RESULTS OF PLANTING CATCHABLE-SIZE BROWN TROUT, SALMO TRUTTA FARIO L., IN A STREAM WITH POOR NATURAL REPRODUCTION

John G. Hale, Minnesota Department of Conservation, Duluth, Minnesota and

Lloyd L. Smith, Jr., University of Minnesota, St. Paul, Minnesota

IN SOME HEAVILY USED TROUTSTREAM AREAS it is desirable to maintain fishing in streams where natural reproduction is negligible but where conditions will support catchable-size planted trout. When fishing can be provided at reasonable cost in such waters, general management will be improved by distribution of the fishing load.

To test certain aspects of this procedure, Watson Creek in southeastern Minnesota was selected for study. Watson Creek permitted little, if any, natural reproduction and, in general, appeared to be a marginal trout water. Marked brown trout (Salmo trutta fario L.) were planted in the fall to determine overwinter survival, contribution to anglers' catch, and practicability of this type of management. Complete creel census was maintained in the season after planting, and periodic checks with the electrical shocker were made to determine the status of the population during the experiment. The work was done as part of a general program of trout investigations conducted by the Fishery Research Unit of the Minnesota Department of Conservation.

Watson Creek originates in a limestone cavern which underlies a limestone

Paper No. 3165, Scientific Journal Series, Minnesota Agricultural Experiment Station, St. Paul 1, MInnesota.
sink region. Its normal flow ranges from approximately 3 to 5 cubic feet per second but in dry seasons may be less and during rain storms may carry 47 cubic feet per second. There are occasional flood crests of 6 feet after severe thunder storms, and flood debris has been noted 12 feet above the level of normal flow. When flow is normal, the water is hard and has a total alkalinity in excess of 140 parts per million. The upper 2 miles of the stream channel, which was considered the only trout water on the system, lies in recently cleared and heavily grazed land. The stream bottom is composed of approximately 52 percent rubble and gravel, 38 percent silt and sand, and the remainder comprising several soil types.

The growing season in the vicinity of Watson Creek is long (142 days), and the winters are mild. During January, the coldest month, the mean temperature is $12.5^{\circ} \mathrm{F}$. Only light ice is found on the stream, and the rigorous winter conditions observed in more northerly parts of Minnesota do not normally occur in Watson Creek. The open nature of the area surrounding the stream permits summer water temperatures to rise occasionally as high as $80^{\circ} \mathrm{F}$., but the heavy spring flow in the upper section usually provides areas of suitably cold water during critical periods of the day. The lower stretches of Watson Creek are too warm to maintain trout, forming an
effective barrier to downstream movement during the summer.

METHODS

In order to determine the effectiveness of trout planted in the fall to maintain fishing during the following summer season, 1, 625 brown trout were placed in the upper 2 miles of Watson Creek during the latter part of September 1948. All fish ranged from 4.7 inches to 12.7 inches in length and were marked by removal of the pelvic fins. During the entire 1949 angling season, a direct-contact creel census was maintained over the trout area of the stream. On the opening 2 days of the season a complete census of all anglers was taken, and thereafter complete check was made on alternate days. Final results were calculated on the basis of these contacts.

Estimation of the total fish population in the stream was made at intervals by the electrical-shocking method similar to that employed by Shetter (1947). Care was taken to select sections that included both riffles and pools and that were representative of the different portions of the stream. Twelve stations were established in 1948 and were used again in 1949, with the exception of one that was considered too deep to shock effectively.

THE 1949 CREEL CENSUS

During the 1949 angling season, 358 fishermen caught 481 trout from Watson Creek. Of this group, 478 fish were finclipped, 2 were unmarked brown trout, and 1 was an unmarked brook trout. These anglers spent 1,047 hours on the stream and caught trout at the rate of 0.6 per hour. At the close of the first 2 days of fishing, 63.5 percent of the total catch of the year had been made; and by the end of the 4 th week, 80 percent had been taken. These results are comparable to those found by Smith and Smith (1945) in Duschee Creek, another southeastern Minnesota trout stream, and are similar to results reported elsewhere in the literature. As the season progressed, the number of
trout caught each week fell off rapidly, but the rate of catch remained relatively uniform. This maintenance of average success through the season is probably attributable to the much greater skill of the late-season anglers when compared to the average skill of the spring anglers. Forty percent of the total angling effort for the season was made on the opening weekend; and at the close of 4 weeks, 71 percent had been expended. After the close of the 5th week, fishing effort fell off rapidly, although the entire season covered 20 weeks.

FISH POPULATION OF WATSON CREEK

In order to evaluate the total production of fish, the survival of marked trout, and the relation between planted fish and the resident population in Watson Creek, a series of population estimates was made with the electrical shocker in mid-July 1948, on June 25, 1949, and again on September 21, 1949. Smith, Johnson, and Hiner (1949) reported on the standing population of Watson Creek in 1945 from a 0.36 -acre sample. Their data permit an evaluation of trends when compared to the results of the present study (table 1). In 1945 there was a total of 109 pounds of fish per acre. Of this weight, trout comprised 33 pounds, suckers (Catostomus c. commersonii) comprised 59 pounds, and other fish comprised 17 pounds. The weight of miscellaneous fish was made up primarily of longnose dace (Rhinichthys c. cataractae), 14.9 pounds, and stone rollers (Campostoma anomalum pullum), 1.46 pounds. In 1948 a 1.95 -acre stream sample indicated a total of 195 pounds of fish per acre, of which trout comprised 17 pounds, suckers comprised 126 pounds, and forage fish 1 comprised 52 pounds (table 1).

1/Forage fish include: Boleosoma $n_{\text {. }}$ nigrum, Foocilichthys flabollaris linoolatus, Campostoma anomalum pullum, Rhinichthys c. cataractae, Rhinichthys atratulus meleagris, Semotilus a. atromaculatus, and Pimephales p. promelas.

Figure 12.12b.--Trash-catcher dams.

Plon View

Figure 12.12a-2.--Gabion dams.

Behnhe
 Made in United States of America
 Reprinted from Transactions of the American Fisheries Society Vol. 92, No. 1, January, 1963
 pp. 39-46

Body Condition, Water Temperature, and Over-winter Survival of Hatchery-reared Trout in Convict Creek, California

Norman Reimers
Bureau of Sport Fisheries and Wildlife, Bishop, California

Abstract

Catchable-sized, hatchery-reared rainbow trout (Salmo gairdneri) undergoing survival tests in controlled sections of a mountain stream repeatedly declined in coefficient of condition for several months after being stocked. Examples of the extent of this decline, together with records of stream temperatures and associated mortality are used to demonstrate the relationship among poor body condition, rising temperature, and breakdown of trout vitality during the critical late-winter period. Possible advantages of fall stocking and of breeding some hatchery trout for superior adaptability are discussed.

INTRODUCTION

Convict Creek Experiment Station is a fishery research installation of the Bureau of Sport Fisheries and Wildlife located in the eastern Sierra Nevada Mountains 35 miles north of Bishop, California. Four quartermile stream sections have been arranged primarily for the measurement of survival and adaptive capability of catchable-sized trout under controlled natural conditions. Operational features and facilities of the experimental stream have been described by Nielson, Reimers, and Kennedy (1957). Objectives of the studies at Convict Creek are to develop a record of post-hatchery performance as a function of hatchery diet, and to determine the possible importance of hatchery water quality, selective breeding, and other background factors in conditioning trout. Parallel to this interest in the quality of hatchery trout is a continuing interest in the environmental factors that influence their success after stocking.

The purpose of this report is to describe the association of winter trout mortality with progressive weight losses and with the seasonal cycle of stream temperatures. Data are drawn from the findings of regular yearly survival experiments conducted from 1956 to 1961, each of which involved the testing of four or more groups of trout over a term of 9 months or longer. Rainbow trout (Salmo gairdneri) grown to catchable size at production hatcheries and rearing stations of the California Department of Fish and Game were used. Several genetic strains and a number of hatchery diets were represented in these
stream trials. The present discussion is concerned mostly with generalities which will not likely be altered by variations between strains or diets.

The experimental area of Convict Creek flows through a slight to moderate slope of glacial till and more recent alluvium, overlain in part by meadow, and vegetated mainly with willow, aspen, sagebrush, grasses, and sedges. In these respects it is typical of the more productive sections of many eastern Sierra creeks. As a trout habitat the stream may be divided roughly into four parts riffle area to one part pools and under-bank eddies at flows of 5 to 15 cubic feet per second. Higher flows of the early summer runoff obscure the ratio of riffles to pools, and low winter volume tends to reduce stable shelter. The latest check on standing crops of trout food (1961-62) yielded average values of 1-2 cc of organisms per square foot of stream bottom in most months of the year; this places the stream in Food Grade 2 (Davis, 1938), and classifies it in general terms as average in richness. The climate is dry except in winter, when heavy snows are common. The elevation is 7,200 feet above sea level. Winter effects on the stream at various times from early December to about mid-April include snow and ice cover, extremely low water temperatures, and anchor ice with periodic slush-damming, surges of water and ice, and partial de-watering of short sections.

FACTORS IN SURVIVAL

Summer and fall survival of spring- or summer-stocked, catchable-sized trout is sel-
dom a problem in eastern Sierra streams if there are no unusual health handicaps or losses by predation. The environment in these seasons approaches the ideal in terms of temperature, volume of flow, and food production. Measured rates of survival for 100 days (August-November) have ranged from 70.3 to 97.1 percent, with an average of 87.1 percent for 23 trout groups tested. Nevertheless, the experience in these and earlier studies has been that most hatchery-reared trout lose weight steadily after beginning stream life (Nielson, Reimers, and Kennedy, 1957). Needham and Slater (1945) observed a similar decline in fingerling-sized hatchery rainbow trout during summer and fall.

The catchable-sized hatchery trout are invariably overweight as compared to wild stream fish, and can sustain weight losses up to 25 percent in summer or fall without material effect on survival to November. The first part of this weight loss, on the order of 5 to 10 percent, occurs in the first few weeks and is the predictable result of the change to active stream life. Further depreciation appears to be a consequence of the inability of most domestic-strain hatchery trout to compete or forage adequately in a demanding habitat during the first 4 or 5 months of residence. The invariable reduction of weight and the absence of significant growth in length through the first summer and fall, among groups of trout whose initial densities have ranged from 50 to 250 pounds per acre of stream, indicate that the maintenance of high body condition is not necessarily promoted by making a larger share of stream foods available to each fish during the early months after stocking. Similarly, experimental populations of these trout have failed to recover in average body condition later, even after being thinned by substantial mortality.

Continued weight loss diminishes strength and resistance, so that the arrival of winter brings a double set of stresses to hatchery trout: they are becoming thin and weak, or have become so, depending on when stocked, and the environment is less hospitable in terms of available food and shelter. Stomach examinations indicate that food intake during much of the winter is very low, with some trout not
feeding at all. Added to these stresses is the deterrent to body maintenance brought about by changing physiology; for with lowering temperatures the digestive processes are slowed, the production of enzymes is reduced, and, with minimal food intake for whatever reason, metabolic pathways are varied to effect the utilization of body energy stores. The main source of stored energy is fat accumulated in the viscera. In the extremity of prolonged semi-starvation, other fats, and finally muscle tissues, are broken down and oxidized as substitutes for the normal nutriment.

The problem of body maintenance is less acute for stream-adapted wild trout. They enter the winter in normal condition, feed actively to the limit of the available food supply through the coldest weather, and appear to use relatively little of their energy storage. However, winter food intake by wild trout in Convict Creek is often less than half of what may be observed in the summer and fall, despite sample indications of a more abundant food fauna in some winter months. The appraisal of winter food availability in trout streams that are exposed to long, cold winters should be based more upon evidences of the extent of feeding by such adapted trout than upon information from stream-bottom samples. Such samples are often false indicators of an ample food supply which may be accessible only in limited degree due to the winter habits of food organisms, seasonal changes in faunal components, or physical limitations on the movements of trout into some feeding areas.

In cold alpine lakes, the reduction of metabolism to near-basal levels is a successful mechanism for survival of overwintering trout because fat reserves last a long time in a lowtemperature environment that requires little activity. Starvation experiments (Reimers, 1957) indicate that healthy hatchery trout kept in standing water can withstand complete lack of food for 6 months or longer with mortality below 10 percent and with energy remaining for possible recovery of survivors, providing temperatures remain low to moderate (below about $45^{\circ} \mathrm{F}$.).
In Convict Creek and similar highland

Assignment 16
Zoology 543X - Ichthyology

Department of Home Study Brigham Young University

John M. Deinstadt
September 14, 1974

ABSTRACT

The California Department of Fish and Game has launched a new program utilizing the production of wild trout rather than the hatchery stocking program in some productive streams. Among these streams are two on the east slope of the Sierras -- the lower Owens and East Walker Rivers. Both have self-sustaining brown trout populations. Prior to the discontinuance of the stocking program, the Owens received 1,000 to 2,000 rainbows per mile annually and the East Walker 5,000 to 10,000 . When the stocking program was stopped in the Owens, rainbow returns were essentially eliminated in the upper two-thirds of the river. The only rainbows anticipated in the future are from an adjoining stocked area. The halting of stocking in the East Walker has not ended rainbow trout returns. Fish now entering that fishery do not appear to be from a remnant self-sustaining population, but from upstream and downstream recruitment from stocked areas. Management considerations based on optimumizing the harvest of trophy-sized wild brown trout in the East Walker should be altered to allow utilization of the rainbow fishery.

장

INTRODUCTION

The Department of Fish and Game is discontinuing rainbow trout stocking in some of California's more productive streams and relying upon self-sustaining populations of wild trout to support the spore fishery. Two of these streams are the lower Owens River and the East Walker. Both are east slope Sierra Nevada rivers which have self-perpetuating populations of brown trout. Under the stocking program the Owens received 1,000 to 2,000 rainbows per mile and the East Walker 5,000 to 10,000 per mile annually.

The objective of this report is to follow the survival of rainbow trout since the cessation of the stocking program. The section of the lower Owens from which the data for this report was collected is 15.9 miles long. Rainbow plants were discontinued in the upper 7.1 miles of the study section in the fall of 1969. With the 1972 season, stocking in the lower 8.8 miles was also halted. Stocking of rainbows ended at the close of the 1972 season in the East Walker River.

DESCRIPTION OF STUDY AREAS
The table below summarizes some of the physical characteristics of the study streams.

	Lower Owens	East Walker
Headwaters E	East slope Sierras between Yosemite and Kings Canyon National Parks	Northeast boundary of Yosemite
Terminus 0	Owens Lake (dry)	Walker Lake, Nevada
Study sections		
Topograph	Valley (meandering)	Canyon
Elevations (approximate)		
Upstream	4,320'	6,400'
Downstream	m 4,155	5,950'
Approx. gradi	dient (ft/mile) 10	50

2,000 fish per mile. Other native species are the mountain sucker, Lahontan redside and tui chub. The Piute scuipin and speckled dace have been recorded above the study area but not yet within it. Rainbow trout, brown trout and carp are the introduced species with the latter appearing to be limited primarily to Murphy Pond.

Both the Owens and East Walker River sections are regulated by dams at their upstream ends (Figures 1 and 4).

METHODS
Owens River
Creel censuses were conducted on the lower Owens River during a 2-year baseline period (1967-68) and then every other year since that time. This report utilizes data from the baseline period plus 1970 and 1972.

Census data was usually collected on 4 week days and 4 weekend days during one month in the spring, summer and fall periods. The river was divided into 6 sections ($A-F$) between Pleasant Valley Dam and Five Bridges. The sections, with the exception of A and F were set up to correspond with the standard surveyed section lines. The number of river miles within sections varied with the shortest being 1.8 miles and the longest 3.4 miles. Sections A-B-C combined were 7.1 miles in length and sections D-E-F were 8.8 miles. Data presented in this report involved hours of fishing effort for rainbow and brown trout by sections and was collected through angler interviews during a roving survey.

East Walker River

Two survey methods were used on the East Walker River -- creel censuses and electrogishing.

Two-to-four censuses per month were conducted during the 1972 and 1973 periods. The 1974 census has covered the opening weekend (April) and then

5 weekdays and 5 weekend days chosen randomly plus all holiday periods (Memorial Day weekend, July 4th and Labor Day weekend). The river was divided into 6 sections with section 1 the area immediately below Bridgeport Dam and section 6 immediately above the Nevada state line. As with the Owens, the census data for this report involves hours fished and success by species and sections.

The electrofishing survey in 1968 covered 6 short stations spread through the 1974 study area and included only a brief effort to enumerate the ratio and size of hatchery rainbows, browns and wild brown trout. The 1974 electrofishing survey covered five 150 -meter sections in which the trout population was estimated plus an additional 1.7 miles of stream from which trout were collected for tagging. The population estimates were made using standard mark and recapture techniques.

RESULTS
Owens River
The creel censuses on the lower Owens River showed that when rainbow trout stocking was discontinued in sections A-B-C in the fall of 1969 few rainbow trout were caught in these sections the following spring (Figure 2). This pattern was repeated again in 1972 following the discontinuance of planting sections D-E-F. Only 2 rainbows were recorded during the creel censuses in the stream above section E. Rainbow trout continued to enter the creel in sections E and F.

Figure 3 presents the rainbow trout harvest pattern through the first year after stocking was halted in the upper section. A comparison of the upper and lower sections shows that the rainbow trout harvest from sections A and B was eliminated in one year. A small number of rainbows were taken in section C. The sections with the stocking program (D-E-F) produced good fishing for rainbows. Brown trout angling generally improved in the upper sections,
but remained lower than expected in sections D-E-F.

East Walker River

The rainbow fishery in the East Walker River declined following the cessation of rainbow trout stocking at the end of the 1972 season but showed an increase by July 1974 (Figure 7). The survival of hatchery trout after the season is shown by the 1968 electrofishing data (Figure 5). The low level of rainbow trout survival through the winter is indicated by figure 6 when only 18 of 1,023 trout captured were rainbows or less than 2 percent. Catch by section data shows that most rainbows are taken below the dam or above the Nevada state line with only 12 percent in the middle sections (3 and 4). Only one rainbow trout was captured in stations used for population estimates and consequently the February-March standing crop of rainbows was too low to estimate. The brown trout standing crop was 1,043 fish per mile.

DISCUSSION
Owens River
By 1972 the upstream sections in which stocking was discontinued in 1969 were essentially devoid of a rainbow trout fishery. The section E rainbow returns are probably carry-overs drom the previous fall planting program. Rainbows are stocked from the bridge serving as the downstream boundary of section F. Most of the section F rainbow fishery is in the immediate area of this bridge. Consequently these findings indicate that with the exception of the overlap from the planted section adjoining the downstream end of the study area, the maintenance of the lower Owens River rainbow fishery is dependent upon the hatchery program.

East Walker

The continuance of the rainbow trout fishery in the East Walker River indicates some differences in the factors controlling the survival of rainbow trout. Four possible sources of these fish will be considered.

The first is that rainbows have established a self-perpetuating stock in the California portion of the river. The ratio of 18 rainbows to 1,005 browns shows that early season stocks were at a low level. As the expanded catch estimates for the season will probably show that over 1,500 to 2,000 rainbows were kept by anglers, it would be difficuit to support such a harvest from the winter stock. Of the 18 rainbows captured, most were in the size range normally attributed to hatchery plants. No yearlings were observed. These factors appear to show that in March there was little evidence of a self-sustaining rainbow population in the stream.

A second possibility is that wild rainbow trout from Nevada are migrating into the California portion of the stream. Nevada, however, has found a pattern of rainbow abundance and survival paralleling that found in California. Nevada plants several thousand rainbow trout annually in the river below the state line. In a March 1973 survey, no rainbow trout were sampled while brown trout were estimated to be 61 fish per mile. The following November rainbow were estimated to number 62 and brown trout 232 fish per mile (Frantz, 1974). These results indicate the probable absence of selfsustaining stocks large enough to account for the California fishery.

A third possible resource is from two small tributary streams below Murphy Pond. Wild, self-sustaining rainbow trout populations are present in each of these streams (Pister - personal communication). The gradient at the confluence of these streams with the river prevents upstream migration of spawning stocks. The recruitment of adult rainbows from these streams is probably minor. The recruitment of smaller trout may eventually contribute to the fishery.

The fourth and most probable source is from migrating hatchery rainbows planted in Bridgeport Reservoir and in the adjacent Nevada portion of the stream. Flows released from Pleasant Valley Dam generally pass through
the hydroelectric generating system. Bridgeport Reservoir Dam releases are not utilized for power generation. While Pleasant Valley Reservoir receives thousands of trout annually, the returns from the Cwens show that rainbow either do not enter the outlet structure or do not survive the passage through the turbines. The returns from immediately below the Eridgeport Reservoir Dam indicate at least some fish do survive the passage between the reservoir and the river. Tagged rainbows are known to migrate through the outlet structure at Topaz Reservoir and into the West Walker River (Frantz and Deinstadt - 1969).

The other areas of high returns are in sections 5 and 6 above the Nevada state line. A previous census has shown some migration upstream from Nevada (Frantz - personal communication). Our observations this year strongly suggest that the rainbows in sections 1-2 and 5-6 are different. The fins are more severely eroded from the upstream group. The pattern of body spots and coloration is likewise different. The low returns of rainbows from the middle sections (4-5) also points to an input from the upper and lower areas.

Significance to the Wild Trout Management Program We have proposed that the trophy trout potential of the East Walker River be utilized by restricting the harvest of age I and II brown trout. Preliminary food habits studies have shown that when brown trout in the East Walker River reach 14 inches, fish are the principal forage. Our recommendation has been a 14 -inch size limit, artificial lures only, and 2 trout in possession. As possibly 40 percent of the fishery will be comprised of rainbows and most of these trout are not expected to reach 14 inches, there will be an unnecessary restriction on fish utilization.

To offer an alternative to this problem we are considering separate limits on rainbows and brown trout. While trout species segregation has not been expected of the fisherman, duck recognition, etc. has been a long standing precedent for proper harvest control.

SUMMARY

1. Viable rainbow trout fisheries are not being sustained in the lower Owens and East Walker River fisheries without the stocking program.
2. The progressive disappearance of rainbows from the upstream sections of the Owens shows that only rainbows from the adjoining downstream stocking area can be expected to enter the wild trout management and fishery.
3. The rainbows now entering the East Walker River fishery are apparently migrating downstream from the reservoir and upstream from Nevada.
4. Our earlier assumption that rainbows would disappear from the East Walker as they have from the Owens is incorrect. We did not anticipate the apparent degree of migration present. Management recommendations which will probably stop the harvest of rainbow trout should be altered.

Literature Cited
Deinstadt, J. M. 1971. A proposal to preserve the quality of the lover Owens River. Presented to the Inter-Agency Committee on Owens Valley Land and Wildiife. 12 pages.

Frantz, T. C. 1974. Nevada Department of Fish and Game Job Progress Report. (Section on East and West Walker Rivers); 6 pages.

Frantz, T. C. and Deinstadt. 1969. Topaz Lake. D-J Job Progress Report, pages 42-87.

$0.75-$

Sections
0.75 -
$0.50-$
inoh rolbuy lad yozej

$0.75-$
0.50 -

1970
$0.75-$

1967

0.50Hatchery Rainbow Trout 1972 Wild Brown Trout

B

D

Figure 2. Comparisons of hatchery rainbow trout and wild brown trout harvest rates during the spring in the lower Owens River through 2 years of stocking all sections (1967 and 1968), one year of stocking only sections C, D and E (1970) and one year without stocking (1972).

Figure 3. Harvest rates of hatchery rainbow trout and wild brown trout in the lower Owens River during the spring, summer and fall of 1970 when stocking was discontinued in sections
A, B and C.

Figure 5. Comparison of the lengths of trout designated as hatchery rainbows, hatchery browns
and wild browns in the East Walker River at the end of the 1968 season.

Figure 6. Lengths of rainbow and brown trout in the East Walker River prior to the 1974 season.

Figure 7. Harvest rates of rainbow and brown trout in the East Walker River with (1972) and without (19731974) a rainbow trout stocking program.

Figure 8. Number of rainbow trout observed during the 1974 creel census in the East Walker River from the area immediately below the dam downstream to the Nevada state line.

Brown Trout Food Habits जtudy - E. Walker R.
METHCNS
STOMnCHS DISECtED - CONtENK SORTED WTO:
Fis:
a Negets
other matter
Fish - identificu to genus
using vertebra charastraistics.
INSETS - NO ATHEMPT TO iDENtify
otHer mattee - NOTES made if CRUSTEASA, ANNEliona, molloska

All Lengtis are in milimeters
All Volumes Are in mililiters
All DATES ARE MONTH-DAY-YEAR
All STOMACHS EYAMMED WERE RROWNTKOUT
Abriviations for Genrric mamas.

$$
\begin{aligned}
& \text { RICH1 - RiCHAZD=ONIUS } \\
& \text { CATO: - CrOSTCMOS }
\end{aligned}
$$

FCRK-LEMU': DETEMAHION FROM BODY-LEMGTH

$$
\frac{F L}{E L}=c
$$

Reds ab $-C=1.09$
CHOB $-C=1.15$
SuckR - $C=1.15$
DACE - $C=1,11$
WHITEFISH - $C=1.08$

No. of STOMBEHS EXAMINAD - TOTA/
$\left.\begin{array}{ccccc}" & " & " & \text { COMTAIVING FISH } \\ " & " & " & " & 1 \\ \text { "FISH } \\ " & " & " & " & 2\end{array}\right]$
\% of stomachs containing fisit

BROWIV TROUT LENGTH FREQUENCY WITH RESPECT TO THE OCCURANCE OF FORAGE FISH AND INSECT MATTER IN STOMACH CONTENTS. (1974 AND 1975 COMBINED)

NUMBER OF FORAGE FISH

FORAGE FISH LENGTH FREQUENCY(TOTAL)

Be, Dopulations in $B, 000$ meters of the East Walker Ziwer (Eridge downstream to Murphey Rond) in California
Peried Jotalks $<$ Size (mm)

Fall 1974 3,542 2,521 819 2022°
Soring 1975 2,689. 1,862 $671^{\circ} 156^{\circ}$
Fa/l 1975 2,840 $635^{\circ} 1,938^{\circ} 261^{\circ}$
Number BN/Klometer EX/mile Fall 1974
1,181

1,904
soring 19π
896
1, 446
Fall 1975
947
1,527

I B Kilometerv $=1.86$ miles

WX1 Dovelation Estimates-E. Nalkert. - Sory191975

3x Dopulation Estumates- F. Nalkerz-F-F111975

又eT Papielation Evtimater-E. CNalker E-Fall 1974

E II 150 mm an reanptare ren

613.5

3,000 meter vection
RT Depulation Estimates-E. Uhlker E-Fall1975

Es I" Apoarent inconostency Combine loke and 18 Tis grotps

Date	Hi sta	eline		Datas	Stateh	20,				
Ian 75				$\tan 75$	- H.					
-	32	32		26	40	32				
2	22			27	32	-				
3	-	22		28	\%					
4	2			29	3	\square				
5				30	$\underline{2}$	22				
				21	2	$\underline{2}$				
				Fela 75						
- 2				- 1	27	$\because 8$				
\square	33	2		2	22	\% 2				
	32	2		3	\square	32				
	$\square 6$	23		4	2	\because				
	25	2		5		\% 2				
	33	32		\square	3	52				
13	35	32		7	32	32				
	-									
	$3=$	32			39	32				
1	34	32			38	32				
1.	38				34	$\square 2$				
	2	3			32	2				
	38	32		12	39	34				
	-	23		12	43	32				
	40	5		14	35	32				
\square	40	32		4	3	32				
	40	\square			22					
	4	- ${ }^{2}$				$\because 2$				
--	42	-			42	\square				
	43	-								

Water Temperation

Water Tempertures

Water Temperture EWB \rightarrow -

Water Toingeratures Ewn $\rightarrow-$

Dete	4: $=+$	-			,					
May 1974										
120	59.	51		52	2					
21	57	5		5	-					
22	57	51		50	50					
23	57	$5 /$		50	50					
24	59	52		50	5					
25	61	52		50	50					
76	61	53		50						
					con					
27	61	54		51	50					
- 28	62	55		53	51					
79	62	55		56	52					
30	63	55		55	55					
31	63	56		55	c					
				55	55					
Juine 1974										
	63	57		55	5					
2	63	57		6	SE					
3	64	-		56	56					
4	-	-								
	-				56					
5	-	-		57	-7					
-6	-	-								
					57					
7	-	-		58	7					
c				-4	28					
					Sr					
				- 8	57					
					\square					
]	57					
\square				?						

Water Temperatires EUB

Date	$\begin{array}{r} \text { Sta } \\ \text { Hi teme } \end{array}$	$\begin{aligned} & \text { elins } \\ & \ln +\infty \end{aligned}$		Hi	am					
A10,										
$\bigcirc 1$				<	\cdots					
- 2				63	63					
z										
2				63	63					
4				64	63					
5				64	67					
6				64	$6<$					
- 7				69	6					
8				64	62					
9				64	$6<$					
10	-	63		64	63					
12.	71	64								
12	71	64								
12	70	64								
4	2	$6 \pm$								
15	71	64								
6	70	$6<$								
\square	70	64								
3	69	64								
-19	70	65								
-	70	64								
- 3	70	64								
2	69	-								
\square										
\cdots										
\square										

Water Temanertura EupR

Date		arame				f"in					
					\%						
					${ }_{62}^{63}$	63					
					63	$6{ }_{6}$					
					63	3					
					63	63					

Date	Hitery	iotary		$4:$	10						
1.an7											
\square											
	45	4 C									
	42.	38									
\square	- $=$	40									
- 2	40	37									
		- 2					\square	-			
	39	37									
	37	35									
	39	37									
	40	37					-				
	38	35									
	39	36									
	36	35									
	35	35									
	36	35									
	36	34					\square				
	$\overline{36}$	35									
	-37	36									

Date	$1 i^{\text {stande }}$	Feline			\cdots					
Noe -2										
	34	37								
	37	36								
	36	34								
	36	35								
-	35	33								
	33	33								
		33								
	35	35								
	34	36								
	36	34								
	34	34								
	39									
	-. 6	-								
	37	35								
	35	33								
	33	32								
	34	-33								
	36	\%								
	34	33								
	33	33								
	ए-	$\because 3$								
	3	3								
	.	2								
	3									

						Ewn					
Date	Hi tom	laters		$H i$	-a						
De. 74											
25	32	32									
30	32	32									
3	32	32					\square				
S6i 75											
							-				
							-				
								-			
								-			
							\square	\square			
- -							-				
	-						-	-			
	-										

Bol
limit as not lililly to be f much influence on the fish pefulation in Walker Peeves. The 2 -fish lag limit might help soured the catch + there on bey come value. A good study world le to rem the program with a 2 -finch hog limit andno bait fishing for several years plowed by the same bay limit with no terminal tackle restriction. It think removal of the calchable will offer the most benefit to the recedent pylubtion and that o the restrictions frolale, are not very valuable. I don't think lint fishing should be prohibited unless come bislogied benefit accrues
(c) Motor vehicles are prohibited.

112. Fountain Lake State Fishing Area - Pueblo County

(a) Public use may be limited to 50 people.
(b) Ice fishing is prohibited.
(c) Boating is prohibited.
(d) Motor vehicles are prohibited except on designated roads.
(e) Overnight camping is prohibited.
(f) Fires are prohibited.
(g) All swimming is prohibited.
113. Fourteen (14) Severance Hunting Area - Weld County
(a) Hunting is prohibited except when each hunter is properly registered at/the check-in point.
(b) Waterfowl hunting is permitted only on Mondays, Wednesdays, and Saturdays of the regular migratory waterfowl season.
114. Frank Easement - Weld County
(a) Public use may be limited to 200 people.
(b) Overnight camping is prohibited.
115. Freeman Lake - Moffat County
(a) Fishing is prohibited in the inlet area and upstream one-fourth ($\frac{1}{4}$) mile from January 1 through July 31 each year.
116. Frenchman Creek Wildlife Area - Phillips County
(a) Public use may be limited to 40 people.

It is my guess that without sickies the use will drop of offrecisbly, with or without bait fishing, to a reasonabk level.
l do not canviden a fish heft Cent of about. 2 as lad. Shin means the the cent of competent fikermen probably execch 3 and snag well - be from 5 to 10.
a hafie gatun ie able to prove the presence and extent of benefit of of sictier on the resident fish The questionain may not mean mich since it in inly affecting opinions y thou contacted fishing on the stream - enemmacig they woulhit be then uneven Thy liked the idea
(a) Boating is prohibited from the second Tuesday of October through the last day of the regular migratory waterfowl season, except as posted.
104. Escalante State Wildlife Area - Mesa, Delta and Montrose Counties
(a) Public use may be limited to 200 people.
105. Evergreen Lake - Jefferson County
(a) Fishing in the lake is prohibited except by means of artificial flies and artificial lures only.
106. Fairview Reservoir - Montrose County
(a) Boating is prohibited.
107. Fish Creek Wildlife Area - Dolores County
(a) Public use may be limited to 50 people.
(b) Overnight camping is prohibited.
108. Flagler Reservoir - Kit Carson County
(a) Public use may be limited to 300 people.
(b) Boating is prohibited from the second Tuesday of October through the last day of the regular migratory waterfowl season.
109. Fortification Lale - Moffat County
(a) (See Ralph/White Reservoir)
110. Fort Lyon State Wildlife Area - Bent County
(a) (See John Martin State Fishing Area)
111. Foster Lease - Washington County
(a) Public use may be limited to 25 people.
(b) Overnight camping is prohibited.
$\underset{\text { STD. FORM }}{\text { OFE }}$ MEICN MEMO
To:
Hoblexanke Momb

From:
Tarm Dematadt
Subject:
E, Naller Tever datas
No hape Thio ac what upal dacined. We have sated vaur maen affice to and uypec a copey of our lexpont. Kot pragies unes sepont. \&etruevel overe a maze dotiled atatement of pioped abyeterves, Ato!

DEPARTMENT OF FISH AND GAME

987 Jedsmith Drive, Sacramento, Ca. 95819
(916) 445-0866

January 8, 1976

Dr. Robert Behnke
1134 Buena Vista
Reno, California 89503
Dear Dr. Behnke:

The East Walker River from Bridgeport Reservoir to the Nevada state line is presently being managed by the California Department of Fish and Game as an experimental wild brown trout fishery. Under this management program, the stream no longer receives direct stocking of hatchery reared catchablesize rainbow trout. While rainbow trout are present, the management concept is to rely on the natural production of wild brown trout to sustain a sport fishery.

The attached table shows that anglers fished an estimated 14,447 hours on the stream during the 1974 season and caught 2,573 brown trout .

A questionnaire utilized during the 1975 season is attached. The results of question 7 (would you return to fish here again this year if you had the opportunity?) asked anglers who completed their day's fishing indicate most had a satisfactory angling experience.

John M. Deinstadt
Associate Fishery Biologist
JMD:gmr
Attachments (2)
cc: Ted C. Frantz

Table 1.

EAST WALKER RIVER CREEL CENSUS 1974 EXPANDED DATA

STRATUM	ANGLER HOURS	BN KEPT	CATCH PER HOUR	BEN RELEASED	CATCH PER HOUR	BN KEPT \& REL,	CATCH PER HOUR
OPENING WEEKEND	1,904	433	0.23	63	0.03	496	0.26
APRIL-MAY WEEKDAYS	1,598	192	0.12	58	0.04	250	0.16
MAY WEEKEND DAYS	632	91	0.14	38	0.06	129	0.21
MEMORIAL DAY WEEKEND	360	68	0.19	49	0.14	117	0.33
JUNE WEEKDAYS	1.289	364	0.28	216	0.17	580	0.45
JUNE WEEKEND DAYS	716	148	0.21	46	0.06	194	0.27
JULY WEEKDAYS	1.376	229	0.17	62	0.04	291	0.21
JULY WEEKEND DAYS	410	59	0.14	11	0.03	70	0.17
INDEPENDENCE DAY	211	29	0.14	11	0.05	40	0.19
AUGUST WEEKDAYS	1.940	203	0.10	75	0.04	278	0.14
AUGUST WEEKEND DAYS	1.185	142	0.12	35	0.03	177	0.15
LABOR DAY WEEKEND	316	36	0.11	4	0.01	40	0.13
SEPTEMBER WEEKDAYS	1,022	252	0.25	4	0.00	256	0.25
SEPTEMBER WEEKEND DAYS	472	139	0.29	0	0.00	139	0.29
OCTOBER WEEKDAYS	547	84	0.15	0	0.00	84	0.15
OCTOBER WEEKEND DAYS	469	104	0.22	2	0.00	106	0.22
TOTAL MEANS		14.417	2.573	0.18	674	0.05	3.247

1. Have you fished the East Walker River before this season?
2. Did you know special angling regulations were in effect before you chose to come to the stream?
3. Did you know the hatchery stocking program had been discontinued?
4. Would you have chosen to fish another water if you had known the stream was not stocked?
5. Are you fishing here primarily for the opportunity to catch trophy-sized trout?
6. Would you prefer a return to the 10 fish limit without a gear restriction?
7. Would you return to fish here again this year if you had the opportunity?
\#7 answered only for anglers w/ complete angler days
$*$
DAVE

$Q=0 m=5$ on of lif formation 2 assumed no prefer

Summary of Angler Questionnaires 1975 E. Hathor t.
\#7' answered only for anglers w/ complete angler deys

\#7'onswered only for angleve w/ complete anylo, dry =

\#7 answered only for anglers $w /$ complete angler days
$*=$ no opinion

OFFICE MEMO
To:

$$
\begin{aligned}
& \text { Bob Ge hnder } \\
& \text { iver tama Ciota }
\end{aligned}
$$

Peno, Devesda
Yarn Dunstadt
subipet Yobe Nerformance Nesport
l had nat uept uarn the tipeed uopery of ttitid seppot uehen efood called upoterday. Relbe made tried to add matoo to statemento or dato That may lie confuxeing to youl,
aker encloced are Tho pact sainlower troly yogpeilation extimates

State: \qquad California

Cooperators: None
Project No.: F-10-R-2i \cdots
Project Title: Salmonid Stream Study
Job Title: East Walker River Wild Trout
Job No.: 5 (Study VI) \qquad
Research

Period Covered: July 1, 1974 - June 30, 1975
I. Summary: Population estimates were conducted in sections of the East Walker River, Mono County, California. Brown trout were estimated to number $653 / \mathrm{km}(1,053 / \mathrm{mile})$ in the spring and $1,186 / \mathrm{km}(1,904 / \mathrm{mile})$ in the fall. Suckers were the most abundant fish observed in the stream, comprising 82.8% of the population in a $300-\mathrm{m}(0.2$-mile) section. Brown trout comprised 6.0% of the total population.

A creel census of 69 days in a 185-day season was implemented.' Anglers expended an estimated 14,447 hours of ef̄̃ost to catch 5,529 fish. A total of 2,573 brown trout was harvested and 674 released. Food habit studies showed Forage fish were present in 60.0% of the stomachs from brown trout $>350 \mathrm{~mm}(13.8$ inches). To meet the project's objectives of providing a trophy brown trout fishery, a $14-i n c h$ minimum size regulation was proposed.
II. Background: A $13.8 \mathrm{~km}\left(8 \frac{1}{2}-m i l e\right)$ section of the East Walker River from Bridgeport Reservoir downstream to the Nevada state line has been reconrized as area which might be ranaeded exclusively for wild trout. This section of saran has, until 1973 , Join stocked with approximately

estimates have shown that the stream currently supports a limited number of wild brow trout, with a few of these fish attaining a size of 0.9 to 2.3 kg (2 to 5 lb). The native fish species of the drainage (the Tahoe sucker, mountain sucker, Lahontan redsice, tui chub, and mountain whitefish) comprise the majority of the fish biomass in the
 stream.

The problems facing the management of this section of river as a wild brown trout fishery center principally around the presence of the nongame fish population. Experience on other waters in the area has shown that the trophy fish are undoubtedly a product of nongame fish forage. As the trophy brown trout fishery is the basis for the acclaim the river receives, simple chemical treatment to reduce competition is not a ready
 answer. Unless, however, the total number of brown trout can be increased or otherwise manipulated through regulations, etc., the catch per unit of effort will be too low to produce an attractive fishery. .

III. Objectives:

General Objective - To determine the potential of the East Walker River as a wild trout stream.

Specific Ootecrives -

1. To increase the present trophy brown trout potential of the stream.
2. To maintain an attractive catch per angler hour as a wild brown trout fishery.
3. To determine the contribution and importance of nongane fish as forage for brown trout reaching trophy size.
IV. procedures: Semiannual fish population surveys involving mark and recapture population estimates will identify changes in abundance, age, and size structure of brown and rainbow trout populations; examine trout reproductive success and recruitment; and measure the response of the fishery to special angling regulations.

A creel survey (stratified random sampling with optimum allocation) will estimate use and angler harvest. Angler questionnaires to be used pipstionation in conjunction with the creel census will measure expectation and success in relation to the actual angling experience.

Brown trout will be tagged to determine angling mortality and migration
\qquad
Q patterns.

Scales collected during population and creel surveys will be read to permit data analysis by age classes.

Brown trout stomach contents will be analyzed to determine the species and size of forage fish consumed.

Other physical parameters needed to define brown trout survival will be measured.
V. Findings: A preliminary mark and recapture survey, based on 750 m (0.5 mile) of stream, was conducted in March 1974 to estimate the trout population and determine the relative abundance of nongame fish. Brown trout were estimated to number $653 / \mathrm{km}$ ($1,053 / \mathrm{mile}$) with $447 / \mathrm{km}(722 / \mathrm{mile})$ <200 (7.8 inches) and $205 / \mathrm{km}$ ($33 \mathrm{I} / \mathrm{mile}$) $>200 \mathrm{~mm}$. A $300 \mathrm{~m}(0.2-\mathrm{mile}$) section of stream was estimated to contain 212 brown trout, 2 rainbow
trout, 270 mountain whitefish, 2, 509 Tahoe suckers, 100 mountain suckezs. $96+$ Lahontan redsides, and $26+$ tui chubs. The fall 1974 population survey was conducted in 3,000 consecutive meters of stream (1.9 miles) and limited only to brown trout. The brown trout population was estimaind to be $1,186 / \mathrm{km}(1,904 / \mathrm{mile})$ with 307 brown trout $/ \mathrm{km}$ (495 trout/mile) $>200 \mathrm{~mm}$ (7.8 inches) (Figure 1).

A creel census of 69 days in a 188-day season (April 27 - October 31) was implemented on the $8 \frac{1}{2}$ mile section of the East Walker River between Bridgeport Reservoir and the Nevada state line to establish use and angler success under the existing 10 -trout limit. Anglers expended an estimated 14,447 hours of effort to catch 5,529 fish, of which 3,247 (58.7\%) were brown trout, 2,197 (39.7\%) were rainbow trout, and 85 (1.5%) were whiterish. Of the total broms trout landed, $\frac{2,537}{2}, 53$ were kept and 674 released (Table 1). Anglers fishing in the 1.9 -mile section, through which population estimates are conducted, expended an estimated 4,291 hours of effort to catch 1,451 fish. The overail catch per anglex hour for $b=o w n$ trout in the test section was 0.25 compared to 0.22 for the total $8 \frac{2}{2}$-mile study area (Table 2). Anglers released 17.1% of the brown trout landed in the test section and 19.9% within the total study area. Brom trout in the creel averaged 277 mm (10.9 inches) FL in the study area and 262 mm (10.3 inches) in the test section (Figures 2 and 3). Complete angler-cay data were analyzed to determine potential harvest reduction by changes in the limit. A change from 10 to 5 trout would potentially reduce the brown teout i:arvest $3 y 25$, while a reduction to 2 trout world accomplish approximately a 59% reduction (Table 3).

Angler questionnaires designed to determine expectations and success in relation to fishing the East Walker River were distributed and are being analyzed by F-б-C.
prior to the 1974 season, 386 wild brown trout were captured by electrofishing and tagged with $\$ 5$ reward tags. During the 1974 season, 113 tags) Cock (29.3\%) were retumed. Of the 80 tag retums from which migration can fave be determined, 72.5% showed no appreciable migration, 7.5% moved upstream, More and 20.0% moved downstream.

Scale readings and grouping of population and harvest data into age groups have not been completed.

The stomach contents of 128 brown trout were analyzed. A total of 60 forage fish was found in 34 stomachs. Tui chubs comprised 40.0% of the forage fish observed, Lahontan redsides 25.0%, suckers (Tahoe and mountain combined) 16.7%, and 18.3% were unidentified. No forage fish were observed in brown trout 250 m (9.8 inches). Forage fish were present in 27.3% of the brown trout between 250 and 349 mm (9.8 and 13.7 inches) and 60.0% of the brown trout $>350 \mathrm{~m}$ (13.8 inches).

Based on the estimate showing a limited population of trout $>200 \mathrm{~mm}$ (7.8 inches) at the start of the season, a projected total season angling effort of 10,000 to 15,000 hours, and the preliminary food habits study results indicating brown trout usually reach about 350 mm (13.8 inches) before utilizing forage fish extensively, a 14 -inch minimum size restriction was recommended. It was further recmanaded that the limit be reduced to 2 trout and, in anticipation of increased catch and release angling,
only artificial lures and flies be permitted．These experimental regula－ Lions were accepted by the California Fish and Game Commission effective with the 1975 season．

VI．Recommendations：Semiannual fish population estimates should be continued to evaluate changes in brown trout populations．The creel census should be continued to determine trends in the fishery under the experimental regulations．Brown trout $>350 \mathrm{~mm}$（ 13.8 inches）should be tagged within the $3,000-\mathrm{m}(1.86-\mathrm{mile})$ test section to determine angling mortality and migration patterns．The 1974 data should be organized into year classes． Stream widths should be determined and length－weight data analyzed to provide standing crop estimates．Questionnaires should continue to be distributed to evaluate changes in angler satisfaction．The project＇s objectives，based on the 1974 data，should be more precisely defined．

VII．Prepared by John M．Deinstadt，Associate Fishery Biologist．

クローンースく？

$$
\because
$$

$\rightarrow \rightarrow+2 \rightarrow+\infty$
 PR P P ？P P

 －ロ，ロッロー $\square=$

 78 Kr

$$
2
$$

\therefore aris $-7 \leq$
 F-ix ry Sex-ms

ミフサ1；7s＇iodate 141
Ftagard（5）N－135）\therefore Tetal harvest to date is 3290

