in salmon together with the lack of difference between areas with and without stocking, should be a warning for the policy of stocking in the future.

Lately, another report has been published concerning transferrin variation in the Atlantic salmon (Payne, Child, and Forrest 1971). The authors explain partly the presence of different populations of Atlantic salmon as the progeny of interstadial populations. The importance of environmental changes of the past for raciation should not be underestimated. However, more importance should be attached to the balance between the evolutionary forces of today and the reaction to these forces from salmon as one species. The complex picture of genetic diversity in salmon in the present report seems to emphasize this balance in the nature comparable to many of the results obtained lately in different animal groups (see for instance Berry and Southern 1970 and Koehn 1969).

LITERATURE

Berry, R.J. and Southern, H.N. 1970. Variation in mammalian populations. Academic Press, London, 403 pp .

Koehn, R.K. 1969. Esterase heterogeneity: Dynamics of a polymorphism. Science 163: 943-944.

Møller, D. 1966. Polymorphism of serum transferrin in cod. Fiskidir. Skr. Ser. Havunders. 14: 51-60.

- 1970a. Transferrin polymorphism in Atlantic salmon (Salmo salar): J. Fish. Res. Bd. Canada 27: 1617-1625.
- 1970b. Genetic diversity in Atlantic salmon and salmon management in relation to genetic factors. Spec. Publ. Ser. int. Atlant. Salm. F.d.n. 1(1): 7-29.
- 1970c. Artsstrukturen i Atlantisk laks - Betydning for kulturarbeidet (in Norwegian, English summary). Swedish Salmon Res. Inst. Report L.F.I. Medd. S: 29 pp.

Saunders, R.L. 1967. Seasonal pattern of return of Atlantic salmon in the northwest Miramichi River, New Brunswick. J. Fish. Res. Bd. Canada 24: 21-32.

Sick, K. 1965. Haemoglobin polymorphism of cod in the Baltic and the Danish Belt Sea. Hereditas 54: 19-48.

Locality, date, gear, type of animal and number of specimens of collected samples.

Sample					
no.	Locality	Date of sample		Gear	Type of animal

Sample no.	Locality	Date of sample	Gear	Type of animal	Number specim
20	Curventon, NWM, N.B.	5/69	Counting fence	Smolt	93
21	Curventon, NWM, N.B.	20. 5/70	Counting fence	Smolt	120
22	Curventon, NWM, N.B.	26. 5/70	Counting fence	Smolt	120
23	Curventon, NWM, N.B.	29. 5/70	Counting fence	Smolt	120
24	Curventon, NWM, N.B.	2. $6 / 70$	Counting fence	Smolt	120
25	Curventon, NWM, N. B.	5. $6 / 70$	Counting fence	Smolt	70
26	Curventon, NWM, N.B.	9. $6 / 70$	Counting fence	Smolt	120
27	Curventon, NWM, N.B.	12. $6 / 70$	Counting fence	Smolt	120
28	Curventon, NWM, N.B.	3,-6. 7/69	Counting fence	Grilse	117
29	Curventon, NWM, N.B.	17.-29. 7/69	Counting fence	Grilse	146
30	Curventon, NWM, N.B.	3. $-30.6 / 70$	Counting fence	Adults	97
31	Curventon, NWM, N.B.	7.-22. 7/70	Counting fence	Adults	116
32	Sevolge R., NWM, N.B	3.-25. 6/70	Electro seining	Parr/smolt	44
33	Bartholomew R., NWM,	31. 5/70	Seine	Smolt	90
34	SW Miramichi R., N. B	1., 9, -31, 10/69	Trapnet	Grilse	117
35	SW Miramichi R., N. B	28. $10 / 70$	Trapnet	Adults	62
36	Millbank, N. B.	26.-28. 5/69	Trapnet	Smolt	120
37	Millbank, N. B.	3. $6 / 70$	Trapnet	Smolt	120
38	Millbank, N. B.	24. -29. 7/69	Trapnet	Grilse/adults	59
39	R. Philip, N.S.	1. 7.-30. $9 / 69$	Fishway trap	Grilse/adults	120
40	Wallace R., N.S.	9. $7 / 70$	Electro seining	Parr	70

no. .

MargareeR., N.S.
Margaree R., N.S.
Middle R., Cape Breton
East R., N.S.
Big Salmon R., , N. B.
Big Salmon R., N.B.
Saint John R., N. B.
Saint John R., N. B.
Saint John R., N. B.
Saint John R., South Esk
Saint John R., South Esk
Dennis Stream, N.B.
Dennis R., Maine
Machias R, , Maine
Machias R., Maine
Narraguagus R., Maine

1. 7. $-30.9 / 69$
1. $8 / 70$
2. $9 / 70$
3. $6 / 70$
4. $6 / 70$
5.-9. $9 / 70$
5. 5. $-30,6 / 69$
1. 7. $-15.10 / 69$
1. -31 . $10 / 69$
2. -10 . $11 / 70$
3. -10 . 11/70
5.-7. $8 / 70$
4. $10 / 70$
5. $6 .-30.9 / 69$
6. -13. $8 / 70$
7. $6.530 .9 / 69$

Gear

TRANSFERRIN POLYMORPHISM IN SALMON

SAMPLE	OBS.	EXP.	OBS.	EXP.	OBS.	EXP.
1	2	0.93	18	20.14	110	108.94
2	3	2.4	28	29.19	89	88.4
3	1	0.59	6	6.81	20	19.60
4	1	0.57	14	14.85	97	96.57
5	2	1.56	9	9.87	16	15.57
6	10	8.27	43	46.46	67	65.27
7	56	60.47	74	65.04	13	17.49
8	39	42.61	84	79.79	31	34.60
9	17	13.45	47	54.11	58	54.43
10	30	27.27	52	57.46	33	30.26
11	38	39.63	59	55.76	18	19.62
12	30	25.35	60	60.29	52	47.36
13	22	20.42	55	58.16	43	41.42
14	21	20.01	56	57.98	43	42.01

TRANSFERRIN POLYMORPHISM IN SALMON
TfAA
TfAC
TfCC

SAMPLE OBS. EXP. OBS. EXP. OBS. EXP.

15	7	8.56	36	22.88	30	31.56

16	5	5.29	13	12.42	7	7.29

$\begin{array}{lllllll}17 & 15 & 8.78 & 23 & 35.46 & 42 & 35.78\end{array}$
$\begin{array}{lllllll}18 & 5 & 6.91 & 37 & 33.20 & 38 & 39.91\end{array}$
$\begin{array}{lllllll}19 & 6 & 5.80 & 25 & 25.41 & 28 & 27.79\end{array}$
$\begin{array}{lllllll}20 & 11 & 11.36 & 43 & 42.29 & 39 & 39.35\end{array}$
$\begin{array}{lllllll}21 & 13 & 13.67 & 55 & 53.66 & 52 & 52.67\end{array}$
$\begin{array}{lllllll}22 & 13 & 12.04 & 52 & 51.94 & 56 & 56.03\end{array}$
$\begin{array}{lllllll}23 & 10 & 11.60 & 54 & 50.80 & 54 & 55.60\end{array}$
$\begin{array}{lllllll}24 & 10 & 12.04 & 56 & 51.94 & 54 & 56.03\end{array}$
$\begin{array}{lllllll}25 & 19 & 16.03 & 29 & 34.94 & 22 & 19.03\end{array}$
$\begin{array}{lllllll}26 & 17 & 16.14 & 54 & 55.74 & 49 & 48.13\end{array}$
$\begin{array}{lllllll}27 & 15 & 15.05 & 55 & 54.90 & 50 & 50.05\end{array}$
$\begin{array}{lllllll}28 & 22 & 15.08 & 40 & 53.84 & 55 & 48.07\end{array}$
$29 \quad 28 \quad 22.25 \quad 58 \quad 69.50 \quad 60 \quad 54.25 \quad$ x
$\begin{array}{lllllll}30 & 9 & 9.59 & 43 & 41.83 & 45 & 45.59\end{array}$
$\begin{array}{lllllll}31 & 17 & 18.64 & 59 & 55.73 & 40 & 41,63\end{array}$
$\begin{array}{lllllll}32 & 5 & 6.57 & 24 & 20.86 & 15 & 15.57\end{array}$
$\begin{array}{lllllll}33 & 12 & 11.38 & 40 & 41.25 & 38 & 37.37\end{array}$
34
$10 \quad 5.78$
$\begin{array}{llll}32 & 40.44 \quad 75 \quad 70.78\end{array}$
$\begin{array}{lllllll}35 & 11 & 9.68 & 27 & 29.64 & 24 & 22.68\end{array}$
$\begin{array}{llllllll}36 & 21 & 16.50 & 47 & 55.99 & 52 & 47.51 & \text { x }\end{array}$
$\begin{array}{lllllll}37 & 15 & 15.77 & 57 & 55.46 & 48 & 48.77\end{array}$
$\begin{array}{lllllll}38 & 7 & 4.90 & 20 & 24.20 & 32 & 29.90\end{array}$

TRANSFERRIN POLYMORPHISM IN SALMON

| | TfAA | | TfAC | | TfCC | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SAMPLE | OBS. | EXP. | OBS. EXP. | OBS. | EXP. | |
| 39 | 12 | 12.68 | 54 | 52.65 | 54 | 54.67 |
| 40 | 7 | 6.09 | 27 | 28.82 | 35 | 34.09 |
| 41 | 19 | 18.57 | 46 | 46.86 | 30 | 29.57 |
| 42 | 20 | 23.52 | 64 | 56.97 | 31 | 34.51 |
| 43 | 28 | 31.65 | 62 | 54.71 | 20 | 23.64 |
| 44 | 10 | 10.12 | 50 | 49.57 | 60 | 60.20 |
| 45 | 11 | 10.08 | 50 | 50.4 | 59 | 58.8 |
| 46 | 15 | 14.82 | 52 | 52.44 | 47 | 46.74 |
| 47 | 8 | 5.49 | 32 | 37.03 | 55 | 62.48 |
| 48 | 14 | 10.71 | 50 | 56.57 | 78 | 74.72 |
| 49 | 10 | 7.72 | 33 | 37.57 | 48 | 45.72 |
| 50 | 8 | 10.84 | 35 | 29.33 | 17 | 19.84 |
| 51 | 7 | 8.07 | 30 | 27.86 | 23 | 24.07 |
| 52 | 8 | 10.00 | 24 | 20.00 | 8 | 10.00 |
| 53 | 27 | 25.47 | 34 | 37.06 | 15 | 13.47 |
| 54 | 10 | 11.28 | 18 | 15.44 | 4 | 5.28 |
| 55 | 5 | 5.29 | 13 | 12.42 | 7 | 7.29 |
| 56 | 9 | 8.76 | 11 | 11.48 | 4 | 3.76 |

FIGURE 1

FIGURE 2

FIGURE 4

ANADROMOUS STREAMS PROGRAM

Anadromous trout classified as game fish include native searun cutthroat, Dolly Varden, and steelhead or searun rainbow trout. Because steelhead are more abundant than cutthroat or Dolly Varden and provide more sport angling opportunity in
 streams, they are the primary focus of this program. Steelhead populations can be divided into two major groups, winter runs, which return to streams from November through April to spawn, and summer runs, which return to streams from May through October. With some diversity within these major strains, steelhead angling in streams is available almost year around.

Washington streams supporting steelhead and other anadromous fish are distributed throughout the Puget Sound region, the Columbia River drainage, and coastal areas draining directly to the Pacific Ocean.

Management of steelhead in streams is very complex due to a number of major factors including the 1979 U.S. Supreme Court decision which provided for allocation of up to 50% of harvestable numbers of steelhead and salmon to Treaty Indian Tribes; physical and biological competition with commercial salmon species; and continuous reduction of adequate stream-flows and natural spawning and rearing habitat.

SUPPLY AND DEMAND

Steelhead punch card data back to 1970 show that sport angling for steelhead fluctuated from year to year within a narrow but fairly high range until 1976, when the full impact of the Federal Court (Bold) decision on salmon and steelhead allocation was realized. In 1976 steelhead tag sales dropped off about 35\%. Sales increased again by 26% in 1977 and have continued to grow slowly but steadily at a rate of 1-5 percent through calendar year 1980. This slow but steady growth in sport steelhead demand is expected to continue into the foreseeable future.

GOAL

The statewide goal for anadromous streams is to maintain, or increase where feasible, sustainable wild populations of anadromous trout while increasing angling opportunities through selective stocking of hatchery-origin fish. Although management emphasis is on perpetuation of wild stocks, the goal does not preclude hatchery-origin enhancement of streams to meet recreational demand for steelhead and searun cutthroat. The goal is not dependent on federal decommercialization of steelhead trout.

PROBLEMS AND STRATEGIES

1. Problem

Spawning and rearing habitat for wild and hatchery stocks is being depleted by streambed disturbance and development activities affecting stream habitat.

Strategies

a. acquire and analyze back-up information needed to adequately protect and restore aquatic habitat or mitigate fish losses. This will include inventorying aquatic habitat, measuring losses, determining economic values, and developing and evaluating new methods for improving and restoring habitat to replace losses.
b. represent fish in negotiating protection, restoration and mitigation.
c. establish statewide programs for such activities as gold dredging, instream flows, and small hydro developments to deal efficiently and effectively with projects that cumulatively have significant effects on aquatic habitat.
d. effective investigation, coordination, and disposition of Hydraulic Project Approval (HPA) applications.
e. strong enforcement of HPA regulations.
f. organized involvement in local, state and federal agency planning which affects anadromous streams.
g. effective input into other agencies' permit decisions affecting anadromous streams (i.e., Forest Practice, Shoreline Management, Corps of Engineers).
h. review and timely response to EIS's and other environmental documents pertaining to potential impacts on the stream environment.
i. education and information program to raise public awareness about the value of spawning and rearing habitat to steelhead and cutthroat.
j. rehabilitation of spawning beds by gravel cleaning, gabion placement, addition of new gravel, and other techniques.
k. maintain active role in securing regulations and legislation providing habitat protection and opposing legislation and activities detrimental to habitat.
2. Problem

Upstream and downstream migration of anadromous fish is blocked by dams and other instream structures.

Strategies

a. require adequate passage facilities for adult fish and smolts on new and existing dams.
b. continue to seek adequate mitigation for fish and wildlife losses from construction, or during relicensing of hydroelectric dams and federallyfunded projects.
c. seek state legislation to require mitigation for state or locally funded dams and diversion structures that impact anadromous fish migration.
d. emphasize selection in hatchery stocks for increased migration survival in streams with artificial passage facilities.
e. increase hatchery production to offset migration losses.
3. Problem

There is severe competition for water between out-of-stream water development interests and fisheries resources.

Strategies

a. insist that adequate instream flows are established and maintained in anadromous trout streams by Department of Ecology and other appropriate agencies. Develop a program to determine amounts of water needed for adequate flows.
b. take other legal measures, including formal adjudication of water rights in some cases, to require adequate flows for fish.

4. Problem

There is a shortage of available harvest, escapement, and recruitment data for predicting runs or for basing and evaluating management objectives for anadromous trout. There is also a lack of basic life history information for anadromous Dolly Varden.

Strategies

a. designate index streams in Puget Sound, Columbia/Snake system, and coastal drainages; collect baseline harvest, escapement, and recruitment data for steelhead, searun cutthroat, Dolly Varden; collect basic life history information for Dolly Varden.
b. inventory waters containing anadromous Dolly Varden.
C. develop a punch card system for all anadromous game fish to yield information on harvest trends.
5. Problem

Uniform stream harvest regulations and the inability of anglers to distinguish between wild and hatchery fish results in excessive harvest of wild stocks in some mixed wild and hatchery stock streams.

Strategies

a. categorize streams according to their potential for wild-only trout management; develop, implement, and enforce specific management programs and harvest regulations for wild-only, hatchery-only, and mixed-stock streams.
b. mark hatchery-stock fish to enable the public to distinguish them from wild fish.
c. discontinue planting legal-sized trout in anadromous streams.
d. institute limited entry fisheries in streams managed for wild stocks.
Problem - stuckion hatchary nes, impect wild?

6. Problem

There is a shortage of public streambank access due to increased recreational pressure and private streambank development.

Strategies

a. acquire or promote more public access and easements on selected streams where demand justifies more access.
b. ensure that already-acquired access areas and easements are open and available for public use.
7. Problem

There is a shortage of angler use and preference information for program planning and management.

Strategies

- institute a periodic statewide angler use and preference survey.

8. Problem

Salmon and game fish compete for spawning and rearing habitat in anadromous streams.

Strategies

a. maintain close management coordination with Department of Fisheries and other commercial fish management agencies and Indian tribes.
b. conduct studies to determine the degree of competition in various streams.
9. Problem

There is a lack of proper stream-specific broodstock of searun cutthroat trout.

Strategies

a. develop truly anadromous stocks of hatchery-reared cutthroat trout that will return in reasonable numbers to the streams where they are stocked.
b. develop hatchery and saltwater rearing facilities to produce proper stream-specific stocks of searun cutthroat.
10. Problem

Inadequate coordination takes place among agencies and colleges and universities doing research on steelhead and other anadromous species.

Strategies

a. expand and improve research exchange services through University of Washington and other appropriate fisheries management/research entities.
b. encourage and participate in symposia with other anadromous fish research entities.
11. Problem

Complex regulations to ensure adequate resource protection and maximum recreational opportunity confuse anglers creating compliance problems.

Strategies

a. improve angler understanding of and participation in the regulation development process.
b. make fishing season pamphlets easier to understand.
c. increase angler comprehension of regulations through media and by posting regulation information.

12. Problem

Emergency conservation or allocation closures are often misunderstood. There is a lack of compliance with these actions.

Strategies

a. better anticipation of emergency actions.
b. increase media information regarding emergency actions.
c. increase patrol capability to ensure compliance.

13. Problem

Steelhead harvest information is not consistently documented and reported in an accurate and timely manner.

Strategies

a. develop Wildlife Agent's capability to inspect fish and document commercial enterprises dealing in steelhead.
b. increase patrol.

14. Problem

Commercial fishing for steelhead has the potential for over harvesting runs, reduces sport angling opportunity and catch, and places an expensive, complicated management burden on the agency.

Strategies

- work for decommercialization of steelhead.

Ase efgs taken form Kalim> ? ead yeun somulus

Kalama-cythusat smoits - upstream limit?
What obut soleatix for 3 salt fish 30 lh supenstalliz
Spowning hotchuny, wiild, sumuer, urinter
Clobor Crke spotial o tempornl sepuration
A see fig. 6 times hatclen vinter most like comeon wild
A- hatch-fwould fenor bridging gep in mpomaluation of

- notive-
- Put this should have been staiting pouit.
infturna Hot. rearn - relasse some as fry
- table 23 gere freg
sdalto- int 9585
$1479 \quad 1+$ i.2 .4774
* Need freq. chang 0

$$
\begin{aligned}
& \text { table } 24 \text { ? - survival }
\end{aligned}
$$

1979 poer migrents same gene frequ 2s shet wild
despite. 80% ppewning ay hatchny fish.

 * likel, essened, Ampact of "ieceding' (1980) ageo -t due to eimin of canyuing espseity of yeartings - P. $59-60$
1978 Rer. table 5.2 . $A G P A A$ in Gobar y.e.y, fry

$$
\begin{aligned}
& \text { June } 2-67.8 \\
& 28-91.4 \text {-r2pid decreare } \\
& \text { Juin } 6-94.5 \text { in h2t them grm. } \\
& 14-94.6
\end{aligned}
$$

 hethen samen. ffidgee gap.

[^0]: ${ }^{13}$ Federal Water Power Act, Section $18(b)$, United States Statutes at Large, 1920, June 10.

[^1]: a - Provisional
 b- Catch in River Foyle allocated on besis of 50% Ireland and 50% Northern Ireland
 c - West Coast catch only, from Bulletin Statistique.
 d - Ancling catches (mainly grilse) about 10% adaitionel (by weight)
 e - hiainly salmon
 f-Including sea trout and sea char catches; less than 5% or total.
 E-Estimatod on basis of 1970 catches.

[^2]: *) Present address: Institute of Marine Research, Bergen

