Federal Aid Study F-51

Job 1. Fish Flow Investigations by R.B. Nehring and R.M. Anderson
Job 3. Special Regulations Evaluations by R.B. Nehring and R.M. Anderson

Job 4. Wild Trout Introductions by R.M. Anderson
Job 6. Colorado River Aquatic Invertebrate Investigations by R.B. Nehring

James B. Ruch, Director
Federal Aid in Fish and Wildlife Restoration
Job Progress Report

$$
\mathrm{F}-51
$$

Colorado Division of Wildlife
Fish Research Section
Fort Collins, Colorado

Approved by

Job Progress Reports are preliminary and subject to change. They may not be published or cited without permission of the Director. The results of the research investigations contained in this report represent work of the authors and may or may not have been implemented as Division of Wildlife policy by the Director or Wildlife Commission.

STATE OF COLORADO
Richard C. Lamm, Governor

COLORADO DEPARTMENT OF NATURAL RESOURCES
David H. Getches, Executive Director
COLORADO DIVISION OF WILDLIFE
James B. Ruch, Director Ed Prenzlow, Deputy Director
Ed Kochman, State Wildlife Manager, Aquatic

WILDLIFE COMMISSION

Timothy W. Schultz, Chairman James T. Smith, Vice Chairman Richard Divelbiss, Secretary Donald A. Fernandez

Rebecca L. Frank Robert L. Freidenberger John Lay George VanDenBerg

FISH RESEARCH STAFF
Tom Powell, Wildlife Research Leader, Coldwater Lakes and Streams Don Weber, Wildlife Research Leader, Warmwater and Special Projects Wilbur Boldt, Federal Aid Coordinator Marian Hershcopf, Librarian
William Babcock, Wildlife Researcher, F-35, Black Bass Studies Patrick Davies, Wildlife Researcher, F-33, Water Pollution Studies Larry Finne11, Wildlife Researcher, F-34, Northern Pike Studies John Goettl, Wildlife Researcher, F-53, Fish Forage Evaluations Mary McAfee, Wildlife Researcher, F-59, Small Coldwater Reservoir Studies R. Barry Nehring, Wildlife Researcher, F-51, Coldwater Stream Studies Wesley Nelson, Wildlife Researcher, High Lakes
Tom Nesler, Wildlife Researcher, Threatened and Endangered Species Rodney Van Velson, Wildlife Researcher, F-60, Wild Trout Studies William Wiltzius, Wildlife Researcher, F-79, Kokanee Salmon Studies Dolores Hall, Senior Secretary Judi Reeve, Administrative Clerk

TABLE OF CONTENTS

LIST OF TABLES $\frac{\text { Page }}{\text { vii }}$
LIST OF APPENDICES
LIST OF APPENDICES
xi
xi
Job 1. Fish Flow Investigations 1
INTRODUCTION 1
Background 1
METHODS AND MATERIALS 2
Arkansas River
3
3
Cache la Poudre River
4
4
Colorado River
Colorado River
6
6
Gunnison River 10
Middle Fork of the South Platte River 11
Rio Grande River 12
St. Vrain River 13
South Platte River
13
13
Taylor River 17
RECOMMENDATIONS AND CONCLUSIONS 19
Job 3. Special Regulations Evaluations 21
INTRODUCTION 21
Background 21
METHODS AND MATERIALS
21
21
RESULTS AND DISCUSSION 23
Arkansas River 23
Blue River 24
Cache 1a Poudre River 27
Colorado River 29
Eagle River
32
32
Fryingpan River 32
Gunnison River 36
Middle Fork of the South Platte River 39
North Platte River 40
Rio Grande River 42
St. Vrain River
45
45
South Platte River 46
RECOMMENDATIONS AND CONCLUSIONS 50
General Conclusions and Recommendations 50
Arkansas River 50
Blue River
50
50
Cache 1a Poudre River 51
Colorado River 51
Eagle River 51
Fryingpan River 52
Gunnison River 52
Middle Fork of the South Platte River 53
North Platte River 53
Rio Grande River
53
53
South Platte River 54
St. Vrain River 54
Job 4. Wild Trout Introductions
55
55
INTRODUCTION
55
55 55
METHODS AND MATERIALS
METHODS AND MATERIALS

TABLE OF CONTENTS (Continued)

RESULTS AND DISCUSSIONS 56 RECOMMENDATIONS AND CONCLUSIONS 56 Job 6. Colorado River Aquatic Invertebrate Investigations 57 INTRODUCTION . 57 METHODS AND MATERIALS • 57 RESULTS AND DISCUSSIONS • 57 Pteronarcys californica Naiads as Trout Food 59 Pteronarcys californica Population Dynamics 59 Pteronarcys californica Versus Temperature and Dissolved 0xygen 60 RECOMMENDATIONS AND CONCLUSIONS 63 $\begin{array}{lll}\text { LITERATURE CITED . } \\ \text { APPENDIX . } & 64\end{array}$
Page
1 Fish Flow Investigations study streams, cross-sectional data collection and analysis3
2
Arkansas River brown trout yearling year-classstrength (N / ha) versus mean monthly discharge ($\mathrm{ft}^{3} / \mathrm{sec}$)from April through September 1980-83, at three differentelectroshocking stations4
Rainbow and brown trout year-class strength (N/hafor age 1+) versus mean monthly discharge, March-September, 1974-835

Regression analyses of rainbow (2+) and brown (1+) year-class strength (N / ha) versus mean monthly flow ($\mathrm{ft}^{3} / \mathrm{sec} 1979-83$)7
5 Rainbow and brown trout spawning flows and spawning microhabitat (WUA) for the Colorado River at the Lone Buck Wildlife Area, 1979-82, and corresponding habitat and year-class strength ratios for rainbow: brown trout9
6 Rainbow and brown trout year-class strength ($N / h a$) as 1+ years of age) versus mean monthly flow for year of emergence as fry11
7 Regression analyses of Gunnison River rainbow and brown trout year-class strength at age $1+$ versus mean monthly discharge, April-August 1980-8311
8 Linear regression analysis of brown trout cohort size (as l+ juveniles) in the Rio Grande River versus mean monthly discharge12

Brown trout year-class strength in the Cheesman Canyon and Deckers area versus various spawning, incubation, and emergence flows in the South Platte River, 1978-8414
10 Brown trout year-class strength at the above Deckers study section versus mean monthly flows ($\mathrm{ft}^{3} / \mathrm{sec}$) from April-August 1978-8315
11 Rainbow trout year-class strength in Cheesman Canyon versus mean monthly flows ($\mathrm{ft}^{3} / \mathrm{sec}$) from AprilSeptember 1978-83.15
12 Linear regression correlations for rainbow trout year-class strength versus peak discharge/month ($\mathrm{ft}^{3} / \mathrm{sec}$) for various spawning, incubation, and emergence flows for the South Platte River, 1978-8416

LIST OF TABLES (Continued)

Table Page
13 Gross wetted surface area, adult brown trout WUA versus discharge on the Taylor River 18
14
Density estimates for brown trout over 15, 30, and 35 cm for the Salida station, Arkansas River, 1981-85 24
15
Blue River brown trout population statistics 1981-84 2516
Average length (based on back-calculated age growth analysis) of 5 year old brown trout at age 4 in the Blue River before 1981 and after 1983-84 implementation of a 14-inch minimum size limit 27
17
Density and biomass for five upper Poudre River stations for 1982, 1983, and 1984 28
18
Number of trout $\geq 31 \mathrm{~cm}$ collected from the five upper Poudre stations 29
19
Colorado River trout populations density estimates N/ha, 1981-84 3020
Colorado River trout biomass estimates ($\mathrm{kg} / \mathrm{ha}, 1981-84$) 30
21
Colorado River, trout/ha $\geq 35 \mathrm{~cm}$ (14 in.), 1981-84 31
22 Trout density (N / ha) and biomass ($\mathrm{kg} / \mathrm{ha}$) statistics on the Fryingpan River, 1978-84 33
23
Percentage of marked rainbows captured in 1984 at the Fryingpan study sections 34
24
Trout numbers and biomass data for the Lower Gunnison River, 1981-84 36
25 Percentage of total trout captured that were $\geq 30 \mathrm{~cm}$ (12 in.) 38
26 Average size (cm) of brown trout at age in theGunnison River39
27
Biomass and number of trout over 40 and 50 cm in the1983 and 1984 migrating brown trout population40
28
North Platte trout population statistics 1980-84 40
Age and growth analyses of North Platte River trout (cm). 41
Wason Ranch trout population statistics 43
Table Page
31 Coller Wildife Area trout population statistics 43
32
State bridge trout population statistics 44
33
Density and biomass estimates for the St. Vrain River 1980-83. Number of trout over 26 cm in parenthesis 45
34 Number of age $2+$ brown trout collected 1980-84 and mean monthly flows during the winter months, St. Vrain River 46
35
Expanded substrate code for use with the Brusven substrate index 58
36
Pteronarcys californica "willowfly" naiads/m2 a the State Ranch and Parshall sampling sites 6037 Probable dissolved oxygen versus temperaturerelationship for the Colorado River near Windy GapDam, Granby, Colorado (assembled from Reid 1961, andWetzel 1975)62
\bullet

THE NATURAL (AND UNNATURAL) HISTORY OF CALIFORNIA TROUT

A SYMPOSIUM

Sponsored by AMERICAN FISHERIES SOCIETY California-Nevada Chapter

January 24, 1985
Monterey Holiday Inn at the Beach
Monterey, California

THE NATURAL (AND UNNATURAL) HISTORY

OF CALIFORNIA TROUT

January 24, 1985
Monterey Holiday Inn on the Beach
Monterey, California

Chair: Don Erman, University of California, Berkeley. 8:30-8:45 WELCOME

Cay Goude, President-Elect, Cal/Neva Chapter, American Fisheries Society.

8:45-9:15 INTRODUCTORY ADDRESS
Robert J. Behnke, Colorado State University.

9:15-10:15 STEELHEAD
North Coast - Dennis Lee, California Department of Fish and Game.

South Coast - Jerry Smith, San Jose State University.

10:15-10:30 BREAK
10:30-11:00 RAINBOW TROUT
Graham Gall, University of California, Davis.

```
11:00 - 11:30 GOLDEN TROUT
    Phil Pister, California Department
    of Fish and Game.
11:30 - 12:00 REDBAND TROUT
    Maria Ellis, The Nature Conservancy.
12:00- 1:30 LUNCH
1:30 - 3:00 CUTTHROAT TROUT
    Lahontan - Don Sada, U. S. Fish and
    Wildlife Service.
    Paiute - Eric Gerstung, California
    Department of Fish and Game.
    Coastal - Bill Mitchell, Humboldt
State University.
3:00 - 3:15 BREAK
3:15 - 3:45 BULL TROUT
    Mike Rode, California Department of
    Fish and Game.
3:45-4:15 CONCLUDING REMARKS
    Robert J. Behnke, Colorado State
    University.
4:15 - 5:00 ROUNDTABLE DISCUSSION
```

- wyo -kep
- county -
honquet-er
- ride bock:

LIST OF APPENDICES

Appendix Page
I Biomass and Standing Crop Estimates 1984-85 69
Table I-1. Arkansas River standing crop and biomass estimates, March 1985 70
Table I-2. Blue River standing crop and biomass estimates, October 15-18, 1984 70
Table I-3. Cache la Poudre standing crop and biomass estimates for trout $\geq 15 \mathrm{~cm}$, October 1984 71
Table I-4. Colorado River standing crop and biomass estimates, October 15-18, 1984 71
Table I-5. Eagle River standing crop and biomass estimates, September 20, 1984 72
Table I-6. Fryingpan River trout standing crop and biomass estimates, September 17-19, 1984 72
Table I-7. Gunnison River system standing crop and biomass estimates, August-September 1984 73
Table I-8. Middle Fork of the South Platte River population and standing crop estimates, September 1984. 73
Table I-9. North Platte standing crop and biomass estimates, October 3-4, 1984 74
Table I-10. Rio Grande River standing crop and biomass estimates, September and October 1984 74
Table I-11. South Platte River standing crop and biomass estimates, December 3-6, 1984 75
Table I-12. St. Vrain standing crop and biomass estimates, October 11 and 12,1984 75
II Length-frequency Histograms 76
Figure II-1. Arkansas River, Salida Station, brown trout/ha, 1981-84 77
Figure II-2. B1ue River, stream improvement section, browns, 1983-84 78
Figure II-3. Blue River, campground station, browns, 1983-84 79
Figure II-4. Blue River Wildlife Area, browns, 1983-84 80

LIST OF APPENDICES (Continued)

Appendix Page
Figure II-5. Blue River, browns/ha $\geq 30 \mathrm{~cm}, 35 \mathrm{~cm}$, 3 sections 81
Figure II-6. Cache 1a Poudre River, browns, October 1984 82
Figure II-7. Cache la Poudre River, rainbows, October 1984 83
Figure II-8. Colorado River, Parshall section, browns, 1984-84. 84
Figure II-9. Colorado River, Parshall section, rainbows, 1981-84 85
Figure II-10. Colorado River, rainbows/ha 1984, four study areas 86
Figure II-11. Fryingpan River, browns/ha 1984, five study areas 87
Figure II-12. Fryingpan River, rainbow/ha 1984, five study areas 88
Figure II-13. Fryingpan River, Ruedi Dam, rainbows/ha, 1978-84 89
Figure II-14. Fryingpan River, 01d Faithfu1, rainbows/ ha, 1979-84 90
Figure II-15. Fryingpan River, Tay1or Creek, rainbows/ ha, 1978-84 91
Figure II-16. Fryingpan River, Ruedi Dam, rainbows numbers and pounds/ha, 1972-84. 92
Figure II-17. Fryingpan River, Taylor Creek, rainbows numbers and pounds/ac, 1972-84 93
Figure II-18. Fryingpan River, rainbows/ha $\geq 35 \mathrm{~cm}$,
three study areas 94
Figure II-19. Gunnison River, North Fork-Smith Fork, browns, 1981-84 95
Figure II-20. Gunnison River, North Fork-Smith Fork, rainbows, 1981-84 96
Figure II-21. Gunnison River, Duncan-Ute Trail, browns, 1981-84 97

- systemns - integrere, holist re
- piecos jisson puzser - basis evol. N Not sab

$$
\begin{aligned}
& \text { CW0T siomplod, }
\end{aligned}
$$

- stivirle fish - multiple-s - N.W. Samon wat foryin -grosim foles rec-guide a but sistl *quoution - inolel = eistroct stupety- obscune - no aricydy
unore fiecouer (o iogseoride

|IIIIIIII||int

-wie Eiseal. - pirsm
*hub - Tensp - ta Cuniza
Cant sionpelots
-stenisle fish - moltieple

- foyy'n - grosim foles
*quoution-unolel = eistroct
stupety- Δ bscune - no oni ydy
resichererik -committes, 2ltosk fire=

Ed! sus li,00 systaen $\alpha_{n}+>$ siveuver elech ans bosse wesen -portros lizut halb Coneur syon to inteser pow hases

Ssวıpp วuren sıuว!̣!̣әप

City _State__Zip
Address
City State _ Zip Address Recipient's Name
Send ADDITIONAL gifts at \$12 rate to:

AMERICAN HERITAGE Christmas Gift Form

YES, I want to make the past a great present with AMERICAN HERITAGE. Please send gift subscriptions in my name as indicated on the back of this form.

My name \qquad
Address \qquad
City
State $\quad \mathrm{C} 855 \mathrm{FH}$

PLEASE FILL IN NECESSARY INFORMATION BELOW: FIRST GIFT (or your own subscription) \$24
SECOND GIFT @ $\$ 18$ (Save 25\%) \$ \qquad
ADDITIONAL GIFTS @ \$12 each
(Save 50\%)
\$
Postage outside U.S.: \$6 each. \$ \qquad
Total: \$ \qquad
Payment enclosed. \square Bill me later. Charge my credit card: \square Visa \square MasterCard \square American Express

Signature
See back of form for my gift list

DETACH HERE. PLEASE RETURN ENTIRE FORM IN THE ATTACHED POSTAGE-PAID ENVELOPE.

We think the support of our readers has had a lot to do with our success, and we want you to share in it.
That's why we are making this very special Christmas gift offer: your first gift subscription (or your own subscription) is $\$ 24$; your second gift subscription is $\$ 18$-a savings of 25%; all additional gift subscriptions are only $\$ 12$ each-a 50% discount!

We're celebrating at AMERICAN HERITAGE and we want you to be a part of it. As you know, 1985 is our 30th Anniversary, and to add to the excitement, we just won two National Magazine Awardsfor General Excellence and for Single-topic Issue (the October/November 1984 issue on American medicine).

We will also send you a handsome giftannouncement card to give or to send to each recipient on your list.
Just use this order form and you can make the past a great present for those special people on your gift list.

LIST OF APPENDICES (Continued)

Appendix Page
II Figure II-22. Gunnison River, Duncan-Ute Trail, rainbows, 1981-84 98
Figure II-23. Gunnison River, browns 1984, four study sections 99
Figure II-24. Gunnison River, rainbows 1984, four study sections 100
Figure II-25. Gunnison River, total trout biomass and total trout/miles, 1981-84 101
Figure II-26. Gunnison River, rainbows/mile and browns/mile, 1981-84 102
Figure II-27. Gunnison River, trout/mile $\geq 35 \mathrm{~cm}$, browns/mile and rainbows/mile $\geq 35 \mathrm{~cm}, 1981-84$ 103
Figure II-28. Gunnison River, Smith Fork-North Fork trout/mile $\geq 35 \mathrm{~cm}, 1981-84$; browns and rainbows/mile $\geq 40 \mathrm{~cm}$ 104
Figure II-29. Middle Fork of the South Platte River, browns, October 1984 105
Figure II-30. Middle Fork of the South Platte River, browns, 1979-84 106
Figure II-31. North Platte River, browns, 1982-84 107
Figure II-32. North P1atte River, rainbows, 1982-84 108
Figure II-33. Rio Grande River, Wason Ranch (special regulations), browns, 1982-84 109
Figure II-34. Rio Grande River, Wason Ranch (standard regulations), browns, 1982-84 110
Figure II-35. Rio Grande River, Coller Wildlife Area, browns, 1981-84 111
Figure II-36. Rio Grande River, State Bridge, browns, 1981-84 112
Figure II-37. Rio Grande River, Wason Ranch, browns $\geq 35 \mathrm{~cm}, 1982-84$. 113
Figure II-38. South Platte River, browns, December 1984. 114
Figure II-39. South Platte River, rainbows, December 1984 115

LIST OF APPENDICES (Continued)

Appendix Page
II Figure II-40. South Platte River, Lower Cheesman Canyon, trout populations, 1979-84, rainbows (unshaded), browns (shaded) 116
Figure II-41. South P1atte River, above Deckers, trout populations, 1979-84, browns (unshaded), rainbows (shaded) 117
Figure II-42. South Platte River, rainbow biomass, 1979-84, comparison of three study sites 118
Figure II-43. South Platte River, rainbows $\geq 30 \mathrm{~cm}$, 1979-84, comparison of three study sites 119
Figure II-44. South Platte River, rainbows $\geq 35 \mathrm{~cm}$, 1979-84, comparison of three study sites 120
Figure II-45. St. Vrain River, browns, October 1984 121
Figure II-46. St. Vrain River, Gaging Station, browns, 1980-84 122
III Age and Growth Tables (III-1), Life Tables (III-2) 123
Table III-1. Back-calculated lengths (cm) of trout from F-51-R study streams in 1984 124
Table III-2. Arkansas River, Salida brown trout/ha 132
Blue River, brown trout/ha 132
Cache la Poudre River (brown trout/ha) 133
Cache la Poudre River (rainbow trout/ha) 134
Colorado River (brown trout/ha) 135
Colorado River (rainbow trout/ha) 136
Eagle River (brown trout and rainbow trout/ha 137
Fryingpan River (brown trout/ha) 138
Fryingpan River (rainbow trout/ha) 139
Gunnison River (numbers/ha) 140
Rio Grande River (brown trout/ha) 141
South Platte River (brown trout/ha) 142
South Platte River (rainbow trout/ha) 143
Middle Fork of the South Platte River (brown trout/ha) 144
North Platte River (brown and rainbow trout/ha 145
Taylor River (brown trout/ha) 145
St. Vrain River (brown trout/ha) 146

APPENDICES (continued)

Appendix Page
IV Creel Census Data 147
Table IV-1. Summary of creel census statistics at Deckers on the South Platte River 148
Table IV-2. Summary of creel census statistics in Cheesman Canyon on the South Platte River 148
Table IV-3. Summary of creel census statistics for the Scraggy View Area compared to the Deckers Area for May-September 1984 149
Tables IV-4 and IV-5. Creel census of the South Platte River, Deckers, May-September 1984 150
Tables IV-6 and IV-7. Creel census of the South Platte River, Cheesman Canyon, May-September 1984 151
Tables IV-8 and IV-9. Creel census of the South Platte River, Scraggy View, May-September 1984 152
Figure IV-1. South Platte River, fisherman hours and total catch, 1979-81, 84 153
Figure IV-2. South Platte River, rainbow catch, 1979-81, 84. 154
Figure IV-3. South Platte River, trout caught ≥ 12 inches, 1979-81, 84 155
Figure IV-4. South Platte River, brown CPMH, total CPMH, 1979-81, 84 156
Figure IV-5. South Platte River, rainbow CPMH, brown catch, 1979-81, 84 157
Figure IV-6. South Platte River, angler contacts, attitudes, woman and children, and tackle by regulation area 158
Figure IV-7. Angler attitudes towards special regulations management on the Arkansas, Fryingpan, and South Platte rivers, 1981, 81, and 84 159
V Aquatic Invertebrate Tables 161
Figure V-1. Taylor River, WUA for browns versus discharge 162
Figure V-2. Taylor River, WUA for rainbows versus discharge 163

APPENDICES (Continued)

Appendix Page
V Figure V-3. Upper Colorado River basin water storage and collection system, Grand and Summit counties 164
Figure V-4. Probability of use curves for the "willow fly" naiad. Pteronarcys californica in the Colorado River 165
Figure V-5. Colorado River, Pteronarcys WUA (substrate and average velocity) versus discharge 166
Figure V-6. Colorado River, brown trout WUA versus Pteronarcys WUA 167
Figure V-7. Colorado River, rainbow trout WUA versus Pteronarcys WUA 168
Figure V-8. Pteronarcys californica naiad abundance and size distribution/m in the Colorado River on the State Ranch Wildife Area, 1982-84 169
Figure V-9. Pteronarcys californica naiad abundance and size distribution/m m^{2} in the Colorado River near Parshall, 1982-84 170
Figure V-10. Pteronarcys californica size, age, and sex distribution/m² in the Colorado River, 1984 171

Job No. $\quad 1$
Job Title: Fish Flow Investigations
Job Objective:
Quantify the interrelationships between flow regimes and trout population dynamics on selected sections of the following streams: Colorado, Arkansas, Taylor, Eagle, South Fork of the Rio Grande, Middle Fork of the South Platte, South Platte, Fryingpan, Rio Grande, Gunnison, Cache la Poudre and St. Vrain rivers.

INTRODUCTION

Background
This project began in 1973 as the "Upper Gunnison River Investigations." In 1975, the title was changed to "Stream Fishery Investigations" (F-51-R). At that time the project included Job 1, "Taylor River F1ow Investigations" and Job 2, "Influence of Artificial Stream Flow Alterations on Trout Populations." Job 1 involved studies done from 1973-75 to determine the status of the fishery under the existing Taylor River flow regime and has been reported by Burkhard (1977). In 1976, the flow regime was changed to conform to a pattern specified by Burkhard. Following 3 years of this pattern, the fishery was to be reexamined to determine if any significant changes had taken place.

In 1979 , this study was reactivated with Job 1 continued, Job 2 discontinued, and a new Job 3, Special Regulations Evaluations, added. The study continued as two jobs through April 1982. Effective May 1, 1982, the title for Job 1 (Taylor River Flow Investigations) was changed to Fish Flow Investigations. The number of rivers to be examined as a part of Job 1 was increased from 1 (the Taylor River) to 12. During the 1985 field season, we hope to complete all of the remaining cross-sectional analyses on the 12 study streams, including the Arkansas, Rio Grande, Eagle, and Fryingpan rivers.

Job 3, Special Regulations Evaluations, is in the 6th year of evaluation. Job 4, Wild Trout Introduction, is in the 3rd year of study. Job 5, Arkansas River Aquatic Invertebrate Investigations, was terminated at the end of the 1983/84 segment. Job 6, Colorado River Aquatic Invertebrate Investigations, is in the 3 rd year of study.

METHODS AND MATERIALS

Fishery biologists for decades have suspected that relationships exist between the amount of water flowing in a stream and the numbers and sizes of fish that occur in a stream (Brett 1951; Bulkley and Benson 1962; Drummond 1966; Gagmark and Bakkala 1960; Johnson 1956; McKernan et al 1950; and Wickett 1958). However, only in the last $7-10$ years has it become increasingly possible to document the relationships between stream flows and fish habitat(s).

The base of knowledge in this area has been substantially increased primarily due to the efforts of personnel working for the U.S. Fish and Wildlife Service at the Cooperative Instream Flow Service Group in Fort Collins, Colorado (Stalnaker and Arnett 1976; Bovee et al 1977, Bovee and Cochnauer 1977; Bovee 1978; Bovee and Milhous 1978; and Milhous et al 1981). Without the initiative and efforts of these people, we would probably still be in the "dark ages" as far as the melding and interfacing of fish population data and stream flows through computer modeling and simulations.

The accuracy, precision, and level of sophistication in modeling fish habitat increase almost daily. However, further proliferation of computer models to assess instream flow requirements for fish is of less urgency than long-term biological documentation, i.e., "field proofing" (Annear and Condor 1984). Indeed, long-term biological documentation is the primary goal of Job 1. We have already begun this process of "field-proofing" (Nehring and Anderson 1984), on the South Fork of the Rio Grande. Additional documentation will be presented below.

We use the incremental methodology for collecting field data on stream flow which in turn provides the input data set to the PHABSIM (Physical Habitat Simulation System) and IFG4 computer models to derive weighted usable area (WUA) for the life stages of trout species in each stream under study (Bovee and Milhous 1978; Milhous et al 1981). Weighted usable area (WUA curves) for the various life states of trout for a given stream versus discharge can be determined as soon as the flow data has been reduced and run through the computer simulations. However, procedures specified for this job require analyses of the relationships between age-class and year-class strength with annual discharge patterns. Our experience on the South Fork of the Rio Grande indicates that probably a minimum of 4 years of population estimation data, and perhaps as much as 6-7 years, will be required to make some definitive statements about these relationships. Accordingly, it will probably take until the final project segment (July 1, 1986-June 30,1987) to complete all analyses on some of these streams.

Plans, procedures, survey methods, and analysis techniques used in this investigation have been previously described by Bovee and Milhous (1978), Nehring (1979), and Hilgert (1982) and will not be discussed in further detail here.

During the next segment we hope to complete collection of the field data and analysis of the cross-section data on all remaining study streams (Arkansas, Rio Grande, Eagle and Fryingpan rivers). Table 1 below reveals the status of the studies on each stream as of June 30, 1985.

Table 1. Fish Flow Invesigations study streams, cross-sectional data collection and analysis.

Stream name	Region	County	Field year	Analysis year	Status
Cache la Poudre	NE	Larimer	83	84	Complete
St. Vrain	NE	Boulder	83	84	Complete
South Platte	NE	Jefferson/ Douglas	82	83	Complete
Arkansas	SE	Chaffee/ Fremont	85	86	
Middle ForkSouth Platte	SE	Park	83	85	Complete
Colorado	NW	Grand	83	84	
Eagle	NW	Eagle	85	86	In-process
Fryingpan	NW	Eagle	85	86	In-process
Gunnison	SW	Montrose/ Delta	82	83	Complete
Rio Grande	SW	Mineral/ Rio Grande	85	86	In-process
South ForkRio Grande	SW	Mineral/ Rio Grande	82	83	Complete
Taylor	SW	Gunnison	84	84	Complete

RESULTS AND DISCUSSION
Arkansas River
The brown trout population in the Arkansas River responds to spring and summer flows in exactly the same manner, as will be demonstrated in subsequent sections of Job 1 for the Cache 1a Poudre, Colorado, Gunnison, Rio Grande, St. Vrain, and South Platte rivers. Arkansas River brown trout year-class strength is negatively correlated with late spring and early summer discharge (Table 2).

Table 2. Arkansas River brown trout yearling year class strength (N / ha) versus mean month discharge ($\mathrm{ft} \mathrm{t}^{3} / \mathrm{sec}$) from April through September 1980-83, at three different electroshocking stations.

		Loma			ean Mon	thly Di	scharge		/sec)
Salida	Coaldale	Linda	Year	April	May	June	July	Aug.	Sept.
13	124	127	1980	441	1,025	3,930	1,813	760	538
217	251	415	1981	234	427	972	703	540	468
24	81	48	1982	339	676	2,084	1,519	1,192	725
3	14	10	1983	264	407	2,868	3,066	1,433	572
Salida power function rCoaldale power function r				-. 334	-. 120	-. 847	-. 999	-. 841	-. 418
				+. 110	+. 325	-. 518	-. 900	-. 899	-. 378
Loma Linda power function r				-. 009	+. 207	-. 566	-. 914	-. 970	-. 559

A power curve function regression analysis best fits the data, as is usually the case. The Arkansas is somewhat different from the other rivers in that the strongest negative correlations are in July and August for the brown trout rather than in April, May or June. However, the brunt of the run-off in the Arkansas Basin is delayed a month or more (in comparison to most of the other study streams) because of the large number of reservoirs in the headwater areas that capture most of the early run-off. Once the storage reservoirs have reached maximum capacity, then the run-off begins in earnest, often not until mid to late June in most years. Correlations were poor between October spawning flows and brown trout year-class strength, with a coefficient of determination (r^{2}) of 0.069 for 1980-83. Spawning habitat is clearly not a limiting factor.

Cache la Poudre River

We have been electroshocking the Poudre River as a part of this study from 1980 through 1984. Thus, we have 5 years of electroshocking data on six study sites with which to correlate age $1+$ rainbow and brown trout year-class strength with mean monthly discharge for the spring and summer months. At age $1+$, neither rainbow or brown trout are of a size to be vulnerable to angler harvest in the Poudre River. Table 3 contains the data analysis on rainbow and brown trout year-class strength versus mean monthly flows from 1979 through 1983. These 5 years ran 5, 2, 18, 10 and 1 , respectively, in total annual discharge for the calendar years 1964-83, or 19 years of record. Thus, our data spans from highest to lowest in discharge/annum and undoubtedly represents a true relationship between discharge and year-class strength.

Table 3. Rainbow and brown trout year-class strength (N/ha for age 1+) versus mean monthly discharge, March-September, 1974-83.

Year	Rainbows ${ }^{\text {a }}$	Browns ${ }^{\text {b }}$	Discharge ($\mathrm{ft}^{3} / \mathrm{sec}$)						
			March	April	May	June	July	Aug.	Sep.
1979	91.2	181.3	24	84	834	2,068	966	563	147
1980	194.4	153.2	149	550	2,581	2,392	674	274	104
1981	185.2	236.8	21	75	367	932	339	200	98
1982	120.4	253.5	19	33	375	1,469	1,307	616	161
1983	39.6	27.3	96	615	1,767	4,768	2,225	709	210
Rainb	ws power		+. 181	-. 323	-. 271	-. 775	-. 860	-. 821	-. 933
Rainb	ws linear		+. 141	-. 194	-. 054	-. 718	-. 894	-. 935	-. 956
Brown	power r		-. 627	-. 754	-. 622	-. 891	-. 684	-. 480	-. 674
Brown	linear r		-. 622	-. 867	-. 671	-. 976	-. 727	-. 446	-. 631

average rainbows/ha for 5 stations.
${ }^{\text {b Average }}$ browns/ha for 6 stations.

For the brown trout in the Poudre, the strongest negative correlation was for the month of June with the linear regression analysis giving a better fit than the power functions. This phenomenon (best fit for June) is a situation that is found all across Colorado, virtually without exception. When the relationship between brown trout year-class strength and discharge was subjected to regression analysis at each individual study site, June was once again the critical month. When YoY year-class strength (for 1980-84) was regressed against peak flow for the month of June for those years, the correlation coefficient (r) was -.988 for a power function regression analysis.

For the rainbow trout, the strongest negative correlations for the widest range of monthly flows (between years) was in July for both linear and power curve regression analyses, indicating July is probably the most critical month. However, August and September also had high negative correlation coefficients as well, albeit over a much narrower range of flows, especially for the month of September. Thus, we feel the relationship between flow and rainbow year-class strength in September is probably just a fortuitous occurrence rather than a real biological response to small variations in flow. We base this conclusion on the fact that when regression analyses between September flows and rainbow year-class strength were run on the five individual study sites, there was no consistent pattern between stations and the majority of the correlation coefficients (3 of 5) were poor ($r \leq 0.43$). The same was true for the month of August. For the month of July however, correlation coefficients were all strongly negative at each of the individual study sites. Thus we feel July (probably the month of rainbow YOY emergence), and to a lesser extent August, are the critical months when discharge most adversely impacts survival and recruitment of rainbow trout.

Colorado River

We completed an Instream Flow Incremental Methodology (IFIM) analysis and a PHABSIM (Physical Habitat Simulation Methodology) evaluation on the Colorado River at Lone Buck during 1983. The results of this evaluation were initially written up in the 1984 progress report (Anderson, Nehring, and Winters 1984). At that time, we were unable to discern any distinct relationships between year-class strength and flow for any month of the year.

The Colorado River and its rainbow and brown trout populations were an enigma, not responding at all in a manner observed on other streams in this study (see the results and discussion section for the Arkansas, Cache la Poudre, Gunnison, Rio Grande and South Platte rivers elsewhere in the Job 1 write-up). We were probably being limited by two things in last year's write-up: (1) only 3 years of good population data (1981-83); and (2) victims of our own conventional thinking, i.e., looking only for the same type relationships between flow and year-class strength already observed on the above mentioned streams and the South Fork of the Rio Grande (Nehring and Anderson 1983).

However, the Colorado River is somewhat unique in that it is probably one of the most dewatered and heavily controlled streams in Colorado due to the combined impacts of the water collection systems and storage reservoirs in the headwater areas. The Grand Ditch taps virtually every tributary on the west side of the Kawuneeche Valley in Rocky Mountain National Park and diverts it to the East Slope into the Cache la Poudre Basin. The Big Thompson Transmountain Diversion Project collects and stores water from additional headwater tributaries to the Colorado River in Granby and Shadow Mountain reservoirs and Grand Lake and then diverts it into the Big Thompson Basin near Estes Park via the Alva B. Adams Tunne1. An extensive collection system on the branches of Ranch Creek, the Fraser River, Vasquez and St. Louis creeks and the Williams Fork River drainage diverts water to the East Slope via the August P. Gumlick and Moffat tunne1s. Beginning in May 1985, the Windy Gap Pump Project will divert up to an additional 50,000 acre-feet ($6.17 \times 10^{7} \mathrm{~m}^{3}$) of water from the Fraser River Basin into the Big Thompson Project via the Alva B. Adams Tunnel.

In light of these diversions, it is not too difficult to understand that the trout population might respond in a somewhat different or abnormal fashion than the more "normal" responses observed on other streams which have a more "normal" annual discharge hydrograph. That trout have managed to survive, and perhaps even thrive (in some instances) in what still remains of the upper Colorado River, is much more of a tribute to the great adaptability of rainbow, brown, brook, and cutthroat trout than to man's prowess in planning for the concerns of fish and wildlife as he seeks additional sources of water to slake the insatiable thirst of Front Range Colorado.

The key to solving the enigmatic relationship between rainbow and brown trout and the upper Colorado River (between Windy Gap Reservoir and the confluence with Troublesome Creek east of Kremmling, Colorado) lies in
the realization that the river channel as it exists now is still the product of much higher spring discharge levels that occurred prior to the construction of the massive reservoirs and collection and diversion systems from the late 19th century up through the 1950 's. High spring discharge levels left only rubble, cobble, and boulder aggregates in the mid-channel of the Colorado River. Spawning gravels $6-51 \mathrm{~mm}$ (.25-2.0 in.) in diameter were either deposited along the banks in the lower velocity areas or else washed completely out of the system. After 5 successive years of taking rainbow trout spawn in the Colorado River during April from 1981 through 1985, it is clear that rainbow trout spawn in the shallow peripheral areas of the channel where proper water velocities and gravel sizes exist. Most spawning pairs of rainbow trout are collected in water less than .3 meters (1 ft) depth and from .3 to 3 meters ($1-10 \mathrm{ft}$) from the bank over good spawning gravel. Many redds have been observed in these shallow inshore areas.

Regression analysis (Table 4) were run on rainbow (age 2+) year-class strength (N / ha) versus mean monthly discharge (March-August 1979-82) as we11 as mean discharge from April 16-30, 1979-82. The latter time period has proven to encompass the majority of the rainbow trout spawning activity in the study area since 1981.

Table 4. Regression analyses of rainbow (2+) and brown (1+) year-class strength (N / ha) versus mean monthly flow ($\mathrm{ft}^{3} / \mathrm{sec}$) 1979-83.

We ran linear, logarithmic, and power function regression analyses on both rainbow and brown trout. Power function regression analyses worked the best (highest correlation coefficients) in all instances. For rainbow trout, we found the highest correlation coefficients in April and April 16-30, the period of peak rainbow spawning activity. Correlation coefficients for rainbow trout ($2+$) year-class strength versus mean monthly flows were all quite high for May, June, and July as well (in descending order) indicating the elevated water levels are important for good egg incubation and hatching success as well.

One might question why we used year-class strength at age $2+$ instead of age $1+$ as has been done on most other evaluations in this study in the past. There are several reasons. First, we are correlating rainbow year-class strength from the Parshall study area, a 2 mile (3.2 km) section of river. This area, which we boat shock, gives us our most reliable rainbow population size and age distribution because of the large sample size. Year-in and year-out, the $2+$ cohort comprises the greatest portion of the population. We generally sample in excess of 2,000 rainbows each fall at this study site. Second, most of this study section lies on private land and is leased by clubs practicing catch-and-release angling. Thus, angling pressure and harvest are much lower than on the public sections of water upstream, thereby reducing our bias due to angler harvest on the 2+ age group. Third, examination of our life table data (Appendix III, Table III-2) indicates considerable augmentation of individual rainbow year-classes occurs between age $1+$ and $2+$ at the Parshall study area. Thus, year-class strength is not stabilized or fully recruited until age 2+. Some of this may be due to lower shocking efficiency on age 1+ trout. However, it is more probable that many recruits to a year-class in the Parshall area do not arrive until their third summer of life. We know from our fish marking operation (adipose clip on spawning age rainbows) in the fall of 1981, that many rainbows move upstream many miles in the spring to spawn. Fry and juveniles probably remain in these upstream areas their first 2 years of life where fry and juvenile habitat is better and there is less competition from adult rainbow and brown trout due to higher removal rates from angler harvest in the public water. Finally, water sampling efficiency on larger numbers of larger, older trout ($2+$ versus $1+$) reduces our chances for error with the electroshocking equipment.

We also ran regression analyses of rainbow trout spawning macrohabitat (WUA) versus rainbow year-class strength at age $2+$. This regression and all of the above are regressed against the mean monthly flows for the month when that year-class was spawned and hatched, i.e., the 1984 age $2+$ rainbow sample (the 1982 year-class is regressed against flows for March-August 1982). As expected, rainbow year-class strength was strongly correlated with mean spawning WUA for April (1979-82), the period of peak rainbow spawning activity. A power function regression analysis gave a correlation coefficient of +.98 for April and +.95 for April 16-30.

Brown trout year-class strength versus spring discharge has strong negative correlations for a power function regression analysis (Table 4) for April and May, 1980-83. This is a pattern that has been repeated in virtually every other stream included in this Job 1 study. Brown trout year-class is inversely correlated with the spring discharge levels. Brown trout fry are very sensitive to high water velocities (Ottaway and Forrest 1983) at the early post-emergence period which invariably occurs on the ascending limb of the spring discharge hydrograph in Colorado. Thus, the response of the brown trout in the Colorado River is similar to that of other streams and brown trout populations around the state.

However, the relationship between brown trout and rainbow trout numerical density in the Colorado River is also quite unique in that rainbow trout
often are higher in density and biomass at most study sites in years from 1979-84, even in the public water sections such as the Lone Buck and Paul Gilbert Wildife areas. Judging from past experience on other public sections of streams across Colorado, angling pressure and harvest on the Colorado River should have reduced the wild rainbow component of the trout population to an insignificant level. Yet even prior to the implementation of special protective regulations in 1981, we found rainbow numbers and biomass to be 4-10 times higher than those for brown trout. Why?

Again, we return to the spawning times and flows for the answer. Examination of the data in Table 5 tells the story. Brown trout in the Colorado River spawn in October. At no time between October 1976 and October 1981 were the daily discharge levels over $100 \mathrm{ft}^{3} / \mathrm{sec}$ during the brown spawning period. In October 1975 and 1982, mean daily discharge levels slightly exceeded $100 \mathrm{ft}^{3} / \mathrm{sec}$ on a few days, but was never over $120 \mathrm{ft}^{3} / \mathrm{sec}$. In contrast, rainbow spawning flows for April 1976-82 have ranged from a mean monthly flow of 124 to $269 \mathrm{ft}^{3} / \mathrm{sec}$ for those 7 years. Thus, if we compare mean spawning WUA microhabitat values from 1979-82 (Table 5), we find rainbow spawning WUA is from 3.0-7.1 times more abundant than brown spawning WUA for the respective spawning years and year-classes. Similarly, for the ratio for rainbows/ha to browns/ha for each year-class at age $2+$, we discover the higher ratios of rainbows to browns is in the years when the ratios of rainbow spawning WUA to brown spawning WUA are also higher. A power curve regression analysis of rainbow WUA/brown WUA (X variable) versus $2+$ rainbow/ha- $2+$ brown/ha (Y variable) for 1979-82 gives a positive correlation coefficient of +0.96 .

Table 5. Rainbow and brown trout spawning flows and spawning microhabitat (WUA) for the Colorado River at the Lone Buck Wildife Area, 1979-82, and corresponding habitat and year-class strength ratios for rainbow: brown trout.

It is interesting to note that when the advantage of rainbow spawning WUA drops from 3-5 times that of brown trout, brown trout year-class strength equals or exceeds that of the rainbows at age $2+$ (see 1981 and 1982 in Table 4). Our creel census and population estimation data from several
areas (South Platte, Fryingpan, and Gunnison rivers) shows that where rainbows and brown exist in the wild in sympatry, rainbows are from 3-5 times more vulnerable to angler harvest than brown trout. Thus, it is probably more than just a coincidence that on the Colorado River, rainbows are able to dominate the trout population when rainbow spawning habitat exceeds that of brown trout by a ratio of more than 5:1, i.e., when spawning WUA ratios of rainbows:browns is greater than 5:1, rainbow recruitment is more than enough to offset the rainbow's greater vulnerability to angler harvest.

Thus, brown trout are at a severe competitive disadvantage in the spawning area since they are fall spawners. In the Colorado River, with its massive water storage and diversion facilities, enough water does not remain in the river during the fall and winter months to provide adequate water depth and velocity over the best spawning sites (proper gravel) on the peripheral areas of the channel. Thus, the browns can only attempt spawning over the larger rubble-cobble substrates still watered in mid-channel areas. Undoubtedly, brown trout spawning success suffers accordingly.

Gunnison River
At present, we have 4 years of electroshocking data on the Gunnison River in the Black Canyon (1981-84). The wide range in annual hydrographic patterns in this river from 1980 through 1983 provides an excellent opportunity for "field-proofing" the relationship between salmonid recruitment and spring, early summer discharge patterns. For the calendar years 1980-83, the Gunnison River ran the third highest mean annual discharge in 21 years (1983), the median water for mean annual discharge (1982), a 1 in 7 low water year (1981), and the 1 in 5 high water year (1980) based on mean annual discharge.

Our studies on the South Fork of the Rio Grande (Nehring and Anderson 1984) clearly demonstrate the negative impact of high spring run-off on survival and recruitment of young-of-the-year (YOY) brown trout to the population. Our studies in the Black Canyon of the Gunnison clearly demonstrate a strong negative correlation between rainbow and brown trout year-class strength and mean monthly discharge for June, July, and August 1980-83. Since we cannot effectively electroshock YOY rainbow and brown trout from our Jon boat, because of the small size of the trout, we regressed second summer ($1+$) rainbow and brown trout ($N / h a$) against mean monthly discharge for all calendar months in the year each cohort of trout hatched out. Specifically, numbers of $1+$ rainbow and brown/ha sampled in August 1981 were regressed against mean monthly flows for January-December 1980, the year the 1981 1+ cohort of trout hatched. We believe this correlation is relatively unbiased by angler harvest as the majority of $1+$ browns and rainbows are 23 cm (9 in .) in length or less and have not been subjected to angler harvest for more than a month or two at the time of sampling. Correlation coefficients were poor ($\mathrm{r} \leq \pm 0.6$) for most months except for June, July, and August, the months that rainbow and brown trout fry are just emerging or have just emerged from the gravel and are highly vulnerable to high water velocities (Ottaway and Forrest 1983). The data in Table 6 below compares rainbow
and brown year-class strength as numbers of $1+$ trout/ha and mean month1y discharge from April-August 1980-83. Power curve and linear regression analyses give the best correlation coefficients (r) for both rainbow and brown trout. These correlation coefficients are listed in Table 7 below.

Table 6. Rainbow and brown trout year-class strength ($N /$ ha as $1+$ years of age) versus mean monthly flow for year of emergence as fry.

Water year	Sample year	Duncan-Ute		Smith Fork- N. Fork		Mean Monthly Flow (ft $3 / \mathrm{sec}$)				
		$\mathrm{rb} / \mathrm{ha}$	brn/ha	$\mathrm{rb} / \mathrm{ha}$	brn/ha	April	May	June	July	Aug.
1980	1981	197	641	177	88	1,619	2,124	1,852	1,049	812
1981	1982	212	363	167	122	231	226	234	240	259
1982	1983	111	242	43	140	452	420	759	763	754
1983	1984	4	82	8	65	850	1,148	4,175	4,197	2,000

Table 7. Regression analyses of Gunnison River rainbow and brown trout yearclass strength at age $1+$ trout versus mean monthly discharge, April-August 1980-83.

Population Location	Regression type

1+ rainbow	Duncan-Ute	Power curve	-. 243	-. 310	-. 739	-. 867	-. 827
1+ rainbow	Duncan-Ute	Linear	+. 049	+. 017	-. 806	-. 896	. 918
1+ brown	Duncan-Ute	Power	+. 090	+. 035	-. 484	-. 674	. 650
1+ brown	Duncan-Ute	Linear	+. 589	-. 556	. 430	-. 621	-. 591
1+ rainbow	Smith ForkNorth Fork	Power curve	-. 138	-. 179	-. 664	-. 820	-. 815
1+ rainbow	Smith ForkNorth Fork	Linear	+. 255	-. 243	. 578	-. 705	-. 748
1+ brown	Smith ForkNorth Fork	Power curv	-. 651	72	. 843	. 82	
1+ brown	Smith Fork-						
	North Fork	Linear	-. 614	-. 675	-. 902	-. 815	-. 781

Middle Fork of the South Platte River

This stream is the only river included in the Job 1 study where no significant relationship can be documented between brown trout year-class strength and stream discharge for the spring-summer months. We have one plausible explanation.

This study stream is far and away the highest elevation study area, near $3,000 \mathrm{~m}$ or 10,000 feet elevation. The surrounding area is severly windswept in the winter months and in some years, does not receive more than a minimal snow pack even in above average precipitation years since it lies on the snow shadow (leeward) side of the continental divide. However, mid-winter temperatures can dip to minus 40 C or lower causing the often exposed stream channel to freeze from the bottom (anchor ice) up due to the supercooling effect of wind and low temperatures on the exposed streambank. In these winters, it is quite likely that brown trout redds are frozen solid in the gravel. In such a case, brown trout year-class strength would have no relationship with spring-summer discharge levels.

Rio Grande River

We have not yet initiated cross-sectional analysis of the Rio Grande River to develop WUA habitat curves versus stream discharge. However, we do have 4 years (1981-84) of electroshocking data from two different areas on the Rio Grande River. Thus, it is possible to run a regression analysis of mean monthly discharge versus brown trout year-class strength. We regressed the population density of $1+$ brown trout against mean monthly flow from March through September. Numbers of $1+$ brown trout were regressed against mean monthly flows for the year of emergence for each cohort. The data used in the regression analysis is presented in Table 8 below.

Table 8. Linear regression analysis of brown trout cohort size (as 1+ juveniles) in the Rio Grande River versus mean monthly discharge.
Water Sample
Year Year

			Coller Wildlife Area (2.2 miles)						
1980	1981	1,060	113	276	1,393	2,734	1,557	383	361
1981	1982	1,239	104	377	1,010	1,243	513	400	312
1982	1983	1,206	109	311	-988	2,180	992	766	716
1983	1984	994	127	187	1,084	2,421	1,581	738	304
			State Bridge Section (6.8 miles)						
1980	1981	1,310	214	560	2,520	4,967	2,127	500	458
1981	1982	3,276	173	530	1,458	1,734	603	428	390
1982	1983	2,974	231	561	1,810	3,469	1,401	1,052	1,185
1983	1984	1,966	244	379	1,789	4,064	2,005	944	38

Linear correlation coefficient (r)

| Coller Wildlife Area | -.920 | +.938 | -.552 | -.775 | -.941 | -.183 | +.445 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| State Bridge Area | -.465 | +.207 | -.876 | -.917 | -.918 | +.092 | +.378 |

The high correlation coefficients for the Coller Wildife Area for March and April are purely a function of insignificantly low variations in flow. The rest of the r values for both areas for March, April, August, and September are poor ($r \leq \pm 0.5$). In contrast, the r values for June and July and to a lesser extent May, are consistently high and negative (r ranges from -0.775 to -0.941) again indicating a strong negative correlation between year-class strength and spring-summer discharge. As was the case on the Gunnison River, virtually all $1+$ brown trout on the Rio Grande River are less than 20 cm (8 in .) total length at the time of sampling. Thus, cohort density should not be impacted by angler harvest as most anglers release trout less than 20 cm (8 in.) in length.

St. Vrain River
A portion of the St. Vrain River went under catch-and-release management beginning in 1981. Four electroshocking study sites were set up in the fall of 1981 to gather pre-catch and release population data. Once again, we regressed brown trout year-class strength (age 1+) against mean monthly flows for the spring and summer months, March through August 1979-83. The only two stations for which meaningful evaluations could be made for the entire period were the upper two stations, i.e., City Park or Meadow Park, and the Gaging Station. The lower two were subjected to a fish-kill in the summer of 1981 and one station also underwent an extensive stream improvement project in 1981 as well.

Linear regression analysis produced consistently higher correlation coefficients over a power curve regression analysis for both the Meadow Park and Gaging Station study sites, with r values of -0.76 and -0.62 for the two stations, respectively, for the month of May. April also gave strong negative r values of -0.71 and -0.57 for the Meadow Park and Gaging Station study sites, respectively. All other months (March, June, July, and August) resulted in very poor correlation coefficients for both study sites in all months.

With the study sites on the St. Vrain (near Lyons, Colorado) being at a relatively low elevation ($5,300 \mathrm{ft}$ or $1,616 \mathrm{~m}$), one would anticipate an earlier hatching time and emergence here as compared to other higher elevation study sites around the state. Indeed this is the case with the strongest relative correlations on the St. Vrain coming in April and May, versus June and July for brown trout populations on the higher elevation study sites and streams across the state, including the Arkansas, Cache 1a Poudre, Gunnison, Rio Grande, South Fork of the Rio Grande, and Taylor rivers. Only on the Colorado River, a higher elevation stream, were the months of April and May discharges most critical to brown trout emergence, probably due to the impact of thermal hot springs which flow into the Colorado River at Hot Sulphur Springs, about 5 km above our study site. Elevated water temperatures would result in earlier brown trout hatching and emergence time.

South Platte River

We now have 7 years of electroshocking data from the South Platte River. As has been the case on the Arkansas, Cache 1a Poudre, Gunnison, Rio Grande, South Fork of the Rio Grande, and the St. Vrain rivers,
year-class strength for rainbow and brown trout in the South Platte River below Cheesman Dam is strongly (negatively) correlated with spring discharge levels. For brown trout, the discharge levels in April, May, and June are most critical. Rainbow trout year-class strength is very strongly correlated with flows in June and July with the strongest negative correlation coefficient (r) in July.

Both peak daily discharge (per month) and mean monthly discharge correlate very well. With the peak daily discharge, a linear regression provides the best correlation coefficient while a log or power curve function (curvilinear) regression provides the best correlation with mean monthly flow. For a detailed look at the correlations between young-of-the-year (YOY) and age 1+ year-class strength with peak daily flows (by month) and mean monthly flows, see Tables 9-12.

For rainbow trout, there were no strong correlations with April or May monthly flows, nor with lowest May (incubation) flows, indicating that available spawning habitat (in April) nor incubation (May) flows are not a factor limiting or controlling the rainbow trout populations in either the Deckers or Cheesman Canyon study areas.

Table 9. Brown trout year-class strength in the Cheesman Canyon and Deckers area versus various spawning, incubation, and emergence flows in the South P1atte River, 1978-84.

Year class	N/ha		Peak discharge/month			(ft/s)	Spawn X Oct.	$\begin{aligned} & \text { Incubation } \\ & \text { low } \\ & \text { winter } \end{aligned}$	spawn minus incubation
	YOY		April	May	June	July			
1979	993	268	176	39	670	805	25	8	17
1978	657	218	52	121	426	528	75	16	59
1982	604	176	365	509	181	252	96	15	81
1981	939	165	397	303	142	228	71	13	58
1980	48	72	441	1,070	1,300	912	251	16	235
1983	48	46	642	843	1,200	828	127	15	112
1984	34	--	384	931	972	946	149	15	134
r linear Yoy ${ }^{\text {a }}$			-. 616	-. 931	-. 811	-. 647	-. 832	-. 663	-. 826
r $\log \mathrm{YOY}^{\text {a }}$			-. 483	-. 836	-. 726	-. 606	-. 865	-	-. 865
r 1inear $1+{ }^{\text {b }}$			-. 875	-. 935	-. 662	-. 336	-. 788	-. 626	-. 782
			-. 719	-. 924	-. 465	-. 267	-. 881	. 626	-. 872

Table 10. Brown trout year-class strength at the above Deckers study section versus mean monthly flows ($\mathrm{ft}^{3} / \mathrm{sec}$) from April-August 1978-83.

Table 11. Rainbow trout year-class strength in Cheesman Canyon versus mean monthly flows ($\mathrm{ft}^{3} / \mathrm{sec}$) from April-September 1978-83.

Year Class	YOY/ha ${ }^{\text {a }}$	$1+/ h a^{\text {b }}$	April	May	June	Ju1y	Aug.	Sept.
1978	108	106	26	48	155	99	67	34
1979	26	28	63	26	339	512	258	81
1980	6	16	157	809	953	651	266	126
1981	73	72	232	63	47	144	145	260
1982	185	806	266	316	53	111	591	331
1983	26	78	239	496	819	478	527	236
r power			-. 078	-. 397	-. 862	-. 925	-. 151	+. 094
r power			$+.250$	-. 061	-. 686	-. 758	+. 276	+. 388

[^0]Table 12. Linear regression correlations for rainbow trout year-c1ass strength versus peak discharge/month ($\mathrm{ft}^{3} / \mathrm{sec}$) for various spawning, incubation, and emergence flows for the South Platte River, 1978-84.

Year class	YOY/ ha	$1+/$ ha	April spawn	May bation	June hatch	July emer- gence	Mean April	Lowest(May) incubation flow
1982	185	806	365	509	181	252	266	256
1978	108	106	52	121	426	528	26	35
1981	73	72	397	303	142	228	232	26
1983	26	78	642	843	1,200	828	189	375
1979	26	28	176	39	670	805	63	21
1980	6	16	441	1,070	1,300	912	157	618
1984	4	--	384	931	972	946	211	356
r linear Yoya		-.300	-.434	-.880	-.997	+.208	-.383	
r linear 1+b		+.026	-.005	-.699	-.891	+.560	+.017	

a Deckers area YOY/ha
${ }^{\mathrm{b}}$ Cheesman Canyon $1+/ \mathrm{ha}$

For brown trout, year-class strength (both YOY and 1+ ages) were negatively correlated with mean monthly flows for October, which on the surface is rather surprising. One would normally anticipate that brown year-class strength would be positively correlated with fall (October) spawning flows. However, the real problem is with the difference between fall spawning flows and low winter flows, i.e., the greater the difference between spawning flows and low winter flows, the poorer the brown trout year-class strength. Higher spawning flows result in higher water velocities with the spawners selecting spawning sites nearer the edges of the channel. Then when mid-winter releases are dropped from $125-250 \mathrm{ft}^{3} / \mathrm{sec}$ in October (the cases for 1980, 1983, and 1984 year-classes) down to $15 \mathrm{ft}^{3} / \mathrm{sec}$, we find we have our poorest brown trout year-classes. Conversely, in 1978, 1979, 1981, and 1982, the years when October spawning flows ranged from $25-96 \mathrm{ft}^{3} / \mathrm{sec}$, and the winter incubation flows were dropped to $8-16 \mathrm{ft}^{3} / \mathrm{sec}$, the magnitude of difference between spawning and incubation flows was much less (Table 9), and we see our strongest year-classes for browns developing. Thus, stability in water releases out of Cheesman Reservoir from October through March would be much preferred even if the flows were lower. However, it would be best if the releases were in the $50-100 \mathrm{ft}^{3} / \mathrm{sec}$ range rather than in the $5-50 \mathrm{ft}^{3} / \mathrm{sec}$ range, as the releases less than $50 \mathrm{ft}^{3} / \mathrm{sec}$ definitely do result in fewer brown recruits and a lower catch-per-man-hour (CPMH) for brown trout 2 years later, as was demonstrated in the relationship between mean winter flows and brown catch-per-man-hour (CPMH) from 1961-70 (Nehring 1980).

Skeptics might ask, "Why do the lower flows during incubation seem to have a negative impact on the browns, but not on the rainbows?" There
are two probable reasons. First, the magnitute of the dewatering, often times down to less than $10 \mathrm{ft}^{3} / \mathrm{sec}$ for weeks or even months at a time. Second, the dewatering occurs during the cold winter months when bottom and anchor ice becomes a severe problem in the Deckers area, probably freezing incubating brown eggs in the grave1. Reiser and White (1983) found that the total dewatering of steelhead and chinook salmon redds did not adversely affect egg hatchability as long as the substrate contained at least 4% moisture by weight. However, Reiser and White (1981) also found that alevin survival in dewatered substrates is very low after just a few hours of dewatering. Hobbs (1937), Hardy (1963), and Hawke (1978) all demonstrated excellent survival of dewatered salmonid eggs in New Zealand. However, Becker et al (1982) concur with Reiser and White (1981) that newly hatched and pre-emergent alevin mortality ranges from $50-100 \%$ within $1-10$ hours after dewatering. Clearly, once salmonid alevin respiration is dependent upon the gill structure, any dewatering of the intra-redd environment has dire consequences for the salmonid population.

It must be kept in mind that many environmental variables will alter the response of salmonid egg hatchability in the wild from the responses in the studies cited above. The slope of the stream channel in larger salmonid streams in the intermountain west is usually much less than 1%. In the study of Reiser and White (1983) the slope of the artificial channel was 2%. They also indicate accumulated fines and sediment in the intra-redd environment will adversely affect survival. Few rivers exist anywhere in the natural environment where some suspended fines or organic debri is not borne in the water column. Thus, to draw the conclusion (from the preceding discussion) that total stream dewatering during salmonid egg incubation periods poses no threat to the survival of a new year-class is an extremely precarious assumption. It is also extremely narrow in scope since no consideration is given to either the survival of the juvenile or adult salmonids, nor to the aquatic invertebrate fauna of the stream.

Taylor River

Cross-sectional analysis was completed on the Taylor River during the 1984 field season. Attempts were made to correlate brown trout year-class (1+) strength with adult WUA based on the IFG4 and PHABSIM computer simulations. Correlations were poor ($r \leq \pm 0.5$). Attempts were also made to correlate brown trout year-class ($1+$) strength with differences between spawning and incubation flows in the winter months (October-March) of the year a cohort was incubating in the egg stage. Again, correlation coefficients were poor ($r \leq-0.5$). Average density of adult brown trout over four electroshocking stations regressed against differences in the magnitude of fall-winter flows did provide a strong negative correlation ($r=-0.894$) on a linear regression analysis.

This strong negative relationship between adult brown trout density (trout $\geq 15 \mathrm{~cm}$ total length $/ \mathrm{km}$), versus differences in the magnitude of winter flows indicates severe over-winter mortality in years when the variations between high 7 day flows and low 7 day flows were very large. Indeed in the years when this difference was from $200-500 \mathrm{ft}^{3} / \mathrm{sec}$, variation between 7 day maximum and minimum winter flows (October-March),
the population density was lowest. Conversely, in the years when the differences between maximum and minimum 7 day winter flows were less than $100 \mathrm{ft}^{3} / \mathrm{sec}$, population densities were the highest. Table 13 contains data indicating the relationship between: gross wetted surface area/1,000 feet of stream channe1; adult brown trout WUA/1,000 feet of stream channel; and stream discharge. The data indicate that below 100 $\mathrm{ft}^{3} / \mathrm{sec}$ dramatic decreases in gross wetted surface area and adult brown WUA occur. Habitat losses (gross and WUA) become even more dramatic at $75 \mathrm{ft}^{3} / \mathrm{sec}$. At $25 \mathrm{ft} / \mathrm{sec}$, adult brown trout WUA has dropped to 612 $\mathrm{ft}^{2} / 1,000 \mathrm{ft}$ stream channel. That represents a 92% reduction from the estimated WUA at $100 \mathrm{ft}^{3} / \mathrm{sec}$. Examination of U.S.G.S. flow records for the Taylor River below Taylor Park Reservoir indicate water releases from the reservoir were often held at $25-30 \mathrm{ft}^{3} / \mathrm{sec}$ for most of the winter months in the 1960's and early 1970's.

Table 13. Gross wetted surface area, adult brown trout WUA versus discharge on the Taylor River.

Discharge $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$	Gross area $\mathrm{ft}^{2} / 1,000 \mathrm{ft}$ stream	Adult brown WUA $\mathrm{ft}^{2} / 1,000 \mathrm{ft}$ stream	Incremental loss of WUA as the flow decreases
25	70,700		
50	86,500	612	1,678
75	98,800	2,290	3,280
100	104,400	7,750	2,180
125	107,000	11,850	4,100
150	109,900	14,010	2,160
175	111,700	15,090	1,080
200	113,700	15,710	620
250	117,500	17,260	550
300	119,000	18,530	1,270
350	120,000	19,060	810
400	120,800	19,320	720
450	121,500	19,880	260
500	122,100	20,200	560
600	123,000		320

An optimum flow range in the Tay1or River can be predicted by an arithmetic sum of the WUA for all life stages of brown trout at each flow and then determining the range of discharge that provide near maximum WUA. For this study section, a range of flows from $150-300$ $\mathrm{ft}^{3} /$ sec provided near maximum WUA for brown trout spawning, fry, and juvenile brown trout, as well as a high level of adult brown trout WUA. All life stage (including adults) maxima for rainbow trout WUA also occur within the $150-300 \mathrm{ft}^{3} / \mathrm{sec}$ discharge range. (Table 13 and Figures V-1 and V-2 in Appendix V). This optimum flow range is not to be construed as an official recommendation by the Colorado Division of

Wildife for flow releases in the Taylor River. Rather, it is a general guideline from a biological standpoint to be considered in general reservoir operational planning.

The cross-sectional analysis indicates habitat loss becomes increasingly acute as the flow drops below $100 \mathrm{ft}^{3} / \mathrm{sec}$. Comparison of flow records for the Taylor River below Taylor Park and the Taylor River at Almont indicate that mid-winter flows at Almont are generally 40-50 ft $3 / \mathrm{sec}$ higher than the readings in the river below the reservoir. Thus, releases of $50-75 \mathrm{ft}^{3} / \mathrm{sec}$ from the reservoir in mid-winter would result in a $100-125 \mathrm{ft}^{3} / \mathrm{sec}$ discharge at Almont. It seems biologically prudent to recommend that the flow releases out of Taylor Park Reservoir not be dropped below $50 \mathrm{ft}^{3} / \mathrm{sec}$ except for emergency maintenance, and that a minimum release of $75 \mathrm{ft}^{3} / \mathrm{sec}$ would be better for maintaining minimal overwinter habitat for adult brown trout. An optimum range of flows for most brown trout life stages in the Taylor River is $150-300 \mathrm{ft}^{3} / \mathrm{sec}$. Flow levels above $500 \mathrm{ft}^{3} / \mathrm{sec}$ become increasingly detrimental to the trout population. We hope these flow level guidelines can be considered in the overall operations planning for Taylor Park Reservoir.

RECOMMENDATIONS AND CONCLUSIONS

At this point in the stream flow investigations study we have clearly documented strong inverse relationships between brown and rainbow trout year-class strength versus spring and early summer discharge levels on the Cache la Poudre, Colorado, Gunnison, and South Platte rivers. We have documented the same sort of relationship between brown trout year-class strength and spring-early summer discharge on the Arkansas, Rio Grande, and South Fork of the Rio Grande rivers.

We have also demonstrated the negative impacts of rapid and extreme flow fluctuations on the South Platte, Gunnison, and Taylor rivers at critical times in the trout's life cycle. The most critical times (for the most part) are during the hatching and emergence periods as has been demonstrated in the above discussion. Rapid dewatering (at one end of the spectrum) has dire consequences for the survival of newly hatched but pre-emergence trout alevins, April and May being the critical period for brown alevins in most areas, and June-July the critical period for rainbow alevins. Extreme highs (at the other end of the spectrum) are equally detrimental to post-emergent fry.

Our studies also indicate that the absolute magnitude of spawning flows is of much less critical importance than the magnitude of fluctuations between spawning and incubation flows as has been demonstrated in both this report, and previous progress reports, on the Taylor, South Platte, and Gunnison rivers. Stability of flow between spawning and incubation, and finally hatching is of utmost importance. We have demonstrated the negative impacts of severe, long-term, aggravated dewatering of the upper Colorado River on the brown trout population.

Refining our ability to document the impacts (negative or positive) of streamflow on salmonid populations is of paramount importance. Water
development projects will always be a fact of life in the West. Developing a capability to predict the impacts of a water development project on stream trout populations (or any piscine species) before the project becomes a reality will greatly enhance our ability to manage the aquatic resource for the benefit of the fisherman and the fishery.

On the Taylor River, winter flows historically (up to the 1970's) have been manipulated to the detriment of the trout population. Differences between maximimum 7-day releases and minimum 7-day releases were often in excess of $400 \mathrm{ft}^{3} / \mathrm{sec}$ during the winter months in the 1960's and 1970's. Since the mid-1970's, the difference between the maximum and minimum 7-day flow has been less than $100 \mathrm{ft}^{3} / \mathrm{sec}$, and our population studies (1979-82) indicate a statistically significant increase in the brown trout population compared to 1974-75.

This data, together with the results of th IFG4-PHABSIM analysis, indicates there are five things to be considered in attempting to minimize the impacts of Taylor Park Reservoir releases on the trout population in the lower Taylor River. First, $50-75 \mathrm{ft}^{3} / \mathrm{sec}$ should be the absolute minimum release except for short-term emergency maintenance. Second, attempts should be made to keep the difference between maximum and minimum releases in the fall-winter (October $20-$ March 1) period to $100 \mathrm{ft}^{3} / \mathrm{sec}$ or less. Third, the winter release pattern for Taylor Park Reservoir should be determined and set in place by October 20 at the latest, so that spawning brown trout will be able to select spawning sites that will have a good chance of being covered with water during the 120 day incubation period (November-March). Fourth, the optimum range of spring-summer flows is in the $150-300$ $\mathrm{ft}^{3} / \mathrm{sec}$ range. Fifth, maximum flows above $500 \mathrm{ft}^{3} / \mathrm{sec}$ become increasingly detrimental to most life stages of both brown and rainbow trout.

Abstract

Job No. Job Title: Job Objective:

Period Covered: July 1, 1984-June 30, 1985

INTRODUCTION

Background

This job began in 1979 with a study of eight streams. Streams have been added and deleted from this study since that time. A total of 16 streams have been evaluated during the period 1979-1984 and 12 streams are currently under investigation in Job 3. They include the Arkansas, Cache la Poudre, Colorado, Eag1e, Fryingpan, Gunnison, Middle Fork of the South Platte, North Platte, Rio Grande, South Platte, St. Vrain and Blue rivers.

In the past 3 years, Colorado has implemented Wild Trout and Gold Medal trout management programs. These programs rely on special restrictive angling regulations to aid in achieving the objective of producing larger numbers of quality-size (14 in . and larger) trout. More than 200 miles of river in Colorado are presently under special regulations management as compared to less than 25 miles in 1981. Evaluation of these areas is a high priority and this project will be responsible for the evaluation of most of the Gold Medal waters.

METHODS AND MATERIALS

Study streams were selected so a wide variety of special regulations could be evaluated. Gold Medal streams were given a high priority. Representative sampling stations were established within the special regulation (experimental) and standard regulation (control) areas. Many of the study sites had been selected at the onset of this project in 1979 (see Nehring 1980). Others were selected because earlier researchers had used them in their studies.

All trout populations were sampled by electrofishing. The electroshocking unit was a Coffelt Model VVP-2C (1,000 to 2,000 watt output) powered by a gasoline generator. On streams shallow enough to wade, the shocking unit and the stationary negative terminal were positioned at mid-station. Three to five positive electrodes were used to shock fish. The field crew usually consisted of seven to ten people.

The crew started at the downstream end of the station and slowly worked upstream collecting the stunned fish in dip nets. The electrofishing stations were from 183 to 366 m in length.

Two methods were used to estimate fish density on these streams. The Seber and LeCren (two pass) method was used on narrow streams where a large proportion (approx. 70% or more) of the population could be taken on the first pass.

First pass trout were held in a large crib until completion of the second pass. The formula for this estimate, described by Seber and LeCren (1967) is:

$$
\mathrm{N}=\frac{\mathrm{C}^{2}}{\frac{1}{\mathrm{C}_{1}-\mathrm{C}_{2}}}
$$

Where $\mathrm{N}=$ the population estimate, $\mathrm{C}_{1}=$ the first pass catch and $\mathrm{C}_{2}=$ the second pass catch. The formula to determine the standard error for this estimate is:

$$
\text { S.E. }=\frac{C_{1} C_{2} \sqrt{C_{1}+C_{2}}}{\left(C_{1}-C_{2}\right)^{2}}
$$

The Peterson method (mark and recapture) was used on streams with lower sampling efficiency. On the first pass, all trout over 15 cm were marked by punching a small hole in their caudal fin. The marked trout were returned to the stream, usually within $15-30 \mathrm{~m}$ of the point of capture after the crew advanced far enough upstream. The second pass was completed between 1 and 4 days later. The formula for this method as described by Robson and Regier (1971) is:

$$
N=\frac{M C}{R}
$$

Where $N=$ density estimate, $M=$ total number of marked fish in the population, $C=$ the number of fish in the sample, and $R=$ the number of marked fish recaptured in the sample. When R was less than 10 , one was added to each of the equation terms. The standard error of N is:

$$
\text { S.E. }=\frac{M^{2} C(C-R)}{R^{3}}
$$

On large and deep rivers (Arkansas, Colorado, Gunnison, North Platte and Rio Grande), the electrofishing unit was mounted on a Jon boat. Trout were collected while the boat was in a controlled downstream drift. Stations varied in length from 3.5-11 km (2.2-6.8 miles). One to three marking runs along with one to three recapture runs were made on each
station. The Schnabel (multiple mark-recapture) method was used to estimate density. This method is described by Robson and Regier (1971). Because of the size-selectivity of electrofishing gear, separate estimates were computed for 5 cm size-groups and compared to the overall estimate.

All trout captured by electrofishing were measured to the nearest centimeter. Scale samples were also taken from five trout in each centimeter length group at each study site for age-growth analysis.

Length-weight relationships ($W=a L^{b}$) were developed for rainbow and brown trout for each study stream in the first year it was sampled. In subsequent years, weights were computed from these equations. Biomass estimates were made by multiplying the number of trout in each centimeter group by the estimated weight for that length and then by summing all the centimeter groups to give a total weight estimate per station.

Age determination was made from scales with the aid of a microprojector. The length frequency distribution for the entire population (N / ha) was broken down on the basis of the percentage of each year class in each cm size group. Life tables were then constructed by summing the number of trout/hectare in each age group.

Two methods of obtaining creel information have been used in this study. The count/interview system, as described by Powell (1975) was used in an area where fishermen could easily be seen from the road. This method required that fishermen be counted four times a day at 3-hour intervals. The number of count days per month can vary but were randomly selected by weekdays and weekend days. Between count periods, fishermen were interviewed to obtain pertinent creel data. The count/interview system was utilized in 1984 on the South Platte River.

A voluntary mail-back postcard questionnaire system was found to give estimates very comparable with the count/interview system even though it was much less time consuming (Nehring and Anderson 1981). This system, also used on the South Platte River in 1984, includes having a clerk distribute numbered and dated postcards on the windshields of all vehicles parked at the trail heads used by fishermen. Data on the returned card represented completed trip information. This information was used to generate angler use and harvest statistics for three, 3-mile sections of the South Platte River in a manner similar to the creel censuses completed in 1979, 1980 and 1981.

RESULTS AND DISCUSSION

Arkansas River

In 1985 there was another regulation change on the Arkansas River. The Gold Medal designation downstream of Badger Creek was dropped and the catch-and-release regulation near Loma Linda and Cotapaxi reverted back to the standard regulation. The electrofishing of these two stations was also discontinued. Starting in January 1985, the Gold Medal and the 16
inch minimum size limit with a 2-trout bag limit, covers the same river section, from Stockyard Bridge to Badger Creek ($7.5 \mathrm{mi} ., 12 \mathrm{~km}$). The Salida electrofishing station remains within this area and was sampled on March 5 and 13, 1985.

In 1985 brown trout comprised 98.9% of the trout netted ($n=2,142$), compared to 98.6% in 1984. Only one age I (1984) brown trout (12 cm) was caught in March 1985. This indicates recruitment in 1984 was by far the poorest recruitment year between 1980 and 1984 , undoubtedly due to the very high 1984 spring discharge level (see Job 1).

The density estimate at Salida of trout over 15 cm of $8,361 \pm 1,210$ in 1985 was 6% lower, but not significantly different (P 0.05) from the 1984 estimate of $8,915 \pm 1,069$. However, the density estimates for trout over 15,30 and 35 cm are 50%, 267% and 258% higher, respectively, in 1985 than was found in 1981, which represented the pre catch-and-release period (Table 14). This suggests that special regulation management has been beneficial to the fishery, albeit at a modest level.

Table 14. Density estimates for brown trout over 15, 30 and 35 cm for the Salida station, Arkansas River, 1981-1985.

Year	$>15 \mathrm{~cm}$		$\begin{gathered} >30 \mathrm{~cm} \\ \mathrm{~N} / \mathrm{ha} \end{gathered}$	$>35 \mathrm{~cm}$ N/ha
	N/ha	kg/ha		
$1981{ }^{\text {a }}$	378	84.7	21	2.4
1982	351	98.1	135	11.9
1983	539	94.1	71	5.1
1984	606	135.2	87	10.9
1985	569	129.0	78	8.6

apre catch-and-release population

The higher numbers that occurred in 1982 were an artifact of better growth rates in the 1981 season.

The length frequency histogram (Figure II-I, Appendix II) shows that there has been no substantial increase in the number of trout over 40 cm at the Salida station from 1981 to 1985. Also, the number of trout over 35 cm is still very low when compared to other Gold Medal streams. For example, only 2.4% of the trout over 20 cm were over 35 cm in 1985. These problems appear to be strongly related to the poor quality of the forage of the river and therefore, unrelated to overharvest or special regulation management. Job 5 of the 1984 progress report described in detail the invertebrate forage community of the Arkansas River.

Blue River

Trout population surveys on the Blue River have been conducted for the past 2 years and in 1981. This year, we changed to a fall only sampling
schedule. Table 15 summarizes the changes that have occurred in the Blue River brown trout populations. A1though brook and rainbow trout were collected, the browns are by far the most abundant, therefore, only the browns are considered in Table 15. The rainbows are stocked and the number of brooks is insignificant.

Table 15. Blue River brown trout population statistics 1981-84.

Station	Sampling	period	N	N/ha	$\mathrm{Kg} / \mathrm{ha}$	$\begin{aligned} & \geq 25 \mathrm{~cm} \\ & 10 \mathrm{in} . \end{aligned}$	$\begin{aligned} & \geq 30 \mathrm{~cm} \\ & 12 \mathrm{in} . \end{aligned}$	$\begin{aligned} & \geq 35 \mathrm{~cm} \\ & 14 \mathrm{in} . \end{aligned}$
Stream	Spring	1983	798	1,178	92	349	42	4
improvement	Spring	1984	401	651	83	151	42	12
section	Fall	1984	352	574	77	195	53	12
Blue River	Spring	1981	136	163	5	5	1	1
Campground	Spring	1983	245	332	27	32		0
	Spring	1984	495	795	100	177	51	8
	Fall	1984	532	782	123	301	75	36
Highway 9	Spring	1983	482	583	59	174	40	3
Bridge Station	Spring	1984	468	621	83	208	40	5
near Slate Creek	Fall	1984	455	671	103	278	110	29

a 1981 data at the Blue River campground is for a single pass electroshocking, at about a 50% efficiency, i.e., double all figures to compare between 1981 and 1983-84.

The size structure has shifted dramatically in favor of larger ($\geq 30 \mathrm{~cm}$) older browns at all stations between 1982 and 1984. Brown trout numbers and biomass have increased at the Blue River Campground area and Highway 9 bridge near Slate Creek sampling stations. Only in the stream improvement study area have numbers and biomass decreased.

It is interesting to note that the most dramatic improvement has been in the Blue River Campground study area where fishing pressure is the heaviest and the brown trout population had been the most decimated.

Viewed from virtually any angle or aspect, the response of the Blue River brown trout population to special regulations management has been exceptional. In the spring of 1981, when we first electroshocked in the Blue River Campground area, we collected only two trout larger than 25 cm . One was 27 cm , the other 37 cm . In the spring of 1983 (April 5th) we again collected only two trout larger than 25 cm , one at 28 cm and one at 30 cm . Special regulations went into effect on the Blue River in January 1983; thus, the potential benefits of these regulations (in protecting larger older fish from harvest) would not be manifested before
one full angling season had passed; i.e., the spring of 1984. Our shocking studies reveal dramatic increases in numbers of brown trout 25 cm ($10 \mathrm{in)} .\mathrm{and} \mathrm{larger}$,30 cm ($12 \mathrm{in)} .\mathrm{and} \mathrm{larger}$,and 35 cm ($14 \mathrm{in)}$. larger (Table 15). Our age and growth studies in the spring of 1981 and 1983 revealed we had no brown trout older than 5 years of age and very few more than 4 years old. We now have brown trout up to 7 years old.

In the spring of 1981 we had one, 5-year old brown trout/ha at the Blue River Campground. In the spring of 1984, after 1 year of protective regulations, we had nine, 5-year old brown trout/ha. For the three electroshocking stations, we averaged 14, five-year old brown trout/ha, in the spring of 1984. By the fall of 1984 we averaged 51, four-plus-year-old (fifth summer) brown trout/ha at the three electroshocking stations.

In the spring of 1981 at the Blue River Campground, we had 13, four-year old brown trout/ha. In the spring of 1983 we had dropped to four, 4 -year old brown trout/ha. In the spring of 1984 we had 261, four-year old brown trout/ha at the Blue River Campground, a 65 fold increase in one year! We averaged 217, four-year old brown trout/ha at the three electroshocking stations in the spring of 1984. This had increased to an average of 268, three-plus-year-old (fourth summer) brown trout/ha at the three shocking stations by the fall of 1984: (See Life Tables III-2 in Appendix III).

Our age-growth analyses indicate that $33-35 \mathrm{~cm}$ ($14-15 \mathrm{in}$.) browns are in their fifth and sixth summer of life and that we cannot expect a major increase in number of brown trout 40 cm (16 in .) in size as the average life span is probably 7 years at the most. But I would anticipate further increases in the number of browns $30-35 \mathrm{~cm}$ (12-14 in.) in size over the next 2 years. The cold thermal regime in the Blue River below Dillon Dam, however, may not allow for a better growth rate or maximum size.

It has been argued that if we do not have the biotic potential to grow trout in the Blue River much beyond 35 cm (14 in.), why have a 40 cm (16 in.) minimum size and bag limit? Our rejoiner is, "We do not know for certain if the Blue River has the biotic potential to produce significant numbers of quality or trophy size brown trout or not." Our age and growth data from the late 1970^{\prime} s and early 1980 's is probably negatively biased since overharvest was certainly a problem rampant on the Blue River at that time. Thus, the most aggressive, fastest growing brown trout were cropped off by anglers leaving the less aggressive slower growing trout for age and growth analysis. This phenomenon was documented decades ago on the Pigeon River, Michigan (Cooper 1952). The data in Table 16 certainly supports this hypothesis.

Table 16. Average length (based on back-calculated age growth analysis) of 5 year old brown trout at age 4 in the Blue River before 1981 and after 1983-84 implementation of a 14-inch minimum size limit.

Season	Year	N (sample size)	Average length (cm)
Spring	1981	9	26.8
Spring	1983	8	27.7
Spring	1984	23	28.6
Fall	1984	13	30.3

An average increase in length of 3.5 cm (1.4 in.) for age 4 trout since the regulation was implemented certainly supports the contention that the largest, fastest growing fish were being cropped off prior to 1983. This also supports the contention that we should give a 16 -inch minimum size limit a chance to work before we "sell short" the unknown biotic potential of the Blue River.

Clearly, as other investigators have known for some time (Engstrom-Heg 1981), and we are discovering as we test various regulations, "size limits ar the most effective means of regulating harvest, and should be used as the primary regulatory tool." Again, quoting Robert Engstrom-Heg (ibid), "creel limits have some regulatory value, but should be used mainly to promote better distribution of the harvest." It is becoming increasingly clear in our studies (as will be demonstrated below in subsequent discussion) that bag limits without size limits are virtually useless as a management tool to maintain or improve angling quality in our Gold Medal waters.

Cache 1a Poudre River
From 1963 to 1983, special regulation management on the Poudre River consisted of two wild trout waters where bait fishing was prohibited. This restriction apparently had little impact on trout population characteristics such as density, biomass or size structure (Klein 1974, Nehring and Anderson 1983). Starting in January 1983, three of seven electrofishing stations were on areas that had changes in the angling regulation. The Upper Wild Trout (UWTW), Indian Meadows and Lower Wild Trout (LWTW) waters bag limits were reduced from 8 to 2 trout per day. The Indian Meadows area also required all trout less than 16 inch be returned alive to the stream, which in effect is a de facto
catch-and-release regulation.
In October 1984 the UWTW electrofishing station was moved 0.4 km downstream. This was done to make an electrofishing station that would be compatible with an IFG4 station. The new station apparently contained more available trout habitat.

By October 1983, both the UWTW and Indian Meadows (new regulation) stations had trout biomass increases of 33% over the 1982 levels. The trout biomass was again found to increase in 1984 for these two stations (Table 17). The Kelly Flat station had a biomass increase of 18% between 1982 and 1983, but by 1984 the biomass had dropped back to the 1982 level. The Lower Control station had no significant difference in biomass between 1982, 1983 and 1984. The large biomass increase in 1984 in the Big Bend station is probably due to the stream improvement work done by the Forest Service at this campground. Numerous boulders and $10 g$ structures were added to the area in the summers of 1983 and 1984.

Table 17. Density and biomass for five upper Poudre River stations for 1982, 1983, and 1984.

Station	Density N/ha			Biomass Kg/ha		
	1982	1983	1984	1982	1983	1984
Big Bend	493	489	653	59	63	81
Upper Wild Trout	635	738	1,107a	72	96	$160^{\text {a }}$
Lower Control	818	807	830	100	103	93
Indian Meadows	650	769	751	83	110	114
Ke1ly Flats	881	939	778	87	103	89

Life Table data (Table III-2, Appendix III) shows that the older trout (age 3 and up) had better survival in the UWTW and the Indian Meadows stations compared to the Lower Control and Kelly Flat stations since 1983. In 1982 and before there appeared to be no difference in survival rates between these stations. This suggests that the change in regulations has reduced mortality on the older trout in the special regulation areas.

Length frequency histograms (Figure II-6, II-7, Appendix II) show that the two special regulation waters contain more trout over 25 cm for both rainbow and brown trout than the three standard regulation stations. This, plus the higher number of trout over 30 cm in the special waters (Table 18), suggests that the new regulation may be responsible for this since no difference was found in 1982.

Table 18. Number of trout $\geq 31 \mathrm{~cm}$ collected from the five upper Poudre stations.

	No./ha		
Station	1982	1983	1984
Big Bend	13		
Upper Wild Trout	17	18	22
Lower Control	18	21	47
Indian Meadows	20	7	7
Kelly Flat	4	22	34
		4	9

The upper Poudre River has a very short growing season and therefore, the trout population has a poor growth rate. However, the invertebrate forage of the upper river appears to be good, and it has been demonstrated that trout can live to an old age in the Poudre, at least 9 years (Klein 1974). These factors may counteract the slow growth rates of the trout population and eventually the upper Poudre may produce a quality trout population with protective regulation management. However, it could take several years for the trout population to respond to a catch-and-release management, if at all.

The threat of overharvest still exists on the Upper Wild Trout Water because it would not take many bag limits of two trout of any size to remove all trout over 30 cm . Therefore, the 16 -inch minimum size limit would be a better protective regulation to evaluate the potential of the Poudre to produce quality ($\geq 35 \mathrm{~cm}$) size trout.

There was a significantly lower trout density at the Lower Wild Trout Water in 1984 compared to 1983. This was found inspite of the reduced bag limit at that station. There was no significant difference in trout density between 1983 and 1984 in the lower Poudre standard regulation station. The number of trout over 30 cm was zero in the LWTW and four at the control area. This strongly indicated that overharvest is still occurring on the LWTW even though the bag limit was reduced from 8 to 2 trout per day, and that more protection is needed if the quality of the trout population is to be improved. A size limit, such as that already in effect on the Indian Meadows section, is the only alternative worthy of continued evaluation.

Colorado River

We have sampled the Colorado River since 1979. Due to the interaction of many factors, low flows, high flows, stocking of catchable trout, etc., the data does not give a clear picture of how the new regulation is affecting the trout population. In 1983 a 1 rainbow, 1 brown per day regulation went into effect on the Colorado River from the head of Byers Canyon to Troublesome Creek. This section includes all sampling stations except Pioneer Park, which has a standard 8 fish/day bag limit. Tables 19,20 , and 21 summarize our sampling results.

Table 19. Colorado River trout population density estimates N / ha, 1981-84.

Study section	1979	1981	1982	1983	1984

Pioneer Park		Rainbow trout			
		78	84	275	104
Paul Gilbert		29	16	236	110
Lone Buck	230	98	88	80	180
Parshall	$220{ }^{\text {a }}$	889	410	202	210
	Brown trout				
Pioneer Park		56	90	193	63
Paul Gilbert		--	39	137	83
Lone Buck	30	23	27	63	57
Parshall	$54^{\text {a }}$	294	175	127	150

Table 20. Colorado River trout biomass estimates (kg/ha), 1981-84.

Study section	1979	1981	1982	1983	1984
		Rainbow trout			
Pioneer Park		9	14	34	20
Paul Gilbert		4	4	30	29
Lone Buck	148	31	32	45	54
Parshall	$138^{\text {a }}$	231	124	81	78
	Brown trout				
Pioneer Park		10	27	45	19
Paul Gilbert		-	17	29	23
Lone Buck	15	14	17	39	22
Parshall	15a	82	48	42	35

aEstimates from Con Ritschards Ranch downstream from the Parshall Area.

Table 21. Colorado River, trout/ha $\geq 35 \mathrm{~cm}$ (14 in.), 1981-84.

Study section	1981	1982	1983	1984
		Rainbow trout		
Thompson Ranch	112	75	48	$20^{\text {a }}$
Pioneer Park	0	0	15	8
Paul Gilbert	1	2	10	11
Lone Buck	20	33	21	36
Parshall	185	173	86	78
		Brown Trout		
Thompson Ranch	45	48	31	$6^{\text {a }}$
Pioneer Park	3	14	25	10
Paul Gilbert	0	15	13	11
Lone Buck	10	17	13	14
Parshall	36	53	25	11

In 1984 populations decreased or remained unchanged in numerical density, biomass and numbers of large fish ($\geq 35 \mathrm{~cm}$) at all the stations except Lone Buck, which has improved. The Parshall station remained relatively stable but is still far above the other stations in quality and quantity. Theoretically, the other stations should be able to approach the population levels of the Parshall section. Physical habitat is similar between all sections; however, the Williams Fork augments the flow at Parshall during the low flow winter months. This may partially account for the Parshall section being consistently better than the other sections. Lower angler harvest by club members on the private waters in the Parshall area undoubtedly has a positive impact as well.

The rainbows at Lone Buck seem to have responded fairly well to the new regulation. All population parameters for rainbows have nearly doubled in the past year. It is particularly encouraging to see the number of large rainbows increasing so dramatically because the rainbows are particularly susceptible to angling. This section now has nearly half as many large rainbows and more large browns than the Parshall section. The brown trout population at Lone Buck has remained relatively unchanged. This is understandable because the browns are not as susceptible to angling, and so the change in regulations would have less impact in altering the population structure. Brown trout density is lower than the rainbows at all stations, probably due to the browns inability to compete with the rainbows, especially in light of the spawning habitat differences for rainbows and browns (see Job 1 discussion for the Colorado River).

While the increases in rainbow and brown numbers/ha, biomass ($\mathrm{kg} / \mathrm{ha}$), and numbers $\geq 35 \mathrm{~cm} /$ ha at Lone Buck in 1984 are encouraging, it is discouraging to note that rainbow biomass was $148 \mathrm{~kg} / \mathrm{ha}$ in 1979 versus 54 $\mathrm{kg} / \mathrm{ha}$ in 1984. We had 162 trout/ha $\geq 35 \mathrm{~cm}$ in 1979 versus $50 / \mathrm{ha}$ that size
in 1984. Thus, the 1 rainbow/1 brown bag limit is not having the dramatic impact in improving number of quality size trout that was hoped for in the 2 years since the regulation went into effect.

Pioneer Park received heavy fishing pressure and has a liberal bag limit. As would be expected, all population parameters are low for this station when compared to the other stations. The low number of large rainbows is indicative of the fact that angling pressure is taking a toll on the quality size fish in this section.

Recruitment has been poor at all stations since 1979-80. Good spawning habitat is limited and run-off has been high. The poor recruitment, angling pressure, and low winter flows may be holding the trout population below the full potential of the river. This is especially true in light of the aquatic invertebrate population and productivity of the Colorado River (see Job 6).

Eagle River

We made only one electroshocking pass on the Eagle River at two stations in September 1984. The day we electroshocked, the discharge at Wolcott was $330 \mathrm{ft}^{3} / \mathrm{sec}$. This flow level greatly hampered our shocking efficiency making it futile to attempt a population estimate. However, we did collect 3 rainbow trout and 32 brown trout. We collected only two brown trout $\geq 35 \mathrm{~cm}$ total length, one at 35 cm and one at 38 cm . Only 25% of the brown population were 30 cm or larger. With the limited recruitment (due to the siltation problem from Milk Creek) it is highly unlikely that any restrictive regulation short of total catch-and-release would measurably improve the rainbow and brown trout numbers, biomass, or quality trout density. A high minimum size limit in conjunction with a restrictive bag limit might have a measurable impact in increasing numbers, biomass, and numbers of quality trout.

However, due to the difficulties we encountered in shocking the Eag1e River, i.e., high discharge, poor visibility due to siltation from Milk Creek, or both, we plan on dropping the Eagle River from this study at the end of the 1984/85 segment.

Fryingpan River

Trout population surveys conducted on the Fryingpan River from 1978 through 1984 reveal two serious problems. First, hypolimnetic releases from Reudi Dam result in water temperatures much below a tolerable level for rainbow egg incubation for the first $3-4 \mathrm{~km}$ below the dam (catch-and-release waters). To enhance the lack of rainbow reproductive success, a supplemental stocking of advanced fingerling rainbows has been implemented. Second, as a result of the 8 trout/day regulation with no terminal tackle restrictions from Basalt to the lower boundary of the catch-and-release section, there was a severe decline of trout $30-35 \mathrm{~cm}$ and larger. In 1983 these angling regulations were changed to a one rainbow-one brown trout bag limit with a flies and lures only terminal tackle restriction. The data in Table 22 summarizes what changes have been occurring in the Fryingpan River as a result of the above implementations.

Table 22. Trout density (N/ha) and biomass (kg/ha) statistics on the Fryingpan River, 1978-1984.

				Brown					
Fal1 1978	366	87	24	--	-	--	272	43	28
Fall 1979	466	101	44	742	104	10	724	75	22
Spring 1980	251	66	31	483	64	0	469	67	8
Fall 1980	431	87	11	952	131	0	504	78	24
Spring 1981	349	79	17	689	107	27	871	138	30
Fall 1981	461	70	10	873	147	21	591	91	15
Spring 1982	511	83	22	712	114	19	703	131	18
Fall 1982	495	86	23	1,049	169	14	724	157	44
Fall 1983	672	146	54	962	150	7	539	122	47
Fall 1984	582	140	24	1,177	217	17	427	102	37
Rainbow									
Fal1 1978	847	208	47	--	--	--	762	95	4
Fall 1979	220	88	49	324	104	48	635	61	25
Spring 1980	297	116	88	263	99	44	422	59	24
Fall 1980	241	73	64	344	83	46	280	30	5
Spring 1981	261	114	105	205	72	43	442	46	11
Fall 1981	138	15	9	93	26	18	349	31	0
Spring 1982	466	126	125	137	45	20	379	34	10
Fall 1982	464	113	53	145	44	20	181	29	23
Fall 1983	574	120	44	746	137	17	101	28	35
Fall 1984	762	280	163	479	163	64	116	28	26

As shown in Table 22, the rainbow trout population in the catch-and-release area declined dramatically after 1978 and up through the fall of 1981 when rainbow numbers were 84% below the 1978 level. Rainbow biomass fell from $208 \mathrm{~kg} / \mathrm{ha}$ (1978) to $15 \mathrm{~kg} / \mathrm{ha}$ (1981), a reduction of 93\%: This was due to natural mortality in the older age classes and a total lack of rainbow recruitment from natural reproduction. Hypolimnetic releases from Reudi Dam are too cold during the April-May spawning and incubation period. Continuous recording thermograph data for 1980-83 indicates average water temperatures are in the 37-39 F range at this time of year. McAfee (1966) indicated excessive losses of incubating eggs occur at 42 F and below. The only viable solution was to initiate a fingerling stocking program immediately.

The first plant of 30,000 rainbow fingerlings went into the Fryingpan in October 1981. They averaged $11-12 \mathrm{~cm}$ in size. Thirty thousand rainbow fingerlings ($6-7 \mathrm{~cm}$ average size) have also gone into the Fryingpan annually in July or August since 1982. In addition, 2,400 advanced fingerling rainbows were stocked in the upper 4.8 km of river in October
of 1982, these fish were adipose-fin clipped. The 30,000 annual fingerling plants have all been spray-marked with fluorescent-orange pigment.

The results of our 1984 electroshocking survey give an indication of the success of the fingerling rainbow planting program as far as augmenting the rainbow component of the Fryingpan River trout population is concerned. The percentage of marked rainbows (spray-marked and fin-clipped) by station is presented in Table 23. Since we know where the 2,400 fin-clipped rainbows were planted (in the Old Faithful study area for the most part), it is quite clear that these fish have not moved very far in the 2 years since stocking. It is a1so strongly indicative that most (if not all) of the spray-marked fingering rainbows were planted in the upper part of the Fryingpan (catch-and-release area). It seems probable that they were all stocked at the Gaging Station stocking area where the truck can be backed right into the river for easy unloading. Our checks for spray-marked fingerlings in September 1982 indicated 100% (5 of 5) and 88% (15 of 17) of the fingerling rainbows were spray-marked at the Taylor Creek and Big Pullout stations, respectively. In 1983 we had 65% (22 of 34) of the rainbow finger1ings ($10-14 \mathrm{~cm}$) spray-marked at the Ruedi Dam station.

Table 23. Percentage of marked rainbows captured in 1984 at the Fryingpan study sections.

Station	Spray-marked		Fin-clipped	
		\%	No.	\%
Gaging station	17/19	90	22/89	25
Ruedi Dam	14/25	56	49/173	28
01d Faithful	3/6	50	126/167	76
Upper Control	2/6	33	24/31	77
Taylor Creek	1/4	25	0	0

All of the data in the preceding discussion indicates that we have had uneven distribution of the fingerling rainbows planted from 1982 through 1984. We need to make an attempt at more even distribution of the fingerling rainbow plants on the Fryingpan River in 1985.

In September 1983 adipose-c1ipped rainbows comprised 81% and 89% of the total rainbow population at the 01d Faithful and Upper Control stations, respectively. Similarly, in September 1984, 81\% and 86% of the rainbows $\geq 30 \mathrm{~cm}$ at the 01d Faithful and Upper Control stations, respectively, were adipose-clipped. The average size of the adipose-clipped rainbows in September 1983 was 22.6 cm with a range of $15-30 \mathrm{~cm}$. In September 1984 the average size was 32.3 cm with a range of $21-41 \mathrm{~cm}$, for an average increase in length of 9.7 cm (3.8 in .). The growth and survival of this cohort of rainbow has been excellent up to $2+$ years of age.

As the planted fingerling rainbows continue to grow and survive in the catch-and-release area since stocking began in October 1981, we are seeing a dramatic increase in the number of rainbows $\geq 35 \mathrm{~cm}$ (14 in .). Numbers of this size rainbow increased four fold at the Ruedi Dam and three fold at the 01d Faithful study sites.

Table 22 shows brown trout density (N / ha) and biomass ($\mathrm{kg} / \mathrm{ha}$) statistics remain relatively constant in the catch-and-release waters. Numbers of brown trout 35 cm and over rarely exceed and are normally significantly lower than rainbow trout 35 cm in this area. Brown trout densities remain constant because incubating eggs are tolerant of the hypolimnal releases. It is our belief that brown trout do not compete well with high densities of rainbow trout and therefore, numbers remain significantly lower than rainbows.

Density (N / ha) and biomass ($\mathrm{kg} / \mathrm{ha}$) statistics (Table 22) of rainbow trout from 1978-82 show a dramatic decline in the Taylor Creek station (standard regulations 1978-82). In 1983 a 1 rainbow-1 brown trout regulation with a fly and lure only terminal tackle restriction replaced the 8 trout/day regulation. Electroshocking surveys in 1983 and 1984 show a continuing slow decline in numbers of biomass of rainbow and brown trout (Table 22 and Figure II-17, Appendix II). However, a creel census was conducted on the Fryingpan River 1979-81 and again in 1983. There was no significant difference in CPMH between 1979 and 1981. In 1983, however, CPMH nearly doubled, even though population estimates remained low and anglers were releasing 92% of all trout caught under the one rainbow-one brown regulation, according to our creel census in 1983. Despite this high return (catch-and-release rate) the rainbow population has not yet really begun to recover after two full angling seasons under the one and one regulation. The question is "why"?

The answer is the rainbow population is so decimated that even a 92% catch-and-release rate allows too much harvest. Our population estimates at Taylor Creek in 1983 and 1984 indicate the rainbow density is only 40/acre. The 1983 creel census showed an average rainbow CPMH (catch-per-man-hour) of 0.554. Angling effort was $216 /$ hour/acre/season in 1983 for a rainbow catch of 120 /acre or 3 X for each rainbow: With a 92% throw-back that still works out to a harvest of 10 rainbow/acre for 1983. Add in an additional 10 rainbow/acre natural mortality (25%) plus 5% hooking mortality on fly and lure released fish (which works out to six rainbow/acre hooking mortality) and we are losing about 26 rainbow/acre to all sources annually. That is a 65% loss from the population. When total annual mortality (natural plus angling) exceeds 50%, the trout population cannot increase. The most cost effective (and politically acceptable) means of increasing rainbow numbers in the one rainbow-one brown bag limit area will probably be through the stocking of advanced fingerling (5 in.) rainbow. Based on the success and survival rate for the adipose-clipped advanced fingerling stock that went into the catch-and-release area in October 1982, I would think a maximum of 10,000 should be adequate for the entire section from Ruedi to Basalt. They should be adipose-clipped and stocked at each stocking station between August and October 15, 1985.

Gunnison River

The data in Table 24 and Figure II-19 through II-27, Appendix II, summarize the changes that have taken place in the trout fishery in the lower Gunnison River from 1981-1984. The rainbow component of the trout population in the Duncan Trail to Ute Trail area increased steadily from 1981-1983 and then declined by 50% between 1983 and 1984. Due to the high run-off levels since 1982 , rainbow reproduction has almost been non-existent since 1981. Our population estimates in 1984 for 1+ rainbows (1983 year class) for the Duncan Ute Trail area (2 miles of river) was 10 rainbows and in the Smith Fork-North Fork section (4 miles of river), there were 26 rainbows for the 1983 year class, i.e., about 5 rainbows/mile for the 1983 year class. The 1984 year class of rainbows will probably be smaller!

In the Smith Fork-North Fork section from 1981-1984, the wild rainbow population has been building up dramatically in total numbers, biomass, and numbers of rainbow trout $40 \mathrm{~cm}(\sim 16 \mathrm{in}$.$) and larger. The highest$ rainbow population estimate (7,670 in 1981) was an artifact of the stocking of 50,000 rainbow fingerlings in April 1981 at the Forks Management Area. Catchables were also stocked in May, June and July 1981 in this area. No stocking of any kind has been done in this area since 1981.

Table 24. Trout numbers and biomass data for the Lower Gunnison River, 1981-84.

The brown component of the trout population has been decreasing in the Duncan-Ute Trail area and increasing in the Smith Fork-North Fork area from 1981-1984. The number of 40 cm brown in each study area is far less than the number of rainbows of a similar size. Larger brown trout, because of their more territorial nature, apparently do not compete well
with high densities of larger size rainbow trout. We have observed this phenomenon on the South Platte, Colorado, Roaring Fork, Fryingpan and Gunnison rivers.

On September 15, 1984 a tremendous rainstorm struck the Black Canyon area severely eroding the Duncan, Ute and Bobcat trail areas, and washing out sections of the Peach Valley Road near the Falcon Road-Peach Valley Road intersection. We had several reports of significant numbers of dead trout and suckers between Duncan and Ute trails following that storm. One of the authors (Nehring) had just left the area after fishing on the Duncan-Ute Trail section of the river and witnessed first hand the washout of the Peach Valley Road. Several inches of rain fell in less than an hour. A professional river guide (Gabe Magtutu) was also on that section of the river at the time of the storm. One of his client fishermen reported counting more than 100 dead rainbow trout along the east bank of the river in less than a mile. This loss will undoubtedly be reflected in our population survey results for 1985.

We found a strong negative correlation (see Job 1 in this report for details) between rainbow and brown trout year class strength and mean monthly flows in June and July 1980-1983. It is during these months that both rainbow and brown trout are emerging from the gravel and beginning to swim about and are most vulnerable to high water velocities (Ottaway and Forrest 1983). PHABSIM analysis of habitat in the Duncan-Ute Trail section indicates fry and juvenile rainbow and brown trout habitat is maximized at discharges in the $200-600 \mathrm{ft}^{3} / \mathrm{sec}$ range. Maximum discharge in both 1983 and 1984 peaked at over $10,000 \mathrm{ft}^{3} / \mathrm{sec}$ and mean monthly discharge was in excess of $4,000 \mathrm{ft}^{3} / \mathrm{sec}$ for June, July 1983 and 1984. Mean monthly discharge in June 1984 was $7,459 \mathrm{ft}^{3} / \mathrm{sec}$.

In summary, the special regulation has had a very positive impact in building up the trout population in the most heavily used Smith-Fork to North Fork section since 1981. With the very poor rainbow reproduction since 1981, preservation of the larger older rainbow stocks will be important until we have a successful spawn, hopefully in 1985. A change in regulations for the Black Canyon area is possible for the 1986/87 angling seasons. The Director has directed the Aquatic Resources Section to compile recommendations for simplification of angling regulations for Gold Medal and Wild trout waters by mid-1985. However, it is important that whatever the new regulation is, it should incorporate a size limit of some sort to adequately protect both rainbow and brown trout spawners, as well as control the harvest of quality size trout.

In addition to our electroshocking studies in the Black Canyon of the Gunnison, we also shocked three areas in the upper Gunnison drainage. Single electroshocking runs were made on the Gunnison River from Almont to Gunnison and from the Gunnison Sewage Treatment Plant to Blue Mesa Reservoir in August 1984. A population estimate was also completed on the East River from Roaring Judy Hatchery to Almont, a 6 km (3.7 mi .) section of river, in late September 1984. Examination of the length-frequency histograms (Figures II-23 and II-24, Appendix II) for rainbow and brown trout in the East River, as well as in the Almont-Gunnison, Gunnison-Blue Mesa, and Duncan-Ute Trail sections of the Gunnison River indicate that a significant percentage of the trout in the

Abstract

Almont-Gunnison and Gunnison-Blue Mesa areas are a quality size, i.e., $30-50 \mathrm{~cm}$ ($12-20 \mathrm{in}$.) in size. Our experience in streams where overharvest has been a problem, shows that we would not have this distribution of fish in the larger size classes if over-harvest in the upper Gunnison were a problem. As shown in Table 25, the percentage of rainbow and brown trout at least 30 cm (12 in.) or larger in size in the upper Gunnison River compares very favorably with areas upstream (East River) and downstream (Black Canyon-Duncan to Ute Trail) that are managed for quality angling.

Table 25. Percentage of total trout captured that were $\geq 30 \mathrm{~cm}$ (12 in .)

	Rainbows	Browns
East River - Roaring Judy to Almont	10.2	26.9
Gunnison River - Almont to Gunnison	22.4	28.4
Gunnison River - Gunnison to Blue Mesa	37.2	34.3
Gunnison River - Black Canyon Duncan-Ute Trail	42.9	10.7

On the State Bridge section of the Rio Grande 25.6% of the brown trout population exceeds 30 cm or 12 inches in length. On the Colorado River, 21.4% of the browns and 57.3% of the rainbows are 30 cm in length or larger. On the North Platte, 48.5% of the browns and 26.6% of the rainbows are 30 cm or larger. Clearly, the upper Gunnison (Almont to Blue Mesa) ranks among the best streams in the state from a quality trout fishing standpoint, without any special protective regulations at this time.

The average size and growth for brown trout at a given age in the upper Gunnison River (Almont to Gunnison) is less than that for the browns in the Black Canyon between the Duncan and Ute trail areas (Table 26). However, with the colder water temperatures and shorter growing season in the upper Gunnison, smaller annual growth increments and smaller trout at a similar age are to be expected.

High spring run-off is probably the major environmental factor limiting rainbow trout populations in the upper Gunnison River. Our studies in the Black Canyon clearly indicate high spring run-off in 1982, 1983 and 1984 has severely limited rainbow recruitment and spawning success in the last 3 years. Brown eggs hatch at least $3-6$ weeks earlier or more than rainbow eggs resulting in trout recruitment, and survival that is better than it is for rainbows in average and above average run-off years. Based on comparisons of percentages of rainbow and brown trout $\geq 30 \mathrm{~cm}$ (12 in.) in the Gunnison River from Almont to Blue Mesa with those from Gunnison in the Black Canyon, the North Platte, the Rio Grande, and Colorado rivers, we are confident in stating that there is no apparent need for special regulations being applied to the upper Gunnison River at this time.

Table 26. Average size (cm) of brown trout at age in the Gunnison River.

Age	Almont-Gunnison	Black Canyon
$1+$	15.5	
$2+$	21.0	15.9
$3+$	27.7	32.1
$4+$	33.3	38.5
$5+$	38.3	46.0
$6+$	39.6	-

Middle Fork of the South Platte River
The history and effects of special regulation management on the brown trout population from 1979-1983 was summarized and presented in the 1984 F-51-R Annual Progress Report. It was recommended that a more liberal regulation could be adopted, which was done in July 1984 and continues at present. This regulation allows for a daily bag of eight trout of which only two may be over 16 inches in length. Artificial flies and lures only is still required.

The results of the 1984 trout population sample (Table I-8, Appendix I; Figures II-29 and II-30, Appendix II) collected on October 1 and 2, 1984 indicate that the present regulation has not been detrimental to the size structure of the trout population. The 1984 data also did not alter any conclusions or recommendations made last year.

A length-weight relationship was developed for brown trout over 40 cm from weights taken in 1984. This regression was used to recalculate the biomass of the 1983 brown trout population as well. Biomass for brown trout over 40 cm was less in 1984 as compared to 1983 at all four stations (Table 27). This may be attributed to the lower number of trout collected, possibly the result of the spawning mortality in October 1983, or due to the increased fishing pressure and harvest on this stream and Spinney Mountain Reservoir, due to the publicity this stream received in 1983. The increase in the number of trout over 50 cm (Table 27) was due to the appearance of age $5+$ trout in the population for the first time since Spinney Mountain Reservoir was completed in 1981.

In contrast to 1983, there were no reports of dead or dying trout in the Middle Fork in the fall of 1984. The autumn of 1984 was much cooler and more typical of normal fall weather than that of 1983. This apparently resulted in water temperatures that were low enough to repress fungal growth. In addition, higher water levels coupled with lower densities and biomass of spawners in the Middle Fork in 1984 (compared to 1983) also would tend to: (1) reduce the concentration of fungal spores in the water; (2) increase available spawning habitat; and (3) reduce overcrowding in the spawning and holding areas.

Table 27. Biomass and number of trout over 40 and 50 cm in the 1983 and 1984 migrating brown trout population.

Station	$\frac{\text { Biomass }}{1983}$	$\frac{\mathrm{kg} / \mathrm{ha}}{1984}$	N/ha over 40 cm		N/ha over 50 cm	
			1983	1984	1983	1984
Garo Bridge	737	645	655	484	43	164
Gage Station	226	158	210	108	0	65
1 Mile	415	313	359	234	17	94
2 Mile below gage	412	341	379	285	15	76

North Platte River

We have conducted trout population surveys on the North Platte in 4 of the last 5 years (1980, 1982, 1983 and 1984). In 1980 we electroshocked a short section (0.19 mi.) of the river just below the Ginger Quill Ranch. In 1982, 1983 and 1984 we boat-shocked the 3 mile section from the Routt National Forest boundary downstream of the State Line Ranch through the Ginger Quill Ranch. The data in Table 28 summarizes what changes have been occurring with the North Platte trout populations.

Table 28. North Platte trout population statistics 1980-84.

Year	N	Fish/ha	Kg/ha	$\begin{aligned} & \text { Trout/ha } \\ & \geq 35 \mathrm{~cm} \text { (14 in.) } \end{aligned}$
		Brown Trout		
1980	68	61	26.8	22
1982	1,692	96	32.1	22
1983	1,716	97	39.7	21
1984	2,145	121	44.0	24
Rainbow Trout				
1980	55	49	9.7	3
1982	534	30	8.8	6
1983	590	33	11.4	11
1984	1,756	99	19.2	11

We are beginning to see a dramatic increase in the numbers (fish/ha) and biomass kg/ha of both rainbow and brown trout in the North Platte River. Rainbow numbers and biomass have doubled between 1982 and 1984. The trout population in the study area of the North Platte has met the
criteria for Gold Medal designation in both 1983 and 1984, i.e., a sustained biomass in excess of $40 \mathrm{~kg} / \mathrm{ha}$ and at least 30 trout/ha 35 cm (14 in.) or larger in size.

Age and growth analyses (Table 29) indicate that the average size and growth rate for both rainbows and browns has been very good between 1982 and 1984 indicating the food and habitat conditions are not a limiting factor.

Table 29. Age and growth analyses of North Platte River trout (cm).

	Rainbows				Browns		
Age	1982	1983	1984		1982	1983	
$1+$	22.2	17.2	15.7	20.9	21.0	20.8	
$2+$	27.4	22.1	23.1	24.6	25.7	26.6	
$3+$	33.0	31.2	30.6	35.3	34.5	36.5	
$4+$	38.4	38.4	36.8	37.5	40.6	39.5	
$5+$	-	42.8	37.7	43.0	47.0	40.0	

Examination of the Life Table data (Table III-2 in Appendix III) and the length-frequency histograms (Appendix II, Figure II-31 and II-32) reveal significant augmentation of the 1982 and 1983 year classes of brown and rainbow trout in 1984. The enigma is, where did all of these young trout (age $1+$ and $2+$) come from in 1984? This is especially puzzling for the rainbow component. It is obvious from the length-frequency histogram that we suddenly see the appearance of two incredibly strong year classes in 1984 that were not present in the section in 1983 or 1982. Where did they come from? Our best guess is that both age groups were flushed downstream from upstream nursery areas or tributaries with the unusually heavy run-off in 1984. The only other plausible explanation is that they were stocked as either fingerlings or catchables; however, the circuli patterns on the scale samples do not support that explanation. Furthermore, biologists in Wyoming (Bob McDowell) and Colorado (Doug Krieger) indicate they know of no stocking of fingerling rainbows in tributary streams within $40-50 \mathrm{~km}(25-30 \mathrm{mi}$.$) or more of the study area.$

One plausible explanation is that the rainbows went into the North Platte when a small lake (about 8 ha) on the Ginger Quill Ranch was drained for vegetation control and elimination of sucker and northern creek chub populations. A. D. Hess (Ginger Quill Ranch) has indicated: (1) the lake on the ranch was drained in 1984; and (2) rainbow reproduction takes place in Three Mile Creek, tributary to the lake (and thereby the North Platte). It is quite plausible to assume then that the additional 1,200 (approximate) rainbows in the 1984 estimate (over 1982-83) are recruits that escaped from the Ginger Quill Ranch Lake and Three Mile Creek.

The data presented in Tables 30,31 and 32 summarize the results of our electroshocking studies from 1981-1984 on the Wason Ranch, near Creede, Colorado, the Coller Wildlife Area, near Masonic Park, Colorado (approximately 24 km or 15 mi . downstream from the Wason Ranch) and the State Bridge section (approximately 24 km or 15 miles downstream of the Coller Wildife Area), respectively.

After our September 1982 electroshocking survey on the Wason Ranch, we recommended that they change the bag limit on their fly water section from two trout and a minimum size of 35 cm (14 in .) to two trout and a maximum size of 35 cm . The 1982 survey revealed that although the fly only section had far greater numbers of brown trout $25-35 \mathrm{~cm}$ (10-14 in.) in size than the 8 trout/day section, it had no more browns larger than 35 cm (14 in.) in it than the 8 trout/day section. A creel census on the Wason Ranch in 1983 indicated angling pressure was a mere 35 hours/acre (86 hours/ha) for the entire summer angling season, yet indications were that the quality size (35 cm or 14 in .) stocks of brown trout were being overharvested. Thus, the recommendations to reverse the minimum size limit of 14 inches to a maximum size limit of 14 inches.

After 2 years under the maximum size limit of 14 inches, we now have 3.6 times as many brown trout 14 inches/ha (35 cm) or larger in the fly only - two fish limit section as in the 8 trout/day regulation area. We shocked only three trout (two brown, one rainbow) 40 cm (16 in.) in the standard regulations water and 15 trout (five times as many) 16-23 inches in size out of the fly water: When one considers the habitat for larger browns is much better in the upper section of river (where the limit is 8 trout/day) the change in the lower river is really remarkable. In fact, the fly water has more than four times as many trout 14 inches and larger per acre as the State Bridge section and almost eight times as many as the Coller section of the Rio Grande. As has been the case on sections of the Blue, Gunnison, South Platte, Colorado and Fryingpan rivers where either catch-and-release or severely restricted bag and size limits have been put into effect, the increase in density of quality size trout has been dramatic in just 2 years.

Our 1984 electroshocking survey of the Coller Wildlife Area substantiated the trends already observed from 1981-83. The Coller section of the Rio Grande still has very few brown trout/ha 35 cm or 14 inches when compared to the Wason Ranch and State Bridge sections on the Rio Grande (Tables 30, 31 and 32).

The dramatic disappearance of stocked catchable size rainbows from the Coller Wildlife Area with the cessation of stocking in 1984 was both expected and gratifying to see as far as this study is concerned. The catch-and-release regulation on brown trout under 16 inches in size and two brown bag limit over 16 inches (in effect since 1983) has not yet resulted in an increase in the number of quality size brown trout (14 in. or 35 cm) as compared to the 8 trout/day bag limit in effect through the 1982 angling season. Thus, we see no apparent positive impact from either the regulation change or the stream improvement projects at the present time. However, it is quite possible that the very heavy stocking

Table 30. Wason Ranch trout population statistics.

Table 31. Coller Wildlife Area trout population statistics.

Year	N	$\mathrm{~kg} / \mathrm{ha}$	N / ha $\geq 35 \mathrm{~cm}$	\underline{N}	$\mathrm{~kg} / \mathrm{ha}$
				Rrowns	
1981	3,802	42.9	11	$\frac{\text { Rainbows }}{2,659}$	
1982	4,109	38.9	7	$1,000+$	267
1983	4,630	38.0	7	$1,000+$	-
1984	4,979	41.7	9	165	1.9

Table 32. State bridge trout population statistics.

Year	\underline{N}	$\mathrm{~kg} / \mathrm{ha}$	N / ha $\geq 35 \mathrm{~cm}$	\underline{N}	$\mathrm{~kg} / \mathrm{ha}$	N / ha $\geq 35 \mathrm{~cm}$		
		$\underline{B r o w n s}$			Rainbows			
1981	5,168	39.3		29	295	2.8		
1982	6,753	38.9	35	143	0.8	4		
1983	8,948	45.4	31	285	1.9	1		
1984	6,597	32.9	15	325	1.7	2		

of catchable size rainbow trout in the Coller Wildife Area and lack of angler harvest of these catchables has severely depressed the number of quality size trout in the Coller Wildlife Area section of the Rio Grande. Dick Vincent (personal communication) staunchly maintains that excessive stocking and inadequate ang1er harvest of catchable size rainbows in the Madison River, Montana, severely depressed the number of quality size trout in that river in the 1960's and early 1970's.

This is a possibility on the Coller Wildlife Area of the Rio Grande. Our population estimates on the Rio Grande in August 1981 indicated a population of 3,800 browns and 2,700 rainbows in the 2.2 mile (3.5 km) section of river (Nehring and Anderson 1982). Our shocking surveys in 1982 and 1983 again revealed massive numbers of unharvested rainbow catchables remaining in the river after the end of the angling season. To evaluate the overwinter survival of these fish, we electroshocked the Coller Wildiife Area in May 1984 (stocking ceased in August 1983). We found a ratio of brown to rainbow trout of $4: 1$. By the time of our fall 1984 estimate, the ratio of browns to rainbows had dropped to $30: 1$ based on population estimates. If excessive competition from rainbows had a detrimental impact on the survival of quality size brown trout, then removal of this factor should definitely manifest itself in increased numbers of quality size brown trout stocks by the fall of 1986.

As can be seen from the data in Table 32, the State Bridge section of the Rio Grande continues to maintain a borderline Gold Medal quality brown trout population in all years except 1984. This section of river has excellent instream and underbank cover for quality size brown trout (≥ 35 cm or 14 in.$)$. However, if the dramatic decline in the number of quality size brown/ha continues to be a problem in 1985 (as seen between 1983 and 1984), more restrictive regulations may be required to maintain quality now that the river is gaining notoriety as a producer of trophy size brown trout.

Finally, we began a research project to evaluate the possibility of establishing a wild rainbow component on the Coller Wildife Area and State Bridge sections of the Rio Grande in 1984. We stocked 6,000

Colorado River rainbow fingerlings on the Coller Wildife Area and 10,000 in the State Bridge sections of the Rio Grande on October 23, 1984. This program will continue for at least 3 more years and we will continue our shocking studies well into the late 1980 's in all probability.

St. Vrain River

The 1984 brown trout population data from the St. Vrain is given in Table I-12, Appendix I and Figures II-45 and II-46 of Appendix II. Table 33 compares total trout density and biomass between electrofishing stations and years. The brown trout population of the Meadow Park station (standard regulations) has been fairly stable from 1980-1984, while the Gaging Station (catch-and-release) trout population has been fluctuating. The Gaging Station has had more trout over 26 cm than the Meadow Park Station since 1982. However, there was a drop from 34 to 21 trout over 26 cm from 1983-1984. It appears that the reason for more trout over 26 cm at the Gaging Station is mostly due to a slightly faster growth rate there. Also, after 4 years of total catch-and-release fishing, there has been no increase in the number of trout over 30 cm at this station (Fig. II-45 and II-46, Appendix II).

Table 33. Density and biomass estimates for the St. Vrain River 1980-1983. Number of trout over 26 cm in parenthesis.

Year	standon Meadow Park			$\begin{gathered} C \subset R \\ \text { Gaging Station } \end{gathered}$			Ideal Concrete		
	N/h		kg/ha			$\mathrm{kg} / \mathrm{ha}$	N/		$\mathrm{kg} / \mathrm{ha}$
1980	1,796	(8)	103	1,139	(11)	86	1,406	(14)	116
1981	1,130	(11)	101	444	(16)	53	--a		--
1982	1,823	(9)	121	1,243	(38)	102	535	(15)	52
1983	2,132	(9)	156	984	(34)	96	979	(46)	120
1984	2,068	(9)	136	1,610	(21)	123	1,347	(32)	109

$\overline{a_{\text {Fish }} \text { kill, no estimate. }}$

There has been a similar pattern of variation in the density of age $2+$ trout between the Meadow Park and Gaging stations (Table 34), indicating that harvest is not the primary limiting the number of trout over 20 cm . It was proposed that poor quality pool habitat may be responsible for the lack of larger trout (Anderson, Nehring, and Winter 1984). It is interesting to note that the 1983/84 winter flows were the highest since the catch-and-release regulation was initiated in 1980, and this was the year that also had the greatest number of age $2+$ trout in the fall population.

Four brown trout over 35 cm were found in the Ideal Concrete Stations. These trout were taken from the plunge pool below the spillway structure. This indicates that the St. Vrain can produce large trout given adequate pool habitat, and that the lack of pools is probably limiting the production of quality trout.

Table 34. Number of age $2+$ brown trout collected 1980-84 and mean monthly flows during the winter months, St. Vrain River.

Year	Meadow Park N/ha	Gage N/ha	Mean Monthly F1ow JanFeb (CFS)	Mar	Winter minimum (CFS)	
1980	206	162	28	29	32	16
1981	259	182	11	12	16	6.5
1982	418	298	12	10	9	2.5
1933	726	473	18	16	41	12
1984	761	716	20	19	25	14

Since there is little biological justification for a catch-and-release regulation on this stream, it seems prudent to identify what will be accomplished by keeping this regulation on the St. Vrain. Perhaps other criteria are important in evaluating the impact of special regulations such as angler satisfaction and socio-economic considerations. It is our understanding that the Longmont Trout Unlimited Chapter has been gathering this kind of data as a club project, and they may be able to offer some reasons to keep this area under catch-and-release management.

South Platte River
Special regulations management began on the South Platte River in January 1976 with the implementation of fly and lure, catch-and-release angling in the 4.8 km (3 mi .) section of the river below Cheesman Dam known as Cheesman Canyon. It continues to be managed that way at the present time. The study section, known as Deckers, was under an 8 trout/day regulation with no size limits or terminal tackle restrictions through December 1982. In January 1983, this section (Lone Rock Campground downstream to the settlement of Scraggy View) went to fly and lure terminal tackle, a 2 brown trout bag limit for browns ≥ 16 inches with catch-and-release on browns under 16 inches and all rainbows. The section from Scraggy View Picnic Area (USFS) to the confluence with the North Fork of the South Platte, has continuously been under an 8 trout/day bag limit (1976-84).

The reason for changing the regulations in the Deckers section in 1983, while maintaining the status quo in the Cheesman Canyon and Scraggy View study areas, was to eliminate the habitat variable as a controlling factor. We readily admit the best habitat lies in the Cheesman Canyon area, the Deckers area has good habitat, and the Scraggy View area probably has the poorest habitat. However, by changing the regulation only in the Deckers area, while observing population trends in all three areas, we hoped to see significant increases in trout population trends in the Deckers area. This is the essence of what we have observed in 1983 and 1984. For a visual analysis of the trends from 1979 through 1984 in all three areas, see Figures II-42, II-43, and II-44 in Appendix II.

These figures show no significant change in rainbow biomass in 1983 and 1984 for Cheesman Canyon (catch-and-release) and Scraggy View (8 trout/day) study areas. However, rainbow biomass in the Deckers study area increased significantly in 1983 and 1984 over the 1979-82 period. Rainbow numbers $\geq 30 \mathrm{~cm}$ in the Deckers study area were $22 /$ ha in the fall of 1982, $92 /$ ha in the fall of 1983, and 194/ha in the fall of 1984, a four fold increase in 1983 (over 1982) and a nine fold increase in 1984 (over 1982): Rainbows numbers/ha $\geq 35 \mathrm{~cm}$ (14 in.) did not change significantly in Cheesman Canyon or the Scraggy View study sections in 1983 or 1984 over the 1979-82 period. Rainbows/ha $\geq 35 \mathrm{~cm}$ in the Deckers area increased three fold in 1983 (over 1982) and four fold in 1984 (over 1982):

Clearly, the environmental variable argument has been eliminated as a controlling factor. We readily recognize that the Deckers study area will probably never even approach the density of rainbows/ha $\geq 30 \mathrm{~cm}$ or $\geq 35 \mathrm{~cm}$ found in Cheesman Canyon. The habitats and carrying capacities between the areas are undoubtedly grossly different. However, by holding the habitat variable constant within all three areas, while changing the regulation only in the Deckers section and documenting the dramatic increases only in the Deckers section, the regulation change becomes the controlling factor. No one can continue to doubt the dramatic role of angling pressure and harvest on this trout population. Brown numbers and biomass ($\mathrm{kg} / \mathrm{ha}$) have not dramatically changed in any of the areas in 1983-84 over the 1979-82 period. However, rainbow biomass and total biomass (rainbow and brown trout) has been at an all time high in the Deckers area for 1983 and 1984 (for our 6 years of record). Conversely, in the Scraggy View (8 trout/day) study section brown biomass, rainbow biomass, and total biomass are at an all time low, again convincing evidence of the detrimental impacts of excessive levels of angling pressure and harvest. We are also at an all time low for numbers of rainbow and brown trout/ha $\geq 30 \mathrm{~cm}$ and $\geq 35 \mathrm{~cm}$ (zero) in the Scraggy View and Twin Cedars (8 trout/day) study areas in 1984.

Some members of the CDOW continue to ask questions such as: (1) are we discriminating against the bait fishermen with all of these special regulation areas; or (2) are we discriminating against large numbers of women and children with terminal tackle restrictions? At times, it seems we almost have a masochistic obsession that our quality trout management program is totally against the public's desires. In an effort to allay the fears of this possibility (discrimination), we again conducted an intensive creel census on the South P1atte in the Cheesman Canyon, Deckers, and Scraggy View study areas from May through September 1984. We not only interviewed to determine angling pressure, catch rates, and harvest by species, but also to determine angling attitudes in the lower two areas towards the new regulation in the Deckers section. The results of the 1984 South Platte creel census are summarized in Appendix IV, Tables IV-1 through IV-9, and Figures IV-1 through IV-7.

We contacted 967 anglers, 474 in the new catch-and-release area at Deckers, and 493 in the Scraggy View 8 trout/day bag area. At Deckers, 84.2\% favored the new regulation, 8% had no opinion, and 7.8% were opposed to it. At Scraggy View (8 trout/day area with no terminal tackle restrictions), 67.1% either favored or had no opinion towards the new
regulation area at Deckers, and 32.9% were opposed to it. How much more support do we need?

The combined results of all angler attitude surveys we have conducted on the Fryingpan, Arkansas, and South Platte rivers in 1980, 1981 and 1984 indicate overwhelming angler support for our quality trout management programs. Over these 3 years and three rivers, we contacted 2,766 anglers that were fishing in the special regulations area when contacted. As one would expect from anglers fishing in a special regulations area, 2,455 (89%) favored the quality management areas, 149 (5\%) had no opinion, and 162 (6%) were opposed to the quality management.
More important was the attitude of anglers fishing in the 8 trout/day bag area (at the time of contact) towards the special regulation management on these three rivers over the 3 years. Of 4,903 anglers contacted, $3,765(77 \%)$ were in favor of the special regulation (even though they were not fishing the area at the time)! Nine percent (453) had no opinion and 685 (14\%) were opposed. Overall, 7,669 anglers were contacted, 6,220 (81%) were in favor of quality management, 847 (11%) had no opinion, and 602 (8%) were opposed. How much more support do we need? We say it's time to forget our masochistic obsession with trying to please all anglers all the time and give ourselves (CDOW) a well-deserved pat on the back.

Summaries of creel census statistics for all three study sections on the South Platte for May-September 1984 are presented in Tables IV-4 through IV-9 in Appendix IV. Comparisons in statistics for the Cheesman Canyon and Deckers sections for 1979 , 1980, 1981 and 1984 are also presented in Tables IV-1 and IV-2, Appendix IV, as well as Figures IV-1 through IV-5.

In the Cheesman Canyon section (total catch-and-release since 1976), there was no significant difference in brown catch-per-man-hour (CPMH), rainbow CPMH, total CPMH, fisherman hours, total catch, brown catch, rainbow catch, catch ≥ 12 inches, or catch ≥ 15 inches for 1984 compared to 1979, 1980 and 1981. In comparison, in the new regulation area at Deckers, brown CPMH and total CPMH were significantly higher in 1984 versus 1979, 1980 and 1981 (when the bag limit was 8 trout/day). The level of significance was greater than 0.995 . Catch of trout ≥ 12 inches, ≥ 15 inches, brown catch, rainbow catch, and total catch were not significantly different in 1984 from 1979, 1980 and 1981 at the 95% leve1.

Only total hours of angling effort were significantly lower (at 95\% level) in the Deckers area in 1984 compared to 1979-81. Superficially, one might conclude that the new special regulation was responsible for the dramatic decline in angling pressure in 1984. However, it is our contention that the tremendously high water year in 1984 was responsible for most of the decline in angling pressure (compared to 1979-81) and not the special regulation. The comparison in angling statistics for 1984 between Deckers (the special regulation section) and Scraggy View (the 8 trout/day section) strongly supports our contention (see Table IV-3 in Appendix IV). Trout catch ≥ 12 inches, ≥ 15 inches, fisherman hours, and total catch were virtually identical for the two areas. If anglers were unhappy with the new special regulation in the Deckers area, one would expect angling hours to be somewhat lower there than in the 8 trout/day
stocked sections at Scraggy View where no terminal tackle restrictions were in effect. However, there was less than 400 hours difference (12,624 at Scraggy View versus 12,227 at Deckers) in the angling pressure estimates for the two areas. Furthermore, considering that the number of angling hours in the Cheesman Canyon catch-and-release area (a 3 mile section of river) was 22,377 versus a combined angling hour estimate of 24,851 for the Deckers and Scraggy View sections (6 miles of river), we are all the more correct in concluding anglers like our quality trout management on the South Platte. Anglers "vote" their preference by fishing where they know the fishing is good and they can catch fish.

The final "nail-in-the-coffin" should be a comparison of the costs between quality trout management in the Deckers and Cheesman Canyon areas (on the one hand) versus Scraggy View, the section stocked with catchable size rainbow trout.

According to the 1984 CDOW stocking schedule, the Scraggy View area (from Scraggy View to the North Fork of the South Platte) received 14,000 catchable rainbows at a cost of $\$ 9,000$ versus zero cost for stocking in the Deckers and Cheesman Canyon area. The very high rainbow CPMH (1.20) in the Scraggy View area is evidence prima facie that the vast majority of the rainbows caught (15,181) probably came off the stocking truck, since our fall electroshocking estimates indicated rainbow population densities were a mere 138 rainbows/ha (56/acre), or a rainbow population estimate of 1,140 for the 3 mile section of river.

Certainly the data indicates the highest CPMH (1.467) was in the Scraggy View 8 trout/day area. It only costs $\$ 9,000$ to produce that CPMH for 5 months (May-September) versus a CPMH in Cheesman Canyon of 1.207 and a Deckers CPMH of 1.076 at no cost. Total rainbow catch in the Scraggy View area (3 miles or 4.8 km) was estimated at 15,181 from May-September 1984 versus 4,513 rainbows caught (and released) at Deckers, and 16,175 in Cheesman Canyon for the same time period. The brown catch (all wild trout) was $10,800,8,600$ and 3,300 at Cheesman Canyon, Deckers and Scraggy View, respectively.

According to the 1984-85 CDOW Resource Allocation Plan (budget), the total financial outlay for fisheries in Colorado was $\$ 5,644,258$. The same plan also indicates $\$ 4,037,233$ went for fish production or 71.5% of the total fisheries budget. Perhaps we need to find out (through another statewide angler attitude survey) if we are spending the vast majority of our fishing license revenues on programs that the angling public wants. Or, are we spending the fishing iicense revenues on a program that is not cost effective and ultimately, we must begin to cut back, not expand, or else go bankrupt. It has been 12 years since Dick Klein (1973) asked the question, "Are we polluting our streams with trout?" We can honestly say, great strides have been made in stream trout management in Colorado in the interim. However, in an age of shrinking revenues and the need for greater efficiency and cost effective programs in the public sector, we need to reassess where the CDOW is headed in fisheries management. Where are we now and where do we need to be as we enter the 21 st century from a fisheries management standpoint?

RECOMMENDATIONS AND CONCLUSIONS

General Conclusions and Recommendations

It is evident from our results on the Cache la Poudre, Colorado and Fryingpan rivers that severely reduced bag limits (without any size restrictions) do little, if any good, in protecting or increasing density, biomass or number of quality size (35 cm or 14 in .) trout. This is especially true for the angler-vulnerable rainbow. To quote Robert Engstrom-Heg (Engstrom-Heg 1981), "Size limits are the most effective means of regulating harvest and should be used as a primary tool. Creel limits have some regulatory value, but should be used mainly to promote better distribution of the harvest." Engstrom-Heg is a research leader with the New York Department of Environmental Conservation. Clearly, our findings in Colorado are not unique to our state; they merely reiterate the findings and conclusions of others in the field.

Arkansas River
The use of special regulations, the 16 inch minimum size limit, probably has contributed to the increase in density of trout under 35 cm witnessed in the Arkansas River; however, the number of trout over 35 cm is still poor. The best chance of improving the quality of the brown trout fishery is through the introduction of a good forage fish species. The mottled sculpin or the paiute sculpin appear to be the best candidates. This should be accomplished as soon as possible. It is also recommended that special regulation management be continued at the present status on this stream for at least 4 or 5 more years. This will provide enough time to see if increasing the length of the regulated area from 1.8 to 7.5 miles was beneficial to the fishery and to see if larger trout can be produced following a forage fish introduction. It will also assist in the efforts to establish a wild rainbow trout population. Lastly, it is recommended that this stream be dropped as a study site on this project and that the area biologist be responsible to monitor future changes in the trout population.

Blue River

After two full seasons under management with a restrictive size and bag limit, the brown trout population of the Blue River has shown a dramatic response to protection. We have seen numbers of brown trout/ha $\geq 25 \mathrm{~cm}$, $\geq 30 \mathrm{~cm}$ and $\geq 35 \mathrm{~cm}$, increase from 2 to 10 times over the pre-regulation period. Density of 4 year old brown trout increased 65 fold in just 1 year. The average length of the pre-regulation (1981) 4 year old trout was 26.8 cm . That has increased to 30.3 cm by the fall of 1984 after 2 years of protective regulations. This is strongly indicative of the possibility that the fastest growing, most aggressive trout are most rapidly cropped by anglers. Thus, our assumption that 35 cm (14 in.) is probably the asymptotic growth potential of Blue River brown trout may be erroneous. We recommend that the 2 trout ≥ 16 inch size and bag limit on the Blue River be continued through the next regulation period, probably 1986-88.

Cache la Poudre River

It appears that the trout population of the Indian Meadows area has responded to catch-and-release management after only 2 years with improvements in trout density and biomass and the number of trout over 30 cm . Therefore, it is recommended that the 16 inch minimum size limit remain in effect for at least 3 more years in order to determine the potential of restrictive regulation management on the Poudre River. It is also recommended that the 16 inch minimum size limit be applied to the Upper Wild and the Lower Wild Trout waters. The Upper Wild Trout water area has the potential to produce trophy sized trout in the meadows section. The Lower Wild Trout water currently lacks any quality trout in the population. It may turn out that because of poor insect forage or poor habitat quality, this area can not produce trout over 30 cm . However, overharvest is strongly indicated and a more protective regulation would definitely improve the fishery. It is also recommended that this stream be dropped from the project and that the area biologist take over sampling.

Colorado River

During 1981-82, a 2 trout bag limit was in effect from Parshall to the Sunset Ranch on the Colorado River with a catch-and-release slot of 12-20 inch. An 8 trout/day bag limit was in effect on the Pioneer Park, Paul Gilbert and Lone Buck wildife areas during 1981-82. In 1983-84 all of the above areas, with the exception of Pioneer Park, went to a 1 rainbow-1 brown trout bag limit. This regulation change has manifested an increase in rainbow and brown trout density (N / ha) and biomass (kg/ha) at the Paul Gilbert and Lone Buck Wildlfe areas in 1983-84, as compared to 1981-82 when the 8 trout/day bag limit was in effect. Conversely, in the Parshall area, all population statistics have been in dramatic decline in 1983-84 under the 1 rainbow-1 brown regulation regime, as compared to 1981-82 when the 2 trout bag, 12-20 inch catch-and-release slot limit was in effect. Undoubtedly, poor recruitment for both rainbow and brown trout in the 1980 's has had a negative impact on standing stock and biomass estimates in all study sections. However, it is clear that both rainbow and brown population statistics were as good or better in 1979 under an 8 trout/day regulation as they were in 1983-84 under the 1 rainbow-1 brown trout regulation. Conversely, in 1981-82 the Parshall area had much higher brown and rainbow trout densities and biomass under the 2 trout bag limit with the catch-and-release slot between 12 and 20 inches than it has had either before or since under the 8 trout bag (1979-80) or the 1 rainbow-1 brown bag limit (1983-84).

We recommend the entire study area from Hot Sulphur Springs to the confluence with Troublesome Creek be put under a two trout ≥ 16-inch bag limit with a fly and lure only terminal tackle restriction.

Eagle River
The Eagle River is the most difficult river to electroshock of our 12 study streams, year in year out. We are dropping this river from the study at the end of the 1984-85 segment. However, it is clear from our electroshocking that recruitment is severly limited by the perpetual silt
load coming in at Milk Creek and that standing stock and biomass for the Eagle River is probably low as a result. With reduced biomass and density estimates in many years, the Eagle River is peculiarly vulnerable to over-exploitation by anglers. For even minimal densities of quality size rainbow and brown trout to be maintained in the Eagle River, protective regulations with a size regulation are necessary. A two trout ≥ 16-inch bag limit should adequately protect the river. Without protective regulations, we will probably "yo-yo" between "feast and famine" depending upon angling pressure and levels of run-off which effectively limit the length of the angling season to about $6-8$ weeks in heavy run-off years like 1983 and 1984.

Fryingpan River

We have dramatically altered the trout population of the Fryingpan catch-and-release sections with our fingerling rainbow stocking program implemented since October 1981. We have the highest densities of quality size (35 cm or 14 in .) rainbow in this section since studies began in the early 1970's. However, outside the catch-and-release section, rainbow density has basically been stagnant at 100-120/ha since 1981 , or 40 rainbow/acre over 15 cm (6 in.) in size. Severe overharvest under the 8 trout bag limit from 1979 through 1982 (without stocking) so decimated rainbow stocks that densities are not even high enough to result in a natural recruitment of 25 rainbow/acre ($62 / \mathrm{ha}$) annually.

To remedy this situation, we have only two alternatives. One alternative would be to further restrict harvest with a size restriction. The second alternative is to further augment natural recruitment with an advanced fingerling stocking program. We have opted for the second alternative. With a 75% survival rate on an October 1982 plant of 2,400 adipose-clipped advanced ($4-5$ in.) rainbow fingerlings in the catch-and-release area through September 1984, we feel this is the best option.

The other alternative, probably a two trout ≥ 16-inch bag limit would reopen "Pandora's box" on 12 miles of river through private land and could result in this premiere trout water being lost to public access. With stocking agreements in place and virtually all the water open to public angling at present, the augmented stocking alternative seems the most prudent management option.

Gunnison River

The "four trout bag limit, catch-and-release between 12 and 16 inches, with only one trout ≥ 16 inches in the limit of four in the aggregate" regulation has dramatically altered the trout population structure in the Smith Fork-North Fork section of the Gunnison since 1981. We recommend this regulation stay in place for $1986-88$ even though it is presently unique and quite complex. Public acceptance has been good, bait anglers have the easiest access to quality angling at both the upper and lower ends of the restricted water, and the regulation allows the most liberal harvest (four trout) of any quality regulation on streams in the state.

The near record run-off levels of 1983 and 1984 have virtually wiped out rainbow recruitment in 1983 and 1984. Thus, rainbow stocks will soon begin to drop precipituously without a good year class in 1985. At present, the projected run-off for 1985 should allow for at least average rainbow recruitment this year.

Middle Fork of the South Platte River
We recommend this stream continue to be managed as a quality stream in the wild trout program. The current regulation, an 8 trout/day bag limit with only two trout ≥ 16 inches in the aggregate of eight, is a good regulation from both a biological and a management standpoint. Another alternative would be a 2 trout/day bag limit with no size or terminal tackle restrictions. This stream will be dropped from the study at the end of the 1984-85 segment. Any additional studies will be carried out by the area biologist.

North Platte River

Brown and rainbow trout numbers and biomass were both significantly higher in the North Platte River in 1984. We are convinced that most of this additional recruitment and augmentation of the 1983 and 1983 rainbow year classes resulted from the draining of a small lake on the Ginger Quill Ranch in the fall of 1984. This river meets all of the established criteria for Gold Medal classification. However, recruitment of both rainbow and brown trout year classes is spotty at best and poor in most years. If this river receives additional notoriety and angling pressure as a result of Gold Medal classification, a minimum size and bag limit restriction of two trout ≥ 16 inches may be necessary to maintain the biomass and quality trout levels to meet the Gold Medal criteria.

Rio Grande River

Reversal of the fly fishing only, two trout ≥ 14 inch on a section of the Rio Grande at the Wason Ranch to a two trout ≤ 14 inch has resulted in a 200% increase in density of brown trout ≥ 14 inches in just 2 years. In the section still managed with an 8 trout/day bag limit, the number of quality size brown trout has remained static since 1982.

On the special regulations section of the Rio Grande at the Coller Wildife Area, we have not seen any significant change in the numbers of quality-size ($>35 \mathrm{~cm}$) brown trout in 1983-84. However, we have eliminated the stocking of catchable size rainbow trout as a complicating factor. Hopefully, this program might significantly increase the number of quality size brown trout in the study section.

The State Bridge section of the Rio Grande continues to harbor good numbers of quality size brown trout. However, numbers of quality size brown trout may decline if angling pressure increases significantly without any restrictions on size or bag limits.

Finally, the wild rainbow trout introduction program has been extended to the Rio Grande River in 1984 with the stocking of 6,000 fingerlings in the Coller and 10,000 in the State Bridge section. We hope to
significantly increase the number of quality size trout in the river through this management program by 1988. Our ultimate objective is to establish a wild rainbow trout population in the Rio Grande River.

South Platte River

The change from an 8 trout/day angling regulation to a two brown trout ≥ 16 inch with catch-and-release on browns under 16 inches and a11 rainbows in the Deckers section in 1983 has manifested itself in significant increases in rainbow biomass ($\mathrm{kg} / \mathrm{ha}$), numbers/ha $\geq 30 \mathrm{~cm}$ and $\geq 35 \mathrm{~cm}$ in 1983 and 1984 compared to 1979-82. These statistics did not change in either the Cheesman Canyon catch-and-release section (upstream) or the Scraggy View 8 trout/day section (downstream) in 1983-84, compared to 1979-82.

We recommend that the present regulation structure on the South Platte from Cheesman Dam to the North Fork of the South Platte remain in effect for the 1986-88 regulation period. The regulation in the Strontia Springs area should be changed to coincide with the regulation in the Deckers area.

St. Vrain River

Since the trout population has not exhibited a response to the total catch-and-release regulation, the regulation should be changed, strictly from a biological standpoint. This area could be added to the wild trout program and a less restrictive regulation such as the 2 trout/day bag limit might be more appropriate. This stream will be dropped from the Job 3 study at the end of the $1984-85$ project segment.

Job No.

Job Tit1e:
Job Objective:

Wild Trout Introductions
To establish, then quantitatively describe, a wild rainbow trout population in the Arkansas River between Salida and Texas Creek.

Period Covered: July 1, 1983 to June 30, 1984

INTRODUCTION

Electrofishing surveys were started on the Arkansas River in the spring of 1981 at the start of Job 3. The trout population of the river is $99+\%$ brown trout with moderate density ($300-500 / \mathrm{ha}$) compared to other large rivers such as the Gunnison and Colorado rivers. The Arkansas is characterized by wide sandy-bottom runs, deep open pools and intermittently spaced shallow and deep riffles with high velocities. Scattered boulders provide most of the trout cover. Our electrofishing efforts found that brown trout concentrated around areas of cover and that most deep pools were relatively devoid of trout, thus leaving large amounts of unoccupied habitat. The introduction of a species that could exploit these underutilized habitats would greatly add to the trout standing crop and enhance angling opportunities. Rainbow trout are commonly electroshocked from deep open pools on the Colorado, Gunnison and South Platte and appear to be suited for Arkansas River.

Efforts have been made in the past to introduce rainbow trout to the Arkansas River (Carhart 1950) and catchables were stocked for a number of years, but a self-sustaining population was never established. Domestic strains, though well adapted to hatchery life, have a poor history for long-term survival in the wild (Borgeson 1966). Also, it has been demonstrated that hatchery strains do not successfully compete with resident trout (Miller 1957). Since we feel a two-species trout system would increase density and biomass over present levels and add a trophy fish to the population, we are making another attempt at introducing rainbow trout. But this time a wild strain of rainbow trout, known to be genetically suited to compete with brown trout and successfully reproduce under high spring flows, will be planted.

METHODS AND MATERIALS

Using similar methods as in 1981, 1982 and 1983, wild rainbow trout were spawned in the Colorado River in April 1984. Eggs were taken to the Bellvue Research Hatchery for hatching and rearing. At the time of the plant, March 8, 1985, the fingerlings averaged about 70 to the pound. The total plant was estimated at 9,000 fish and all were stocked inside the Salida electrofishing station, which is under catch-and-release management for trout $\leqslant 16$ inches.

RESULTS AND DISCUSSION

Twenty-two rainbow trout were caught in March 1985 by electrofishing. The largest rainbow trout was 45 cm and the rest ranged in size from $23-34 \mathrm{~cm}$. The number of rainbow caught at the Salida station from 1981-85 are 3, 5, 26,38 and 22, respectively. The lower number of rainbow trout caught in 1985 compared to 1984 was probably due to the fact that no fry were stocked in 1984 because of total mortality for that plant (Anderson and Nehring 1984).

RECOMMENDATIONS AND CONCLUSIONS

We will continue to have the eggs hatched at Bellvue Research Hatchery and will continue spawning wild rainbow trout in the field until a brood stock is available, hopefully in 1987. Evaluation of the benthic invertebrate community (Anderson, Nehring and Winters 1984) in the Arkansas River indicated that Simuliidae, Chironomidae, and silt tolerant trichopteran species were dominant. It is clear from our studies of tail-race trout populations on the South Platte and Fryingpan rivers that rainbow trout more effectively utilize these food items than brown trout. Thus, if wild rainbows can be established in the Arkansas River, their growth and performance would probably surpass that of the more benthic and cover-oriented brown trout.

Job Title:
Job Objective:

Colorado River Aquatic Invertebrate Investigations
Determine if correlations exist between willow fry (Pteronarcys californica) populations and the temperature and flow regime of the Colorado River, and quantify the importance of the willow fly naiad in the rainbow trout diet.

Period Covered: July 1, 1984-June 30, 1985

INTRODUCTION

For a detailed description of the need for this study, Colorado River Aquatic Invertebrate Investigations, the reader is directed to the two previous progress reports (Nehring and Anderson 1983; Anderson, Nehring and Winters 1984). An extensive literature review was completed and included in last year's progress report (ibid).

The job objective for Job 6 is to "determine if correlations exist between willow fly (Pteronarcys californica) populations and the temperature and flow regimes of the Colorado River, and quantify the importance of the willow fly naiad in the rainbow trout diet." We have demonstrated the importance of the Pteronarcys californica (P.c.) naiad population in the diet of rainbow and brown trout in the Colorado River. We have strong indications that a relationship does exist between P.c. naiad density and flow regime in the Colorado River as will be demonstrated subsequently in this report. We will also demonstrate there is cause for concern about possible stress from low dissolved oxygen and warm water temperatures as the Colorado River approaches 25 C in mid to late summer.

METHODS AND MATERIALS

Methods and materials were adequately described in the 1983 and 1984 Progress Reports and will not be reiterated here.

RESULTS AND DISCUSSION

Probability of Use Curves and WUA
Probability of use curves for Pteronarcys californica (P.c.) naiads for: (1) substrate; (2) average water velocity in ft/sec (as measured at 0.6 depths of the water column); (3) bottom velocity in $\mathrm{ft} / \mathrm{sec}$ (as measured on the substrate) ; and (4) depth (in feet) were constructed from measurements made on 23 quantitative square meter benthic samples collected in April 1983. After 3 years of collecting quantitative one square meter Surber samples, I felt that any P.c. naiad density of $100 / \mathrm{m}^{2}$ or higher was equivalent to a probability of use of 1.0 .

Conversely, a P.c. naiad density of $0 / \mathrm{m}^{2}$ was equivalent to a probability of use of zero. Ten naiads $/ \mathrm{m}^{2}$ equate to a probability of use of $0.1,20 / \mathrm{m}^{2}$ equates to a probability of use of 0.2 , etc. Substrate type was classified according to the Brusven substrate index (Brusven 1977; Bovee 1982). This index is outlined in Table 35.

Table 35. Expanded substrate code for use with the Brusven substrate index.

Code	Substrate description	Size range (mm)	Inches
1	Fines (sand and smaller)	3.9	.15
2	Small gravel	$4-25$	$0.16-1.00$
3	Medium gravel	$25-50$	$1.00-2.00$
4	Large grave1	$50-75$	$2.10-2.95$
5	Small cobble	$76-150$	$2.96-5.90$
6	Medium cobble	$151-225$	$5.91-8.90$
7	Large cobble	$226-300$	$9.00-11.9$
8	Small boulder	$301-600$	$12.00-24.0$
9	Large boulder	601	$24.10-\mathrm{up}$
10	Bedrock	-	-

Of the four curves (substrate, average velocity, bottom velocity and depth) substrate preference and average velocity are probably the two most important in characterizing the actual habitat requirements for P.c. naiads. As pointed out previously (Anderson, Nehring and Winters 1984), average water velocity is of the utmost importance in maintaining the interstitial spaces in a silt-free condition behind, between and beneath the cobble-rubble substrate. Even though the actual water velocity (in the interstitial spaces) experienced by P.c. naiads in their microhabitat is probably only $0.9-1.8 \mathrm{~cm} / \mathrm{sec}$ (Knight and Gaufin 1964), it is the average water velocity that must be high enough to keep the "fines" out of the interstitial spaces, thereby maintaining microhabitat integrity.

Substrate size is also a critical microhabitat constituent. Our quantitative sampling during 1982, 1983 and 1984 clearly indicates P.c. naiads very rarely occur in gravel, silt or sand type substrates. Rather, they are found almost exclusively in the small cobble to small boulder substrate types ranging in size from $75-600 \mathrm{~mm}$ ($2.95-24 \mathrm{in}$.$) with the preferred range probably in the$ 152-305 mm (6-12 in.) sizes.

Bottom velocity (as measured on the substrate) and depth are probably not very important criteria in truly defining P.C. naiad habitat. Both of these criteria showed much greater random variability than average water velocity and substrate type when used as a predictor of P.C. naiad abundance. In short, when the substrate type was right, P.c. naiad abundance was high irregardless of what the depth and/or bottom velocity was. Therefore, I used only substrate type and average velocity in determining weighted usuable area
(WUA) for P.c. naiads in the Colorado River. Substrate, average velocity, bottom velocity, and depth probability of use curves for P.c. naiads in the Colorado River are shown in Figure V-4 and Appendix V.

The WUA for P.c. naiads in the Colorado River is much higher for 1,000 feet of stream channel than for any life stage of either rainbow or brown trout. The WUA versus discharge curve for P.c. naiads also overlays the peak values of the WUA curves for all life stages of rainbow and brown trout (Figures V-5 , $\mathrm{V}-6$, and $\mathrm{V}-7$ in Appendix V . This indicates that P.c. naiads probably have a better tolerance for higher water velocities, depths and discharge levels than either rainbow or brown trout. At lower discharge levels ($<200 \mathrm{ft}^{3} / \mathrm{sec}$) WUA curves for P.c. naiads and the various rainbow and brown trout life stages are roughly coincident as far as slope of the curves is concerned. However, the P.c. naiad WUA per 1,000 feet of stream channel is still roughly 3 times as high as the WUA for rainbow and brown trout at any given flow up to 1,000 $\mathrm{ft}^{3} / \mathrm{sec}$.

Pteronarcys californica Naiads as Trout Food
During our rainbow spawning operation in April 1984, 60 rainbow trout were sacrificed for disease analysis. The stomach samples were saved for food habitat analyses. These samples reiterate the already overwhelming evidence (Anderson, Nehring and Winters 1984) that P.c. naiads are the most important food item for rainbow trout in the Colorado River.

Eight of 62 stomach samples (April 27, 1984) were empty, and 25 of 62 contained less than 0.5 ml volume of food items. For all 62 samples combined, P.c. naiads comprised 137.7 ml volume out of a total of 180.5 ml volume. Thus, P.c. naiads comprised 76.3% of the total food volume. Five stomach samples contained between 10 ml and 23 ml volume in P.c. naiads. Numerically, P.C. naiads were also the most numerous food item in the stomachs. We found 287 recognizable food items of which 204 where P.c. naiads or 71% of the food items consumed on a numerical basis.

Pteronarcys californica Population Dynamics

The data in Table 36 indicates the wide variations in the number of P.c. naiads $/ \mathrm{m}^{2}$ occurring in the Colorado River from 1982, 1983 and 1984. Statistical tests (t test for two means) indicate that there is greater variability between years at a given sample site for P.c. naiad density than there is between stations within the same year. There were no statistically significant differences ($t-.95$) between sample stations (State Ranch versus Parshall) for 1982, 1983 or 1984. However, at the State Ranch site, P.c. naiad density (No. $/ \mathrm{m}^{2}$) was significantly higher in 1983 than either 1982 or 1984. State Ranch naiad density in 1982 was significantly higher than 1984 as wel1. At the Parshall sample site, P.C. naiad density was significantly higher in 1983 ($p=.95$) as compared to 1982 and $1984(p=.90)$. The 1984 Parshall sample was higher than the 1984 State Ranch sample at the 90% level.

Table 36. Pteronarcys californica "willowfly" naiads/m2 at the State Ranch and Parshall sampling sites.

	State Ranch				Parsha11		
	\underline{N}	\underline{X}	\underline{S}	\underline{N}	\underline{X}	\underline{S}	
1982	10	205	± 111	10	135	± 92	
1983	5	512	± 317	5	392	$\underline{ \pm 346}$	
1984	5	39	± 13	5	97	$\underline{ \pm}$	

Length-frequency histograms (Figures V-8 and V-9 in Appendix V) give a visual representation of P.c. naiad size distribution over the 3 years of the study for both the State Ranch and Parshall sampling sites. The most notable differences are between 1984 and 1982-83 at both stations. Since the density observed in 1984 is a product of the flow conditions in the previous 3 years (for three age groups or cohorts), it appears that high spring run-off levels may have a very dramatic negative impact on the recruitment of P.c. naiad cohorts, similar to the negative relationship between rainbow and brown trout recruitment and spring-summer discharge patterns (see Job 1). The very high spring-summer run-off of 1983; i.e., the record mean monthly discharge for June-July in the Colorado River (for the period 1964 and 1983) certainly seems to have manifested itself in the lowest P.c. naiad density in April 1984 for the 1982-84 period of the study. Not only are total naiad densities the lowest in 1984 (for the period 1982-84), but the survival or recruitment of P.c. naiads of the age I and II cohorts (1983 and 1982, respectively) appears severely depressed. Age I and $I I$ cohorts are in the $5-25 \mathrm{~mm}$ size range for the most part if one examines the size, age and sex distribution as shown in Figure V-10, Appendix V.

If the level of the spring run-off does have a strong negative impact on the survival and recruitment of age I and II cohorts of P.c. naiads, then the 1985 samples should show the lowest average density $/ \mathrm{m}^{2}$ for the period 1982-85 as the spring-summer (June-July) run-off in 1984 was even higher than in 1983. The WUA versus discharge relationship (Figure V-5 in Appendix V) for P.c. naiads certainly indicates that this should be the case.

Pteronarcys californica Versus Temperature and Dissolved Oxygen
Previously (Anderson, Nehring and Winters 1984), we asked the rhetorical question, "What will be the impact of Windy Gap Dam on the Pteronarcys california population in the Colorado River in a worst case situation?" We hoped the answer would be "no impact." However, the problem still remains a question of trying to predict the total negative impacts of a multiple number of variables acting in concert and, in most cases, in a negatively synergistic fashion. The factors are as follows:

1. Dissolved oxygen saturation decreases with increasing elevation above sea level. The elevation of the Colorado River at Windy Gap Dam is approximately 8,000 feet ($2,439 \mathrm{~m}$).
2. The solubility of oxygen in water decreases with increasing temperatures.
3. Oxygen consumption in P.C. naiads increases with increasing temperature along the lines of the Q_{10} effect.
4. Decreasing turbulence in running water tends to decrease the percent saturation.
5. Biological oxygen demand due to organic processes is generally greatest in streams during the late summer months, the period of low flow, highest temperatures, and least turbulence.

From all of the above, it is not too difficult to discern that mid to late summer (July-September) is probably the time when P.c. naiads will be most susceptible to low oxygen stress.

Water temperatures are highest in late summer, water flows are decreasing dramatically in late summer which decreases turbulence, which in turn tends to decrease percent oxygen saturation (Hynes 1972). Again a rhetorical question, "How does all this impact P.c. naiad population in the Colorado River? Again the answer, "Hopefully not much." However, given all the wrong conditions at the most inopportune time, the potential for serious problems exists.

Table 37 contains an estimate of dissolved oxygen levels in the Colorado River at an elevation of 8,000 feet ($2,439 \mathrm{~m}$) and various temperatures, assuming 100% saturation. In the Colorado River, submergent aquatic vegetation and organic pollution are minimal; thus, with the extensive riffle areas and moderate gradient, it is probable that the dissolved oxygen leve1s should remain near 100% saturation. We have had Ryan continuous recording thermographs in the Colorado River at various points between the Windy Gap Dam site and the Con Ritschards Ranch, more than 32 km (20 mi .) downstream since 1980. In both 1980 and 1981, we saw maximum water temperature in the $20-25$ C range on many consecutive days in July and August. Temperatures of 25 C are approaching the upper tolerance limits for rainbow and brown trout.

Table 37. Probable dissolved oxygen versus temperature relationship for the Colorado River near Windy Gap Dam, Granby, Colorado (assembled from Reid 1961, and Wetzel 1975).

Temp (C)	Oxygen (mg/1)
0	10.4
5	9.1
10	8.0
15	7.2
20	6.5
25	6.0
30	5.5

The combined impacts of somewhat depressed oxygen levels and temperatures up to 25 C may also be approaching lethal limits for P.c. naiads. At a flow rate of $1.8 \mathrm{~cm} / \mathrm{sec}$ and a temperature of $10 \mathrm{C}, \mathrm{P} . \mathrm{C}$. naiad mortality from oxygen stress occurs at $0.7 \mathrm{mg} / 1 \mathrm{D} .0$. At a temperature of 15.6 C and a flow rate of $1.8 \mathrm{~cm} / \mathrm{sec}, \mathrm{P} . \mathrm{C}$. naiad mortality commences when D. O. levels drop to $1.8 \mathrm{mg} / 1 \mathrm{D} .0$. (Knight and Gaufin 1964). Using these two data points as the basis for a linear regression from which to project probable P.c. naiad mortality at 25 C , we estimate a dissolved oxygen level of $4.0 \mathrm{mg} / 1$ would result in death due to oxygen stress. If the regression relationship for mortality from oxygen-temperature stress for P.c. naiads is more of a power curve regression than linear, it is quite likely that P.c. naiad mortality may begin at $4.5 \mathrm{mg} / 1 \mathrm{D} .0$. at a temperature of 25 C . The difference between $4.5 \mathrm{mg} / 1 \mathrm{D} .0$. (the possible level for lethal effects on P.c. naiads) and $6.0 \mathrm{mg} / 1 \mathrm{D} .0$. (100% saturation at 25 C and 8,000 feet elevation) is not much margin for error. It would probably be a good idea to attempt some dissolved oxygen-temperature tolerance tests of P.C. naiads in the $20-25 \mathrm{C}$ range.

Finally, examination of the relationship between daily summer discharge and maximum water temperatures for the Colorado River in 1980-81 reveal some very interesting correlations. It turns out that the magnitude of water releases out of Williams Fork Reservoir, near Parshall, Colorado, are of critical importance in maintaining a tolerable thermal regime for trout and P.c. naiads in the Colorado River between Parshall and Kremmling, Colorado. The inflow from Williams Fork Reservoir joins the Colorado at Parshall, Colorado (see Figure V-3 in Appendix V). The critical time period is from about July 1 through September 15. Our thermograph data from both 1980 and 1981 indicates maximum daily water temperatures often approach or exceed 20 C in the Colorado River on the Sheriff Ranch during the July 1-September 1 summer period. As summer flows in the Colorado and Fraser rivers recede, the water temperatures increase dramatically, especially once the flow drops below 200 $\mathrm{ft}^{3} / \mathrm{sec}$. When releases from Williams Fork Reservoir are in the 20-60 $\mathrm{ft}^{3} / \mathrm{sec}$ range, water temperatures in the Colorado River (below the confluence with the Williams Fork) almost always range from $20-25$ C in July and August for 1980-81. Conversely, when discharges from the

Williams Fork are in the $150-200 \mathrm{ft}^{3} / \mathrm{sec}$ range or higher (in July and August 1981), water temperatures in the Colorado River drop dramatically, up to 7-8 C in a single day! In extremely high water years (1983-84), the problem is not critical; however, in median or below normal water years, the temperature problem could be very critical.

With good cooperation between the Northern Colorado Water Conservancy District, the Colorado Division of Wildlife, and the Denver Water Department, we should be able to avoid any disastrous consequences for the fish and aquatic invertebrate life in the Colorado River. Without good cooperation and foresight, the potential for lethal impacts to aquatic life in the Colorado River definitely exists.

RECOMMENDATIONS AND CONCLUSIONS

It is clear, from our temperature-discharge relationships in the Colorado River in 1980-81, that the potential exists for severe stress (if not lethal) effects from a combination of elevated water temperatures and depressed dissolved oxygen levels to P.c. naiads and/or rainbow and brown trout in the Colorado River below Windy Gap Dam. The potential for stress is worst in the July-September period in median or below normal water years.

Proper operation of the Windy Gap Project after the seasonal pumping period is over is of utmost importance. Windy Gap operations personnel have indicated that it is possible to maintain a minimum pool in Windy Gap Lake and yet allow the Fraser-Colorado River to run straight through the dam on a bottom release basis with virtually no alteration in temperature between inlet and outlet (Gerald Bennett, personal communication).

For the 1985 field season we will attempt to keep five Ryan thermographs operating in the Colorado River at the Con Ritschards, State, Sheriff, and Chimney Rock ranches, as well as monitoring the inlet water temperature to Windy Gap Lake. In addition, logistics and budget permitting, we will attempt to run some dissolved oxygen-water temperature tolerance tests on Pteronarcys californica naiads.

LITERATURE CITED

Anderson, R., R. B. Nehring, and D. Winters. 1984. Stream fisheries investigations. Colo. Div. Wildl. Job Prog. Rep. Fed. Aid Proj. F-51. 203 p.

Annear, T. C., and A. L. Condor. 1984. Relative bias of several fisheries instream flow methods. N. Am. J. of Fish. Manage. 4:531-539.

Becker, C. D., D. A. Neitzel, and D. H. Fickeisen. 1982. Effects of dewatering on chinook salmon redds: tolerance of four developmental phases to daily dewaterings. Trans. Amer. Fish. Soc. 111:624-637.

Borgeson, D. P. 1966. Trout lake management. Pages 168-178 In A. Calhoun, ed. Inland Fisheries Management. Calif. Dept. Fish and Game, Sacramento.

Bovee, K. D. 1978. Probability-of-use criteria for the family Salmonidae. Cooperative Instream Flow Service Group. Western Energy and Land Use Team, Office of Biological Services, Fish and Wildlife Service, U.S.D.I. Instream Flow Information Paper No. 4. FWS/ OBS-78/07. 80 p .

- 1982. A guide to stream habitat analysis using instream flow incremental methodology. Coop. Instream Flow Serv. Group. Western Energy and Land Use Team, Office of Biol. Serv., Fish and Wildi. Serv., U.S.D.I. Instream Flow Information Paper No. 12. FWS/OBS-82/26. 249 p.
\qquad , and T. Cochnauer. 1977. Development and evaluation of weighted criteria, probability-of-use curves for instream flow assessments: fisheries. Coop. Instream Flow Serv. Group. Western Energy and Land Use Team, Office of Biol. Serv., Fish and Wildl. Serv., U.S.D.I. Instream Flow Information Paper No. 3. FWS/OBS-77/63. 38 p.
\qquad , J. Gore, and A. J. Silverman. 1977. Field testing and adaptation of a methodology to measure instream values in the Tongue River, Northern Great Plains Region. U.S. Envir. Prot. Agency, Office of Energy Act. Contract 68-01-2653.
\qquad , and R. T. Milhous. 1978. Hydraulic simulation in instream flow studies: theory and techniques. Coop. Instream Flow Serv. Group. Western Energy and Land Use Team, Office of Biol. Serv., Fish and Wildl. Serv., U.S.D.I. Instream Flow Information Paper No. 5. 131 p.

Brett, J. R. 1951. A study of the Skeena River climatological conditions with particular reference to their significance in sockeye production. J. Fish. Res. Bd. Can. 8(3):178-187.

Brusven, M. A. 1977. Effects of sediments on insects. Page 43 In D. L. Kibbee, ed. Transport of granitic sediments in streams and its effects of insects and fish. U.S.D.A. For. Serv. Univ. Idaho, Moscow. For. Wild1. and Range Exp. Sta. Bull. No. 17.

Bulkley, R. V., and N. G. Benson. 1962. Predicting year-class abundance of Yellowstone Lake cutthroat trout. U.S. Fish and Wildl. Serv., Res. Rep. No. 59. 21 p.

Burkhard, W. T. 1977. Taylor River flow investigations. Colo. Div. Wildl. Job Interim Rep., Fed. Aid Proj. F-51-R. 49 p.

Carhart, A. H. 1950. Fishing in the west. The MacMillan Co., New York. 144 p.

Cooper, E. L. 1952. Growth of brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) in the Pigeon River, Otsego County, Michigan. Papers of the Michigan Academy of Science, Arts and Letters 37:151-162.

Drummond, R. A. 1966. Reproduction and harvest of cutthroat trout at Trappers Lake, Colorado. Colo. Div. Game, Fish and Parks. Spec. Rep. No. 10. 26 p.

Engstrom-Heg, R. 1981. A philosophy of trout stream management in New York. Fisheries 6(3):11-16.

Gagmark, H. A., and R. G. Bakkala. 1960. A comparative study of unstable and stable (artificial channel) spawning streams for incubating king salmon at Mill Creek. Calif. Fish and Game 46(2):151-164.

Hardy, C. J. 1963. An examination of eleven stranded redds of brown trout (Salmo trutta) excavated in the Selwyn River during July and August 1960. New Zealand J. of Sci. 6:106-119.

Hawke, S. P. 1978. Stranded redds of quinnant salmon in the Mathias River, South Island, New Zealand. New Zealand J. of Mar. and Fresh. Res. 12:167-171.

Hilgert, P. 1982. Evaluation of instream flow methodologies for fisheries inNebraska. Neb. Tech. Ser. No. 10. U.S. Fish and Wildl. Serv. Contract No. 14-16-0006-78-002. 50 p.

Hobbs, D. F. 1937. Natural reproduction of quinnant salmon, brown and rainbow trout in certain New Zealand waters. New Zealand Mar. Dept. Fish. Bull. 6.

Hynes, H. B. N. 1972. The ecology of running waters. Univ. of Toronoto Press. 555 p.

Johnson, F. H. 1956. Northern pike year-class strength and spring water levels. Trans. Amer. Fish Soc. 86:285-293.

Klein, W. D. 1973. Are we polluting our streams with trout? Colo. Outdoors.
\qquad - 1974. Special regulations and elimination of stocking: influence on fishermen and the trout population at the Cache la Poudre River, Colorado. Colo. Div. Wildl. Tech. Publ. No. 30. 57 p.

Knight, A. W., and A. R. Gaufin. 1964. Relative importance of varying oxygen concentration, temperature, and water flow on the mechanical activity and survival of the plecopteran nymph, Pteronarcys californica Newport. Proc. Utah Acad. Sci. 41:14-28.

McKernan, D. L., D. R. Johnson, and J. T. Hodges. 1950. Some factors influencing the trends of salmon population in Oregon. Trans. N. Am. Wild1. Conf. 15:427-448.

McAfee, W. R. 1966. Rainbow trout. Pages 192-215 In A. Calhoun, ed. Inland Fish. Man. Calif. Dept. of Fish and Game.

Milhous, R. T., D. L. Wegner, and T. Waddle. 1981. User's guide to the physical habitat simulation system. Fish and Wild. Serv. U.S.D.I. Instream Flow Information Paper No. 11. FWS/OBS-81/43. v.p.

Miller, R. B. 1957. The role of competition in the mortality of hatchery trout. J. Fish. Res. Bd. Can. 15:27-45.

Nehring, R. B. 1979. Evaluation of instream flow methods and determination of water quantity needs for streams in the state of Colorado. Colo. Div. Wild1. Job Compl. Rep. U.S. Fish and Wild1. Serv. Contract No. 14-16-0006-78-909. 144 p.

- 1980. Stream fishery investigations. Colo. Div. Wildl. Job
\qquad Prog. Rep., Fed. Aid Proj. F-51-R-5. 161 p.
\qquad , and R. Anderson. 1981. Stream fisheries investigations. Colo. Div. Wildl. Job Prog. Rep., Fed Aid Proj. F-51-R-6. 161 p.
, and \qquad - 1983. Stream fisheries investigations. Colo. Div Wildl. Job Prog. Rep., Fed. Aid Proj. F-51-R-8. 188 p.
\qquad , and \qquad - 1984. Recruitment and survival of young-of-the-year (YOY) brown trout (Salmo trutta L.) in the South Fork of the Rio Grande River versus parent spawner density, stream discharge and fry habitat. Proc. of the 19th Ann. Meeting Colo.-Wyo. Chapter Am. Fish. Soc., March 7-8, 1984.

Ottaway, E. M., and A. Clarke. 1981. A preliminary investigation into the vulnerability of young trout (Salmo trutta L.) and Atlantic salmon (S. Salar L.) to downstream displacement by high water velocities. J. Fish Biol. 19:135-145.
, and D. R. Forrest. 1983. The influence of water velocity on down-stream movement of alevins and fry of brown trout, Salmo trutta L. J. Fish Biol. 23:221-227.

Powe11, T. G. 1975. Lake and reservoir research, pond and small lake management investigations. Urban lake creek census. Colo. Div. Wild1. Final Rep., Fed. Aid $\mathrm{F}-52-\mathrm{R}-1$, Work Plan III, Job 2. 20 p.

Reid, G. K. 1961. Ecology of inland waters and estuaries. Van Nostrand Reinhold Co., New York. 375 p.

Reiser, D. W., and R. G. White. 1981. Incubation of steelhead trout and spring chinook salmon eggs in a moist environment. Prog. Fish. Cult. 43:131-134.

Reiser, D. W., and R. G. White. 1983. Effects of complete redd dewatering on salmonid egg - hatching success and development on juveniles. Trans. Amer. Fish Soc. 112:532-540.

Robson, D. S., and H. A. Regier. 1971. Estimation of population number and mortality rates. Pages 132-165 In W. E. Ricker, ed. Methods for assessment of fish production in fresh waters. 2nd ed. Blackwe11 Sci. Pub., Oxford. IBP Handbook No. 3.

Seber, G. A. F., and E. D. LeCren. 1967. Estimating population parameters from catches large relative to the population. J. Anim. Ecol. 36:631-643.

Stalnaker, C. B., and J. L. Arnette. 1976. Methodologies for the determination of stream resource flow requirements: an assessment. Utah State Univ., Logan. 199 p.

Wetzel, R. G. 1975. Limnology. W. B. Saunders Co., Philadelphia, PA. 743 p.

Wickett, W. P. 1958. Review of certain environmental factors affecting the production of pink and chum salmon. J. Fish. Res. Bd. Can. 15(5):1102-1126.

APPENDIX I

Biomass and Standing Crop Estimates 1984-85

Table I-1. Arkansas River standing crop and biomass estimates, March 1985.

Study area description	Study section size			Population statistics					
	Length (m)	Width (m)	Area (ha)	Species	N	$\begin{aligned} & 95 \% \\ & \text { C.I. } \end{aligned}$	N/ha	kg/ha	N/ha
Salida	4.02	36.6	14.7	Brown ≤ 15	1				
				Brown ≥ 15	8,361	+1,210	9	129	569
				Rainbow	39	¥ $\quad 28$	0.1	0.6	2

Table I-2. Blue River standing crop and biomass estimates, October 15-18,

Table I-3. Cache la Poudre standing crop and biomass estimates for trout $\geq 15 \mathrm{~cm}$, October 1984 .

Study section description	Study section size				Population statistics			
	Length (m)	$\begin{aligned} & \text { Width } \\ & \text { (m) } \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { (ha) } \end{aligned}$	Species	N	$\begin{aligned} & 95 \% \\ & \text { C.I. } \end{aligned}$	$\begin{gathered} \text { Fish/ } \\ \text { ha } \end{gathered}$	$\mathrm{kg} / \mathrm{ha}$
Big Bend Campground	243.8	18.3	0.446	Brown	201	$+43$	451	58.2
				Rainbow	90	¥45	202	22.6
				Total trout	287	± 58	643	80.8
Wild Trout Water 5 mi above Rustic	243.8	18.3	0.446	Brown	197	± 31	442	65.8
				Rainbow	297	∓ 40	665	94.3
				Total trout	494	± 51	1,108	160.1
Lower Control 3 mi above Rustic	243.8	18.3	0.446	Brown	135	± 37	303	37.2
				Rainbow	236	¥ 43	528	55.8
				Total trout	368	± 56	825	93.0
Indian Meadow 1 mi below Rustic	243.8	18.3	0.446	Brown	184	± 58	412	61.5
				Rainbow	151	士 35	339	52.7
				Total trout	335	± 65	751	
Kelly Flat Campground ${ }^{\text {a }}$	243.8	18.3	0.446	Brown	160	± 22	359	44.8
				Rainbow	187	± 23	419	44.2
				Total trout	347	± 32	778	89.0
Lower Wild Trout control above Greeley Diversiona	243.8	19.8	0.483	Brown	290		598	66.0
				Rainbow	$\begin{array}{r}55 \\ \hline\end{array}$	\pm	114	17.8
				Total trout	350	¢107	725	83.8
Lower Wild Trout water below Greeley Diversion	243.8	19.8	0.483	Brown	280	± 76	580	62.0
				Rainbow	14	∓ 14	29	4.5
				Total trout	303	∓ 79	627	66.5

apopulation estimates expanded from past data based on efficiency of other similar stations.

Table I-4. Colorado River standing crop and biomass estimates, October 15-18, 1984.

Study section description	Study section size			Species	Population statistics				
	Length (m)	Width (m)	Area (ha)		N	95\% C.I.	$\begin{aligned} & \text { Fish } \\ & \text { /ha } \end{aligned}$	$\mathrm{kg} / \mathrm{ha}$	$\begin{aligned} & \text { Trout/ha } \\ & \geq 35 \mathrm{~cm} \text { (14 in.) } \end{aligned}$
Thompson Ranch ${ }^{\text {a }}$ (private - primarily catch/release	183	19.5	0.357	Rainbow	$15^{\text {a }}$	--	42	15.4	20
				Brown	$10^{\text {a }}$	-	28	11.4	6
				Total trout		--	70	26.8	26
```Pioneer Park - public trout/day```	183	19.5	0.357	Rainbow	53	$\pm 6$	104	20.0	8
				Brown	32	$\pm 2$	63	19.1	10
				Total trout	85	$\pm 5$	167	39.1	18
```State Ranch - public - 1 rainbow; 1 brown Paul Gilbert Wildlife Area```	183	28.0	0.512	Rainbow	56	$\begin{array}{r} \\ +\quad 9 \\ \hline\end{array}$	110	28.8	11
				Brown	42	± 67	83	23.1	11
				Total trout	88		18	51.9	22
State Ranch - Lone Buck W. A. - public - 1 rainbow; 1 brown	183	28.0	0.512	Rainbow	92	± 15	180	53.8	36
				Brown	29	∓ 11	57	21.8	14
				Total trout	124	± 19	242	75.6	50
Parshall to Sunset Ranch public/private - 1 rainbow; 1 brown	3,220	36.0	11.6	Rainbow	2,410	± 410	208	78.0	78
				Brown	1,735	¢408	150	35.3	11
				Brook	12	∓ 20	1	-	0
				Kokanee	20	∓ 35	2	--	0
				Total trout	4,191	¢579	361	113.3	89
BLM portion of Parshall section - 1 rainbow; 1 brown	805	36.0	2.9	Rainbow	369	± 151	127	54.1	48
				Brown	472	∓ 306	163	42.8	18
				Brook	2	--	1	-	0
				Kokanee	1	--	0.5	-	0
				Total trout	900	± 316	310	96.9	66

[^1]Table I-5. Eagle River standing crop and biomass estimates, September 20, 1984.

Study area description	$\frac{\text { Study section size }}{\text { Length Width Area }}$		Population statistics				
			\hat{N}	95\%	N/ha	kg/ha	Trout/ha
		Species	N	C.I.			$\geq 35 \mathrm{~cm}$ (14 in.)
Wolcott near U.S. Hwy.		Rainbow	$3^{\text {a }}$	--	4	1.6	0
6 maintenance depot		Brown	$32^{\text {a }}$	-	48	12.0	0
		Total trout	$35^{\text {a }}$	--	52	13.6	3

ane electroshocking pass only - not a population estimate.

Table I-6. Fryingpan River trout standing crop and biomass estimates, September 17-19, 1984.

Study area description	Study section size				Population statistics				
	Length (m)	Width (m)	$\begin{aligned} & \text { Area } \\ & \text { (ha) } \end{aligned}$	Species	\hat{N}	$\begin{aligned} & 95 \% \\ & \text { C.I. } \end{aligned}$	N/ha	kg/ha	$\begin{aligned} & \text { Trout/ha } \\ & \geq 35 \mathrm{~cm}(14 \mathrm{in} .) \end{aligned}$
Gaging station (catch-and-release)	152	15.2	0.231	Rainbow	125	± 37	386	216.5	175
				Brown	173	± 55	534	150.7	31
				Brook	501	± 128	1,546	194.0	6
				Cutthroat	4	∓ 6	12	2	--
				Total trout	819	± 140	2,528	563.2	212
Reudi damsite (catch-and-release - below gaging station)	305	15.2	0.464	Rainbow	388	± 80	762	280.1	163
				Brown	296	± 79	582	140.6	24
				Brook	410	± 83	806	109.2	3
				Cutthroat	15	± 24	29	3	--
				Total trout	1,113	± 143	2,187	533.0	190
O1d Faithful (catch-and-release)	320	18.9	0.605	Rainbow	304	± 44	479	162.7	64
				Brown	746	± 126	1,177	216.8	17
				Brook	54	± 32	85	4.7	0
				Cutthroat	2	(1014	3	trace	0
				Total trout	1,076	± 123	1,697	379.5	81
Upper control (1 rainbow/l brown)	366	18.6	0.681	Rainbow	133	± 51	195	40.5	15
				Brown	338	± 96	496	86.0	14
				Brook	41	± 27	60	2.0	0
				Cutthroat	1	--	2	trace	0
				Total trout	527	± 115	774	128.5	29
Taylor Creek (1 rainbow/l brown)	305	15.2	0.464	Rainbow		± 42	116	28.3	26
				Brown	198	± 40	427	102.0	36
				Brook	1	--	2	--	--
				Total trout	248	± 49	534	130.3	62

Table I-7. Gunnison River system standing crop and biomass estimates, AugustSeptember 1984.

Study area description	Study section size			Species	Population statistics				
	Length (m)	Width (m)	Area (ha)		\hat{N}	$\begin{aligned} & 95 \% \\ & \text { C.I. } \end{aligned}$	N/ha	kg/ha	$\begin{gathered} \text { Trout/ha } \\ \geq 35 \mathrm{~cm}(14 \mathrm{in.}) \end{gathered}$
East River - Roaring Judy to Almont (flies only - catch-and-release over 12 in.)	5,960	15.2	9.06	Brown	5,952	+ 758	657	113.0	29
				Rainbow	779	∓ 376	86	10.9	1
				Brook	27	∓ 48	3	--	0
				Cutthroat	3	,	--	--	0
				Total trout	6,755	± 833	746	123.9	30
Gunnison River - Almont to Hwy. 135 bridge at Gunnison - 8 trout/day	12,900	33.5	43.9	Brown	6,120 ${ }^{\text {a }}$	--	142	49.8	26
				Rainbow	1,520 ${ }^{\text {a }}$	--	35	12.2	8
				Cutthroat	$80^{\text {a }}$	--	2	--	0
				Kokanee	$40^{\text {a }}$	--	1	--	0
Gunnison River Gunnison Twin Bridges to Blue Mesa - 8 trout/day	8,050	39.6	31.9	Brown	3,500 ${ }^{\text {b }}$	--	110	20.3	11
				Rainbow	$3,900{ }^{\text {b }}$	--	122	27.3	6
Gunnison River - Duncan Ute Trail (4 trout bag; 1 trout ≥ 16 in.; catch-and-release 12-16 in.)	3,220	31.0	10	Brown	4,622	± 958	462	46.7	15
				Rainbow	2,167	± 708	217	84.5	110
			Total	out	6,758	$\pm 1,188$	679	131.2	125
Gunnison River - Smith Fork - North Fork (4 trout bag; 1 trout ≥ 16 in.; catch-and- release $12-16$ in.)	6,440	31.0	20	Brown		$\pm 2,056$	350		22
				Rainbow	5,427	$\pm 2,495$	271	99.4	138
				Total trout	12,492	$\pm 3,058$	625	141.2	160

asstimate based on an estimated sampling efficiency of 5%.
bestimate based on 2% sampling efficiency.

Table I-8. Middle Fork of the South Platte River population and standing crop estimates, September 1984.

Study section description	Study section size			Species	Population statistics			
	Length (m)	Width (m)	$\begin{aligned} & \text { Area } \\ & \text { (ha) } \end{aligned}$		$\hat{\mathrm{N}}$	$\begin{aligned} & 95 \% \\ & \text { C.I. } \end{aligned}$	$\begin{gathered} \text { Fish/ } \\ \text { ha } \end{gathered}$	kg/ha
Highway 9 bridge (8 trout/day bag area)	183	6.10	0.116	Brown 12-39 cm	105	± 16	900	89.7
				Brown $\geq 40 \mathrm{~cm}$	56	± 3	484	644.5
				Brooka	+	\pm	484	644.5
				Rainbow ${ }^{\text {a }}$	1			
				Total trout	161	± 11	1,388	735.2
Gaging Station bridge (8 trout/day bag area)	183	7.62	0.139	Brown 12-39 cm	120	± 16	863	
				Brown $\geq 40 \mathrm{~cm}$	15	± 1	108	158.0
				Brook ${ }^{\text {a }}$	1	-_-	--	--
				Rainbowa	2	--	--	--
				Total trout	136	± 13	975	245.7
1 mile below Gage 8 trout/ day with two 16 inches	183	6.40	0.117	Brown 12-39 cm	154	± 12	1,314	123.7
				Brown $\geq 40 \mathrm{~cm}$	27	¥ 2	234	313.1
				Rainbow	1	--	,	13.1
				Total trout	181	± 11	1,550	437.0
2 miles below Gage 8 trout/ day with two 16 inches	183	7.20	0.132	Brown 12-39 cm	140	+26	1,061	126.5
				Brown 240 cm	38	\pm	1,061	341.1
				Total trout	172	± 18	1,301	467.6

[^2]Table I-9. North Platte standing crop and biomass estimates, October 3-4, 1984.

Study area description	Study section size			Species	Population statistics					
	Length (m)	Width (m)	$\begin{aligned} & \text { Area } \\ & \text { (ha) } \end{aligned}$		N	$\begin{aligned} & 95 \% \\ & \text { C.I. } \end{aligned}$	N/ha	kg/ha	$\begin{aligned} & \text { Trout/he } \\ & \geq 35 \mathrm{~cm}(14 \end{aligned}$	in.)
Routt Forest boundary	4,830	36.6	17.7	Rainbow	1,756	+526	99	19.2	11	
below State Line Ranch				Brown	2,145	$\ddagger 412$	121	44.0	24	
bridge through Ginger Quill				Total trout	3,816	± 619	216	63.2	35	

Table. I-10. Rio Grande River standing crop and biomass estimates, September and October 1984.

Study area description	Study section size			Species	Population statistics				
	Length (m)	Width (m)	$\begin{aligned} & \text { Area } \\ & \text { (ha) } \end{aligned}$		N	$\begin{aligned} & 95 \% \\ & \text { C.I. } \end{aligned}$	N / ha	$\mathrm{kg} / \mathrm{ha}$	$\begin{gathered} \text { Trout/ha } \\ \geq 35 \mathrm{~cm}(14 \mathrm{in} .) \end{gathered}$
Wason Ranch - standard regulations - 8 trout/	3,060	30.5	9.3	Brown	1,136	± 385	122	36.1	18
regulations - 8 trout/				Rainbow	83	$\pm \quad 63$	9	2.4	2
day - private				Total trout	1,236	± 391	133	38.5	20
Wason Ranch - fly water - 14 in. maximum size	2,900	30.5	8.8	Brown	2,055	+1,176	233	89.9	69
limit - 2 trout/day -				Rainbow	171	± 103	10	1.9	0
private				Total trout	1,994	$\pm 1,091$	227	90.2	69
Coller Wildife Area	3,540	46.0	16.3	Brown					
fly/lure - 2 trout bag			16.3	Rainbow	4,979 171	$\pm \quad 766$ $\pm \quad 103$	305 10	41.7 1.9	0
≥ 16 in. - public				Total trout	5,143	± 773	316	43.6	9
State Bridge - 8 trout/ day - low fishing	10,950	46.0	50.4	Brown	6,597	$\pm 1,005$	131	32.9	15
pressure - private and				Rainbow	325	± 305	7	1.7	2
leased for public mixed				Total trout	6,602	$\pm 1,050$	131	34.6	17

Table I-11. South Platte River standing crop and biomass estimates, December 3-6, 1984.

Study section description	Study section size			Species	Population statistics				
	Length (m)	Width (m)	Area (ha)		N	$\begin{aligned} & \text { 95\% } \\ & \text { C.I. } \end{aligned}$	$\begin{aligned} & \text { Fish/ } \\ & \text { ha } \end{aligned}$	$\mathrm{kg} / \mathrm{ha}$	Trout/ha $\geq 35 \mathrm{~cm}$ (14 in.)
Upper Canyon 1.5 mi . above Wigwam Club (catch-and-release)	183	14.0	0.256	Brown	195	± 8	762	193.2	37
				Rainbow	373	± 13	1,457	468.6	372
				Total trout	567	± 15	2,215	661.8	409
Lower Canyon 0.2 mi . above Wigwam Club (catch-and-release)	183	17.1	0.313	Brown	261	+34	834	221.7	61
				Rainbow	373	± 35	1,192	425.4	381
				Total trout	633	± 48	2,022	647.1	442
Above Deckers (catch-and-release <16 in. starting 198 $\overline{3}$)	183	17.1	0.313	Brown	393	+34	1,256	191.6	3
				Rainbow	132	± 6	- 422	101.6	34
				Total trout	511	∓ 5	1,633	313.2	37
Below Deckers (catch-and-release ≤ 16 in. starting 1983)	183	17.1	0.313	Brown	407	+22	1,300	199.1	10
				Rainbow	196	± 20	- 626	110.7	11
				Total trout	602	± 29	1,923	309.8	21
Scraggy View (8 trout/day)	183	17.1	0.313	Brown	145	+ 2	463	54.8	
				Rainbow	43	± 2	138	54.8 20.7	0
				Total trout	187	± 3	597	75.5	0
Twin Cedars (8 trout/day)	244	17.1	0.417	Brown	197	+15	472	49.7	
				Rainbow	58	\pm	139	18.9	0
				Total trout	254	± 16	609	68.6	3

Table I-12. St. Vrain standing crop and biomass estimates, October 11 and 12, 1984.

Study section description	Study section size			Species	Population estimates			
	Length (m)	Width (m)	Area (ha)		N	95\% C.I.	$\begin{aligned} & \text { fish/ } \\ & \text { ha } \end{aligned}$	$\mathrm{kg} / \mathrm{ha}$
Meadow Park, Lyons	183	10.5	0.192	Brown <13	304	+101		
				Brown ≥ 13	397	£ 11	2,068	136.2
Gaging Station, Lyons	243.8	14.5	0.354	Brown <13	168	+ 13	475	
				Brown ≥ 13	570	± 57	1,610	122.5
Ideal Concrete, Lyons	137.2	17.4	0.239	Brown < 13	165			
				Brown ≥ 13	322	+ 23	1,347	108.8
Martin Marietta, Lyons	183	14.5	0.267	Brown < 13	140	$+44$		
				Brown ≥ 13	277	± 104	1,037	78.0

APPENDIX II

ARKANSAS RIVER

SALIDA STATION

Figure II-1. Arkansas River, Salida Station, brown trout/ha, 1981-85.
blUE RIVER-StREAM IMPROVEMENT SEC. BROWNS 1983-84

Figure II-2. Blue River, stream improvement section, browns, 1983-84.

Figure II-3. Blue River, campground station, browns, 1983-84.

BLUE RIVER- WILDLIFE AREA BROWNS 1983-84

Figure II-4. Blue River Wildlife Area, browns, 1983-84.

Figure II-5. Blue River, browns/ha $\geq 30 \mathrm{~cm}, 35 \mathrm{~cm}, 3$ sections.

Figure II-6. Cache la Poudre River, browns, October 1984.

LENGTH IN CENTIMETERS
Figure II-7. Cache la Poudre River, rainbows, October 1984.

COLORADO RIVER- PARSHALL SECTION BROWNS 1981-'84

Figure II-8. Colorado River, Parshall section, browns, 1981-84.

COLORADO RIVER- PARSHALL SECTION RAINBOWS1981-84

Figure II-9. Colorado River, Parshall section, rainbows, 1981-84.

COLORADO RIVER
 RAINBOWS-1984

Figure II-10. Colorado River, rainbows/ha 1984, four study areas.

FRYINGPAN RIVER- FALL 1984 BROWNS (N / Ha)

FRYINGPAN RIVER- FALL 1984 RAINBOWS (N/Ha)

FRYINGPAN RIVER-RUEDI DAM RAINBOWS 1978-'84

Figure II-13. Fryingpan River, Ruedi Dam, rainbows/ha, 1978-84.

FRYINGPAN RIVER-OLD FAITHFUL

RAINBOWS-FALL 1979-'84

Figure II-14. Fryingpan River, Old Faithful, rainbows/ha, 1979-84.

FRYINGPAN RIVER-TAYLOR.CREEK RAINBOWS-FALL 1978-'84

Figure II-15. Fryingpan River, Taylor Creek, rainbows/ha, 1978-84.

FRYINGPAN RIVER- RAINBOWS/ACRE (NUMBERS,POUNDS) RUEDI DAM

FRYINGPAN RIVER- RAINBOWS/ACRE (NUMBERS,POUNDS) 400 TAYLOR CREEK
1

FRYINGPAN RIVER-RUEDI DAM

RAINBOWS $\geq 35 \mathrm{~cm}$

FRYINGPAN RIVER-TAYLOR CREEK RAINBOWS $\geq 35 \mathrm{~cm}$

Figure II-18. Fryingpan River, rainbows/ha $\geq 35 \mathrm{~cm}$, three study areas.

GUNNISON RIVER N. FORK-SMITH FORK BROWNS 1981-'84

Figure II-19. Gunnison River, North Fork-Smith Fork, browns, 1981-84.

GUNNISON RIVER N. FORK-SMITH FORK RAINBOWS 1981-'84

Figure II-20. Gunnison River, North Fork-Smith Fork, rainbows, 1981-84.

GUNNISON RIVER DUNCAN-UTE TRAIL BROWNS 1981-'84

Figure II-21. Gunnison River, Duncan-Ute Trail, browns, 1981-84.

GUNNISON RIVER DUNCAN-UTE TRAIL RAINBOWS 1981-'84

Figure II-22. Gunnison River, Duncan-Ute Trail, rainbows, 1981-84.

Figure II-23. Gunnison River, browns 1984, four study sections.

GUNNISON RIVER- RAINBOWS 1984

Figure II-24. Gunnison River, rainbows 1984, four study sections.

GUNNISON RIVER TOTAL TROUT BIOMASS

GUNNISON RIVER
total trout/mile

Figure II-25. Gunnison River, total trout biomass and total trout/mile. 1981-84.

GUNNISON RIVER-RAINBOWS/MI.

NO.

GUNNISON RIVER-BROWNS/MI.

Figure II-26. Gunnison River, rainbows/mile and browns/mile, 1981-84.

GUNNISON RIVER DUNCAN-UTE TROUT/MI. $\geq 35 \mathrm{CM}$ (~14")

GUNNISON RIVER BROWNS/MI. $\geq 35 \mathrm{CM}\left(\sim 14^{\prime \prime}\right)$

GUNNISON RIVER
RAINBOWS/MI. $\geq 35 \mathrm{CM}\left(\sim 14^{\prime \prime}\right)$

Figure II-27. Gunnison River, trout/mile $>35 \mathrm{~cm}$, browns/mile and rainbows/mile $\geq 35 \mathrm{~cm}, 1981-8 \overline{4}$.

GUNNISON RIVER SMITH FORK-N.FORK TROUT/MI. ≥ 35 CM (~14")

GUNNISON RIVER
$B R O W N S \geq 40 C M\left(\sim 16^{\prime \prime}\right)$

Figure II-28. Gunnison River, Smith Fork-North Fork trout/mile $\geq 35 \mathrm{~cm}$, 1981-84; browns and rainbows/mile $\geq 40 \mathrm{~cm}$.

MIDDLE FORK OF THE SOUTH PLATTE RIVER OCTOBER 1984 BROWN TROUT

GARO BRIDGE
$N=92$
$N \geq 40=55$

LENGTH IN CENTIMETERS

Figure II-29. Middle Fork of the South Platte River, browns, October 1984.

MIDDLE FORK OF SOUTH PLATTE RIVER

LENGTH IN CENTIMETERS
Figure II-30. Middle Fork of the South Platte River, browns, 1979-84.

NORTH PLATTE RIVER BROWNS 1982-'84

Figure II-31. North Platte River, browns, 1982-84.

NORTH PLATTE RIVER RAINBOWS 1982-'84

Figure II-32. North Platte River, rainbows, 1982-84.

RIO GRANDE RIVER- WASON RANCH
(SPECIAL REG) BROWNS 1982-84

Figure II-33. Rio Grande River, Wason Ranch (special regulations), browns, $1982-84$.

RIO GRANDE RIVER-WASON RANCH
(STANDARD REG) BROWNS1982-84

Figure II-34. Rio Grande River, Wason Ranch (standard regulations), browns,

RIO GRANDE RIVER- COLLER FLY WATER BROWNS 1981-84

Figure II-35. Rio Grande River, Coller Wildlife Area, browns, 1981-84.

RIO GRANDE RIVER- STATE BRIDGE BROWNS 1981-1984

Figure II-36. Rio Grande River, State Bridge, browns, 1981-84.

Figure II-37. Rio Grande River, Wason Ranch, browns $\geq 35 \mathrm{~cm}$, 1982-84.

LENGTH IN CENTIMETERS

Figure II-38. South Platte River, browns, December 1984.

LENGTH IN CENTIMETERS
Figure II-39. South Platte River, rainbows, December 1984.

SOUTH PLATTE RIVER LOWER CHEESMAN CANYON TROUT POPULATIONS

LENGTH IN CENTIMETERS
Figure II-40. South Platte River, Lower Cheesman Canyon, trout populations, 1979-84, rainbows (unshaded), browns (shaded).

Figure II-41. South Platte River, above Deckers, trout populations, 1979-84, browns (unshaded), rainbows (shaded).

SOUTH PLATTE RIVER RAINBOWS BIOMASS

Figure II-42. South Platte River, rainbow biomass, 1979-84, comparison of three study sites.

SOUTH PLATTE RIVER RAINBOWS $\geq 30 C M$ ($\sim 12^{\prime \prime}$)

Figure II-43. South Platte River, rainbows $\geq 30 \mathrm{~cm}$, 1979-84, comparison of three study sites.

SOUTH PLATTE RIVER RAINBOWS $\geq 35 \mathrm{CM}$ (~14")

Figure II-44. South Platte River, rainbows $\geq 35 \mathrm{~cm}$, 1979-84, comparison of three study sites.

Figure II-45. St. Vrain River, browns, October 1984.

LENGTH IN CENTIMETERS
Figure II-46. St. Vrain River, Gaging Station, browns, 1980-84.

APPENDIX III

Age and Growth Tables (III-1) Life Tables (III-2)

Table III-1. Back-calculated lengths (cm) of trout from F-51-R study streams in 1984.

	Age	N	L_{c}	S.E.	L_{1}	S.E.	L_{2}	S.E.	L_{3}	S.E.	L_{4}	S.E.	L 5	S.E.
					Cache 1a Poudre River (upper station) - brown trout									
1984	0													
1983	1+	10	15.2	0.29	7.8	0.27								
1982	$2+$	36	19.7	0.40	7.3	0.20	14.3	0.41						
1981	$3+$	21	26.4	0.36	7.2	0.29	14.5	0.49	21.2	0.34				
1980	$4+$	12	30.8	0.62	7.3	0.34	14.0	0.73	21.5	0.47	27.2	0.71		
1979	$5+$	2	35.0		6.2		11.9		21.6		27.1		31.7	
					Cache	Poudre	River	(uppe	stati	- ra	now			
1984	0				Cache la Poudre River (upper station) - rainbow trout									
1983	$1+$	28	13.5	0.35										
1982	$2+$	29	20.2	0.59	7.1	0.27	14.5	0.48						
1981	$3+$	23	25.4	0.55	6.1	0.28	13.3	0.64	20.1	0.56				
1980	$4+$	5	30.0	0.45	5.9	0.674	13.3	1.41	20.4	1.35				
1979	$5+$	5	31.8	0.20	6.0	0.58	12.0	. 32	17.1	. 33	24.5	$.18$	28.9	0.31
					Cache la Poudre River (lower station) - brown trout									
					8.90 .2819840									
1982	$2+$	26	16.8 21.7	0.22 0.49	8.9 8.5	0.28 0.29	16.2	0.59						
1981	$3+$	5	25.6	1.83	7.5	1.09	13.9	1.82	20.5	2.00				
					Cache la Poudre River (lower station) - rainbow trout									
1984														
1983	$1+$	2	17.5	1.5										
1982	$2+$	8	24.1	0.55	8.5	0.54	17.3	0.87						
1981	$3+$	5	26.8	0.58	7.6	0.56	15.7	0.73	$22.0 \quad 0.69$					

Table III-1. Back-calculated lengths (cm) of trout from F-51-R study streams in 1984 (continued).

Year class	Age	N	L_{c}	S.D.	L_{1}	S.D.	L_{2}	S.D.	L_{3}	S.D.	L_{4}	S.D.	L_{5}	S.D.	L_{6}	S.D.	S.D.
							Blue	River -	browns	- Fall	984						
1983	$1+$ $2+$ $3+$	15	12.1	1.53 2.78	5.90 6.34	0.94 1.68	13.3										
1981	$3+$	33	26.0	3.34	7.48	2.18	15.8	2.93	21.4	3.41							
1980	$4+$	13	35.1	6.52	7.71	1.39	14.0	2.58	21.4	3.46		2.50					
1979	$5+$	9	33.5	1.81	6.14	1.91	11.8	2.29	18.2	3.16	24.5	1.98	30.5	1.62			
1978	$6+$	1	41.0	--	5.72	--	16.7		22.4	3.16	27.6	1.98	34.3		39.1		
							Color	ado Riv	r - br	wns -	984						
1983	1+	20	20.0	1.73	6.92	1.11											
1982	$2+$	36	31.0	3.57	7.59	1.77	16.7	2.94									
1981	$3+$	27	31.1	3.06	8.92	1.55	18.4	3.67	25.2	4.79							
1980	$4+$	17	37.2	3.42	6.97	2.32	14.8	4.51	25.8								
1979	$5+$	12	38.2	3.60	8.21	1.63	15.6	3.85	24.0	4.92	30.0	5.52	34.8	4.59			
	$1+$						lorado	River	rainb	ws - F	119						
1982	1+	19 41	20.5 23.8	2.67 4.08	7.55 7.20	2.63 1.78	15.1	10.7									
1981	$3+$	23	31.4	4.67	8.01	1.91	17.3	4.15	24.5	5.79							
1980	$4+$	30	36.3	3.93	7.16	1.57	17.5	3.89	25.6	4.54	31.4	4.54					
1979	$5+$	22	41.0	3.41	7.37	1.61	18.1	3.21	25.9	3.56	32.0	3.84	37.7	3.55			
1978	$6+$	8	43.9	3.31	7.58	1.27	17.4	1.78	23.5	2.61	30.7	2.43	36.4	2.60	40.8	2.60	
1983	$1+$	4	16.7				Eagle	River -	browns	- Fall	984						
1982	2+	13	23.7	3.65	8.29	3.22	18.4	4.85									
1981	$3+$	11	30.9	3.50	10.2	2.08	20.2	2.20	26.5	2.62							

L - length(cm) at time of collection
L - back-calculated length (cm) at age 1, 2, 3, 4, etc.
S.D. - standard deviation

Table III-1. Back calculated lengths (cm) of trout from F-51-R study streams in 1984 (continued).

Year class	Age	N	L_{c}	S.D.	L_{1}	S.D.	L_{2}	S.D.	L_{3}	S.D.	L_{4}	S.D.	L_{5}	S.D.	L_{6}	S.D.	L_{7}	S.D	L_{8}	S.D.
1983	$1+$							Eagle River - rainbows - Fall 1984												
1982	$2+$	2	29.0	1.41	7.81	0.52	23.0	4.22												
1981	$3+$	1	34.0	--	11.3	-	20.6	--	26.0	--										
1983	1+	16	14.9	1.24	7.74			Fryingpan River - browns - Fall 1984												
1982	2+	33	20.6	3.64	7.06	2.05	14.4	2.05												
1981	$3+$	37	28.6	4.87	7.73	2.27	16.2	4.31												
1980	$4+$	29	31.2	3.77	6.90	1.94	14.6	2.26	21.5	2.93	27.8	1.93								
1979 1978	$5+$ $6+$	11	39.2	5.15	7.92	2.83	15.7	3.16	23.5	4.65	29.6	4.74	34.9	4.31						
1978	$6+$ $7+$ +	5	42.0	2.34	7.62	2.00	15.5	3.12	23.3	3.45	29.9	4.67	34.6	4.22	38.6	4.22				
1976	$8+$	1	42.0	--	5.02	--	7.8	--	11.9	--	18.7	--	25.1	--	31	--	35.6	--	38.8	--
1983	1+	10	15.1	2.18	8.65	1.62		Fryingpan River - rainbows - Fall 1984												
1982	$2+$	81	29.2	7.82	10.7	3.75	22.3	7.78												
1981	$3+$	33	33.0	7.30	8.29	2.00	16.9	3.99	26.5	6.8										
1980	$4+$	7	33.4	7.48	7.04	2.64	13.0	2.97	21.0	7.02	27.9	7.57								
1983	1+	11	15.5	1.51	8.20	1.06 Gunnison River (Almont to Gunnison) - browns - Summer 1984														
1982	$2+$	36	21.0	3.92	7.12	1.84	15.8	1.84												
1981	$3+$	37	27.7	3.58	7.79	2.17	17.8	3.25	24.5	3.69										
1980	$4+$	24	33.3	5.35	6.58	1.98	16.2	5.08	24.2	5.89	30.1	5.89								
1979	$5+$	13	38.3	5.33	6.05	1.36	14.4	1.93	24.2	4.44	31.8	5.99	35.8	5.33						
1978	$6+$	5	39.6	3.21	9.83	2.82	18.1	4.43	24.7	5.80	31.8	4.17	35.8 34.5	5.33 4.18						
1977	7+	1	51	--	13.6	--	28.4	--	35.8	--	31.8 40.7	4.17	34.5 44.4	4.18	$\begin{aligned} & 36.7 \\ & 47.3 \end{aligned}$	--18	49.8	--		

Table III-1. Back-calculated lengths (cm) of trout from F-51-R study streams in 1984 (continued).

${ }^{\text {a hatchery rainbows }}$
$b_{\text {wild }}$ rainbows

Table III-1. Back-calculated lengths (cm) of trout from F-51-R study streams in 1984 (continued).

Year class	Age	N	L_{c}	S.D.	L_{1}	S.D.	L_{2}	S.D.	L_{3}	S.D.	L_{4}	S.D.	L_{5}	S.D.	L_{6}	S.D.	L_{7}	S.D.
							Gunni	River	(Bla	Cany	- br	ns -	gust					
1983	$1+$	20	15.9	4.93	9.46	2.05												
1982	$2+$	77	26.1	7.17	11.2	3.27	20.5	10.8										
1981	$3+$	51	32.5	7.20	10.7	2.93	21.5	6.54	29.0	6.54								
1980	$4+$	13	38.8	5.79	10.6	3.34	19.5	4.23	30.3	5.21	35.9	5.21						
1979	$5+$	2	46.0	2.83	10.6	0.21	18.7	3.39	33.7	0.0	38.7	3.32	43.5	2.62				
							Gunniso	River	(Black	Canyon	-rai	ows	August					
1983	$1+$	12	17.2	1.71	9.42	2.38												
1982	$2+$	22	23.6	3.30	9.40	2.10	18.6	3.30										
1981	$3+$	76	31.8	6.45	8.40	2.35	20.3	5.68	27.6	5.77								
1980	$4+$	52	39.9	5.49	7.84	2.40	20.2	5.26	29.5	5.19	36.5	5.52						
1979	$5+$	8	45.1	3.09	6.6	0.40	18.3	4.20	28.4	4.99	36.5	2.44						
1978	$6+$	2	43.0	1.41	7.0	0.42	13.0	0.35	18.5	2.12	25.2	1.91	31.2	1.56	37.4	2.05		
							North Platte River - browns - October 1984											
1983	$1+$	17	20.8	1.74	8.64	2.09		退	Le Ri	,	,	October	1984					
1982	$2+$	58	26.6	4.57	7.02	1.70	18.1	3.45										
1981	$3+$	36	36.5	5.09	8.64	1.99	20.9	4.82										
1980	$4+$	17	39.5	3.28	8.61	1.75	18.7	2.97	27.8	3.61	34.9	3.42						
1979	$5+$	1	40.0		9.36	,	14.0	.	18.7	,	27.6		34.9	--				
							North Platte River - rainbows - October 1984											
1983	$1+$	22	15.7	1.52	6.60	2.44												
1982	$2+$	47	23.1	3.63	6.58	2.02	16.6	3.05										
1981	$3+$	33	30.6	3.98	7.92	2.34	17.5	2.83	25.8	3.29								
1980	$4+$	6	36.8	2.26	7.30	1.43	15.6	2.54	24.4	3.68	31.9	2.53						
1979	$5+$	3	37.7	0.58	7.32	1.37	15.1	3.47	22.3	4.39	28.7	1.33	33.7	1.85				
1978	$6+$	2	38.0	1.42	5.78	0.30	13.5	0.57	20.3	2.26	25.7	2.55	30.3	1.63	37.4			

Table III-1. Back-calculated lengths (cm) of trout from F-51-R study streams in 1984 (continued).

Table III-1. Back-calculated lengths (cm) of trout from F-51-R study streams in 1984 (concluded).

Table III-1. Back-calculated lengths (cm) of trout from F-51-R study streams in 1984

Year class	Age	N	Lc	S.E.	L_{1}	S.E.	L_{2}	S.E.	L_{3}	S.E	L_{4}	S.E.
			dle F	k of	e So	h P1a	e Ri	- br	wns -	tob	1984	
1983	$1+$	16	15.1	0.21	8.6	0.92		-	通	Lob		
1982	$2+$ $2+$	38	20.8	0.40	6.5	0.20	14.5	0.36	(non-mi	ratin		
1982	$2+$ $3+$	25	37.6	0.24	8.1	0.30	18.1	0.58	(migra			
1981	$3+$	43	46.4	0.59 0.83	7.0	0.28	15.6	0.56	22.2	0.55	non-m	grating)
1980	$4+$	1	31	0.83	6.2	0.21	16.1	0.48	31.7	1.20	migra	ing)
1980	4+	15	51.9	0.68	6.9	0.40	11	1.00	20.0		26.2	non-mig
1979	$5+$	1	60	0.68	6.6	0.40	14.5	1.00	25.8 18.6		$\begin{aligned} & 45.9 \\ & 41.3 \end{aligned}$	$\begin{gathered} 1.67 \\ 54.7 \end{gathered}$
					Vra	- br	s -	tober	1984			
1983	$1+$	30	15.6	0.36	7.2	0.34						
1982	$2+$	21	23.1	0.57	8.0	0.45	17.2	1.01				

Table III-2. Life Tables - Arkansas River - Salida brown trout/ha.

Year	1984	1983	1982	1981	1980	1979	1978	1977
March 1981					13	199	181	1
March 1982				217	139	209	3	0
March 1983			24	337	157	43	2	0
March 1984		4	347	220	64	4	3	0
March 1985a	0.3	33	387	147	2	0		

asased on age structure in 1983 .

Table III-2. Life Tables - Blue River - brown trout/ha.

$\frac{\text { Sample period }}{\text { Season Year }}$	983 Year class							
	1983	1982	1981	1980	979	1978	1977	1976
Spring 1983 Stream improvement section								
Spring 1983		302	477	382	17			
Fall 1984	14	308	293	192	46	17	2	
			216	35	20	--		
Spring 1981 Blue River Campground								
Spring 1983		160	124		87	56	13	1
Spring 1984		246	124 379	44	41	-		
Fall 1984	24	359	319	r 57	41 16	9	8	--
Slue River below Highway 9 Bridge (near Slate Creek)								
Spring 1983		122	252	185	23	--		
Spring 1984		340	214	197	70	16	3	
Fall 1984	15	303	268	60	25	16	-	
Spring $1983 \quad \frac{\text { Blue River - Transvideo Wildifife Area }}{85}$								

Table III-2. Life Tables - Cache la Poudre River (brown trout/ha)(continued).

Sample	period	Year class							
Season	Year	1983	1982	1981	1980	1979	1978	1977	1976
		Big Bend Campground							
Fal1	1980					43	100	56	17
Fall	1981				118	104	90	45	27
Fall	1982			349	171	89	37	3	3
Fall	1983		120	210	84	49		0	0
Fall	1984	64	250	102	33	15	3	0	0
		Upper Wild Trout Water							
Fall	1980								
Fall	1981				120	135	123	56	12
Fall	1983		304	183	110	34	9	0	0
Fall	1984	8	196	179	48	11	0	0	0
		Lower Control							
Fall	1980					46	115	56	4
Fall	1982				104	92	99	42	12
Fall	1983		156		119	46	10	3	0
Fall	1984	0	202	79	22	12	0	0	0
		Indian Meadows							
Fall	1980								
Fall	1981				56	46	45	16	3
Fall				120	83	43	16	0	0
Fall	1983		162	137	77	39	2	0	0
	1984	15	202	137	42	11	4	0	0
		Kelly Flats Campground							
Fall	1980					132	134	25	0
Fall	1981				128	104	58	20	0
Fall	1982			158	142	35	4	0	0
Fall	1983		347	311	82	8	0	0	0
Fall	1984	21	234	87	22	0	0	0	0

Fall	1980	e la Poudre River - wild trout						
Fall	1981			185	393	372	457	26
Fall	1982			495	442	0	0	0
Fall	1983		432	525	27	0	0	0
Fall	1984	55	483	42	,	0	0	0

Fall 1981
Fall 1982
Fall 1983
Fall 1984

		Poudre	River	cont	13
		700	295	4	0
	342	310	14	0	0
73	483	34			0

Table III-2. Life Tables - Cache la Poudre River (rainbow trout/ha)(continued).

Sample period	Year class							
Season Year	1983	1982	1981	1980	1979	1978	1977	1976

$\text { Fall } 1980$			Big Bend Campground			3	27	30	14
Fall	1981				65	29	23	13	
Fall	1982			50	43	15	11		
Fall	1983		12	60	56	19	4		
Fall	1984	29	124	74	4				

Upper Wild Trout Water

Fall	1980		-	-	,	69	61	2	36
Fall	1981				181	136	113	49	0
Fall	1982			196	95	69	31	5	0
Fall	1983		160	142	77	23	0	0	0
Fall	$1984{ }^{\text {a }}$	29	322	270	54	18	0	0	0

Fall	1980
Fall	1981
Fall	1982
Fall	1983
Fall	1984

				52	63	108	65
			157	196	125	53	0
		258	241	131	31	3	0
	127	324	225	11	0	0	0
21	358	164	6	0	0	0	0

Kelly Flats Campground

Fal1	1980					177	107	0	2
Fall	1981				343	177	40	6	0
Fall	1982			300	91	15	0	0	0
Fall	1983		192	209	108	11	0	0	0
Fall	1984	72	246	130	8	0	0	0	0

astation relocated 1984.

Table III-2. Life Tables - Colorado River (brown trout/ha) (continued).

Sample	period				Year	ass			
Season	Year	1983	1982	1981	1980	1979	1978	1977	1976
		Thompson Ranch - catch-and-release							
Fall	1981				12	42	36	24	0
Fall	1982			34	38	65	19	9	0
Fall	1983		37	72	24	5	17	0	
Fall	$1984{ }^{\text {a }}$	4	6	6	4	8	0		
Fal1 Hot Sulphur Springs (Pioneer Park) - 8 trout/day									
Fall	1982			42	21	21	6	0	0
Fall	1983		66	88	22	14	3		
Fall	1984	15	20	13	10	5	0		
Fel1 Paul Gilbert Wildife Area - 1 rainbow-1 brown/day									
Fall	1982	-	-	15	4	17	3	- 0	0
Fall	1983		57	58	13	2	7	0	0
Fall	1984	9	37	35	2	0	0		
Fal1 1981 State Ranch (Lone Buck) - 1 rainbow-1 brown/day									
Fall	1982			0	2	12	13	0	0
Fall	1983		26	17	9	5	3	3	0
Fall	1984	3	16	26	9	3	0	0	
Parshal1-1 rainbow-1 brown/day									
Fall	1981				19	206	57	11	2
Fall	1982			85	42	40	8	0	0
Fall	1983		26	59	29	10	2	1	0
Fall	1984	40	63	34	7	6	0	0	0

Table III-2. Life Tables - Colorado River (rainbow trout/ha) (continued).

Sample period		Year class									
Season	Year	1983	1982	1981	1980	1979	1978	1977	1976	1975	1974
		Thompson Ranch - private access - harvest restricted									
Fall	1980					3	17	62	53	5	3
Fall	1981				31	11	94	84	3	0	0
Fall	1982			6	10	41	88	9	0	0	0
Fall	1983		38	12	79	99	14	0			
Fall	$1984{ }^{\text {a }}$	2	11	7	15	7	0				
Hot Sulphur Springs (Pioneer Park) - 8 trout/day											
Fall	1981				37	38	3	0	0	0	
Fall	1982			26	48	8	2	0	0	0	
Fall	1983		149	50	50	22	4				
Fall	1984	21	57	15	9	2	0				
Paul Gilbert Wildlife Area - 1 rainbow-1 brown/day											
Fall	1982			5	5	4	0	1	0	0	
Fall	1983		124	42	40	23	6	0	0	0	
Fall	1984	6	51	28	20	5	0				
State Ranch at Lone Buck - 1 rainbow-1 brown/day											
Fall	1979							76	104	39	11
Fall	1980					1	25	42	22	0	0
Fall	1981				23	17	45	13	0	0	0
Fall	1982			2	20	25	31	10	0	0	0
Fall	1983		18	2	25	30	5	0			
Fall	1984	6	67	51	45	10	1	0			
Parshal1-1 rainbow-1 brown/day											
Fall	1981				72	487	207	119	10	1	
Fall	1982			61	165	70	82	29	3	0	
Fall	1983		5	20	57	89	29	2	0	0	
Fall	1984	20	62	45	52	23	8	0			

Table III-2. Life Tables - Eagle River (brown trout and rainbow trout/ha) (cont.).

$\frac{\text { Sample period }}{\text { Season Year }}$		Year class								
		1983	1982	1981	1980	1979	1978	1977	1976	1975
Wolcott (brown trout)										
Spring	1980						73	239	41	15
Fall	1980					49	171	33	1	0
Fall	1981			8	13	55	50	8	0	0
Fall	1982			67	15	48	2	0	0	0
Fall	1983		64	136	73	7	0	0	0	
Fall	$1984{ }^{\text {a }}$	6	23	20	0					
Wolcott (rainbow trout)										
Spring	1980						21	45	3	0
Fall	1980				3	27	35	34	0	0
Fall	1981			0	6	1	2	0	0	0
Fall	1983		46	103	30	0				

Fall	1981		7	16	3	13	0	0
Fall	1983	19	44	13				

Fall 1981
Fall 1983

[^3]Table III-2. Life Tables - Fryingpan River (brown trout/ha)(continued).

Fall	1979	Gaging Station Pool No. 1-catch-and-release									
Fall	1980					24	186	109	106	46	17
Fall	1981				61	50	95	517	0	0	0
Fall	1982			60	50	71	237	8	0		
Fall	1983		26	238	273	156	5	0			
Fall	1984	11	69	221	211	12	10	0			

Fall	1978							51	204	108	34
Fall	1979						159	180	69	53	5
Spring	1980						70	91	51	26	13
Fall	1980					51	174	171	31	4	0
Fall	1981				101	113	85	162	0	0	0
Fall	1982			122	97	114	156	6	0	0	0
Fall	1983		66	290	229	76	10	3	0		
Fall	1984	29	125	242	174	9	3	0			

01d Faithful Station No. 3 - catch-and-release

Fall	1979						243	352	107	40	0
Spring	1980						194	208	67	14	0
Fall	1980					204	479	248	21	0	0
Fall	1981				121	251	258	243	0	0	0
Fall	1982			270	210	250	311	8	0	0	0
Fall	1983		148	446	300	63	5	0			
Fall	1984	44	497	399	225	12	0				

Upper Standard Regulation Station No. 4-1 rainbow-1 brown/day 1983-84, 85

Fall	1979						252	271	58	27	4
Spring	1980						108	85	22	6	3
Fall	1980					104	226	77	6	0	0
Fall	1981				84	140	117	88	0	0	0
Fall	1982			35	80	107	97	6	0	0	0
Fall	1983		87	178	127	22	0	0			
Fall	1984	49	233	136	75	3	0				

Fall	1978							86	198	131	44
Fall	1979						348	265	80	31	0
Spring	1980						237	170	43	13	6
Fall	1980					192	170	110	32	0	0
Fall	1981				151	157	102	180	0	0	0
Fall	1982			103	174	164	273	10	0	0	0
Fall	1983		100	178	188	71	2	0			
Fall	1984	60	131	129	88	19	0				

Fall	1980				30	39	54	16	0
Fall	1982		11	8	46	90	5		
Fall	1983	32	49	104	50				

Table III-2. Life Tables - Fryingpan River (rainbow trout/ha)(continued). $\frac{\text { Sample period }}{\text { Season Year }}$

Old Faithful Station No. 3 - catch-and-release

Fall	1979						29	134	96	46	19
Spring	1980						26	113	77	35	12
Fall	1980					78	98	84	43	29	12
Fall	1981				18	19	21	26	8	0	0
Fall	1982			4	37	55	30	19			
Fall	1983		64	458	180	35	9	0			
Fall	1984	13	309	118	39	0	0	0			

Upper	Standard	Regulation	Station	No. 4	-1	rainbow-	brown/day	1983-84,	85	
Fall	1979						125	122	75	19

Fall	1978							130	267	84	10
Fall	1979						345	206	53	22	6
Spring	1980						130	212	49	24	7
Fall	1980					140	97	22	11	10	0
Fall	1981				121	123	75	8	5	0	0
Fall	1982			4	59	81	25	12	0	0	0
Fall	1983		13	19	31	24	14	0	0		
Fall	1984	16	66	30	,	0	,	0			

	Big Pullout	Station No. 6	-1	rainbow-1	brown/day	1983-84,	85		
Fall	1979				122	168	50	1	0
Fall	1980		4	43	146	212	159	50	15

| Fall | 1983 | 20 | 72 | 91 | 49 | 9 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Not sampled in 1984

Table III-2. Life Tables - Gunnison River (numbers/ha) (continued).

Table III-2. Life Tables - Rio Grande River (brown trout/ha) (continued).

Sample period		Year class								
Season	Year	1983	1982	1981	1980	1979	1978	1977	1976	1975
August Coller fly water										
August	1981				65	- 41	66	64	8	0
August	1982			76	80	93	3	0	0	0
September	1983		74	132	65	12	3	0	0	0
September	1984	61	144	72	24	3	1	0	0	0
State Bridge section										
August	1981				26	19	36	11	3	2
August	1982			65	21	33	12	2	0	0
September	1983		59	77	21	18	4	0	0	0
September	1984	39	42	28	16	5	1	0	0	0

August	1982			63	99	136	13	0	
September	1983		61	130	63	41	9	0	0
October	1984	27	27	30	32	5	1	0	0

| Wason Ranch - fly | water -2 | trout/day; | catch-and-release | 14 | in. | 1983-84, | 85 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| August | 1982 | | | 71 | 98 | 190 | 19 | 0 | 0 | 0 |
| September | 1983 | | 61 | 123 | 58 | 38 | 13 | 0 | 0 | 0 |
| October | 1984 | 43 | 30 | 50 | 89 | 14 | 6 | 0 | | |

August	1982			212	75	94		31	
September	1983		62	108	21	9,	5	0	0
September	1984	140	67	95	5	23	0	0	0

[^4]Table III-2. Life Tables - South Platte River (brown trout/ha)(continued).

Fall	1979
Spring	1980
Fall	1980
Spring	1981
Fall	1981
Fall	1982
Fall	1983
Fall	1984

Upper Canyon section - catch-and-release

					233	284	218	35
				6	230	385	75	0
				252	568	176	12	0
			12	162	318	43	8	0
			46	203	170	19	0	0
		165	205	203	43	0	0	0
	193	637	412	98	22			
50	516	191	4					

Fall	1979						906	366	49	8
Spring	1980					142	816	433	35	0
Fall	1980					993	678	66	31	11
Spring	1981				49	544	397	33	4	0
Fall	1981				460	623	171	12	0	0
Fall	1982			1,813	344	55	4	0	0	0
Fall	1983		1,799	1,205	94	10				
Fall	1984	696	522	14	3					

		Below Deckers			
Fall	1982		1,531	2,062	449
Fall	1983		1,335	135	12
Fall	1984	692	573	32	4

Scraggy View section - fish/day

		ection - fish/d								
Fall	1979						572	204	32	0
Spring	1980					360	769	264	14	0
Fall	1980					526	195	10	3	0
Spring	1981				161	453	138	18	0	0
Fall	1981				412	301	35	0	0	0
Fall	1982			925	244	23	3	0	0	0
Fall	1983		770	501	13					
Fall	1984	332	131							

Fall	1982
Fall	1983
Fall	1984

Twin Cedars			
443	237	12	12
93	3		

Table III-2. Life Tables - South Platte River (rainbow trout/ha)(continued).

Fall			wer Canyon section - catch-and-release							
	1979						105	758	685	88
Spring	1980						93	732	703	114
Fall	1980					20	621	503	71	0
Spring	1981				8	38	494	873	392	0
Fall	1981				23	86	465	224	45	0
Fall	1982			44	44	68	300	239	44	4
Fall	1983		848	235	398	232	109			
Fall	1984	72	238	522	189	127	44			

Fall	1979						156			
Spring	1980						45	61	57	32
Fall	1980					243	141	30	,	0
Spring	1981				14	54	24	10	7	0
Fall	1981				19	100	54	7	8	0
Fall	1982			275	88	17	10	0	0	0
Fall	1983		561	366	50	19	4	0		
Fall	1984	43	218	132	19	6	3	1		

Fall	1982
Fall	1983

Fall 1984

Scraggy View section

Fall	1979						89	134	13
Spring	1980						53	67	17
Fall	1980					162	68	6	0
Spring	1981					86	50	6	0
Fall	1981				44	62	20	2	0
Fall	1982			91	28	31	13	0	0
Fall	1983		247	142	17	0	0	0	0
Fall	1984	51	75	12	0	0			
				in C					
Fall	1982			237	29	15			
Fall	1983		84	31	4	0			
Fall	1984	74	58	4	2	1			

Table III-2. Life Tables - Middle Fork of the South Platte River (brown trout/ha)(continued).

Sample period		Year class									
Season	Year	1984	1983	1982	1981	1980	1979	1978	1977	1976	1975
			Sta	ion N	. $1-$	at Ga	o Bridge				
Fall	1979						(655)	891	421	171	28
Fall	1980					(353)	1,058	630	68	10	0
Fall	1981				(328)	524	664	71	0	0	0
Fall	1982			(142)	286	237	148	10	0	0	0
Fall	1983		(54)	399	982	383	20	0	0	0	0
Fall	1984	(274)	361	494	430	97	9				

Fall	1979						$(1,007)$	606	278	63	6
Fall	1980					(115)	592	267	83	3	8
Fall	1981				(259)	571	550	59	26	0	0
Fall	1982			(54)	289	206	191	19	0	0	0
Fall	1983		(231)	895	573	170	14	0	0	0	0
Fall	1984	(251)	379	359	197	22	14	0			

Fall	1979						(1,624)	983	235	187	23
Fall	1980					(324)	1,047	390	238	12	49
Fall	1981				(538)	766	796	144	17	12	0
Fall	1982			(88)	276	230	217	0	0	0	0
Fall	1983		(496)	839	1,056	428	27	0	0	0	0
Fall	1984	(561)	689	520	281	58	9				

Fall	1980					(636)	604	321	265	67	8
Fall	1981				(704)	689	759	129	25	2	0
Fall	1982			(102)	93	107	145	19	0	0	0
Fall	1983		(160)	360	701	336	14	0	0	0	0
Fall	1984	(237)	380	562	377	19	8	0	0	0	0

Fall	1980			(524)	708	321	172	85	19
Fall	1981		(378)	744	645	187	109	48	7
Fall	1982	(97)	234	209	181	15	15	0	0

[^5]Table III-2. Life Tables - North Platte River (brown and rainbow/ha)(continued).

Sample period		Year class							
		1983	1982	1981	1980	1979	1978	1977	1976
		Brown trout							
$\stackrel{\text { Fall }}{\text { Fall }}$	1982			12	47	13	22	1	
Fall	1984		10	39	35	12	1	1	0
Fall		13	71	25	9	3	0	0	0
		Rainbow trout							
Fall	1982			4	11	12	2	1	
Fall	1983		2	6	18	12	1	0	
Fall	1984	15	46	22	12	1	2	0	

Table III-2. Life Tables - Taylor River - (brown trout/ha).

$\frac{\text { Sample period }}{\text { Season Year }}$		Year class									
		1983	1982	1981	1980	1979	1978	1977	1976	1975	1974
		A1mont Station									
Fall	1979						143	713	289	27	6
Fall	1980					79	438	429	62	37	
Fall	1981				338	385	209	38	44	3	
Fall	1982			1,043	368	285	38	8	0		
Fall	1984	241	397	369	46	4		3	0		
		Elsinore Cattle Company									
Fall	1979						228	684	263	39	28
Fall	1981					141	447	385	110	49	
Fall	1982			450	370 275	318	146	36	61	14	
Fall	$1984{ }^{\text {a }}$	410	370	329	77	45	13	0	0		

[^6]Table III-2. Life Tables - St. Vrain River (brown trout/ha) (concluded).

Sample period	Year class						
Season Year	1983	1982	1981	1980	1979	1978	1977

Meadow Park

Fall	1980			$(1,406)$	(681)	1,560	206	0
Fall	1981		(354)	1,392	418	259	0	0
Fall	1982				15	0	0	
Fall	1983	$(1,436)$	1,388	726	16	0	0	0
Fall	1984	1,290	761	16				

Fall	1980		Ide				3	5
Fall	$1981{ }^{\text {a }}$			(100)	34	34	11	0
Fall	1982		(427)	335	188	11	0	0
Fall	1983	$(1,306)$	479	406	88	0	4	0
Fall	1984	891	410	28	14	0	4	

Fall	1980		Marti	riett			
Fall	$1981{ }^{\text {a }}$			(93)	(303) 4	174 19	7
Fall	1982		(195)	47	104	15	
Fall	1983	$(1,897)$	58	99	12		
Fall	1984	686	328	24			

${ }^{\text {a Fish }}$ kill, population much reduced.
$\mathrm{b}_{\mathrm{YOY} / \mathrm{ha}}$

APPENDIX IV

Creel Census Data

Table IV-1. Summary of creel census statistics at Deckers (3 mi. of river) on the South Platte River.

	May/Sep. 1979	May/Oct. 1980	May/Sep. 1981	May/Sep.
				1984
Trout 12 in. catch	2,108	1,433	3,519	1,578
Trout 15 in. catch	227	108	332	61
FM hours	37,594	32,628	27,120	12,227
Total catch	29,197	22,705	19,369	13,158
Brown catch	13,535	14,183	10,550	8,644
Rainbow catch	15,384	8,522	8,820	4,513
Brown CPMH	0.360	0.434	0.389	0.707
Rainbow CPMH	0.409	0.261	0.325	0.369
Total CPMH	0.777	0.696	0.714	1.076

Table IV-2. Summary of creel census statistics in Cheesman Canyon on the South Platte River.

	May/Sep. 1979	May/Oct. 1980	May/Sep. 1981	May/Sep. 1984
Trout 12 in. catch	15,184	18,796	32,256	16,335
Trout 15 in. catch	3,864	4,385	8,750	4,105
FM hours	25,550	29,954	23,643	22,377
Total catch	25,402	27,861	43,908	26,999
Brown catch	6,514	9,872	10,516	10,824
Rainbow catch	18,798	18,533	33,392	16,175
Brown CPMH	0.255	0.330	0.445	0.484
Rainbow CPMH	0.736	0.619	1.412	0.723
Total CPMH	0.994	0.930	1.857	1.207

Table IV-3. Summary of creel census statistics for the Scraggy View Area (8 trout/day limit) compared to the Deckers Area (catch-andrelease area) for May-September 1984.

	Scraggy View	Deckers	
Trout ≥ 12 in.	$1,453(1,981)^{\mathrm{a}}$	1,578	
Trout ≥ 15 in.	$72\left(\begin{array}{c}(98) \\ \text { FM hours }\end{array}\right.$	$9,258(12,624)$	61
Total catch	$13,581(18,519)$	12,227	
Brown catch	$2,248(3,338)$	13,158	
Rainbow catch	$11,133(15,181)^{\mathrm{b}}$	8,644	
Brown CPMH	0.264	4,513	
Rainbow CPMH	1.203	0.707	
Total CPMH	1.467	0.369	
		1.076	

${ }^{\text {a Data }}$ in parenthesis is expanded up to 3 miles of river (from 2.2 mile area censused) to make data comparable to the 3 miles of stream censused near Deckers.
$b_{14,000}$ catchable rainbows were stocked in this section of river at a cost of $\$ 9,000$ versus zero stocking (and no cost) in the Deckers area.

Table IV-4. Creel census of the South Platte River, Deckers, May-September 1984 (SM1).

Statistics	May		June		Ju1y		August		September		Totals	
	Mean	S.E.										
FM hours	3,627	245	3,609	669	2,373	346	1,101	237	1,517	242	12,227	862
Total catch	3,093	1,690	4,022	394	3,318	976	1,356	429	1,368	630	13,158	2,131
Creel catch	0		0		0		172	172	- 0		-172	2, 172
Rainbow catch	1,220	896	1,043	281	1,009	533	608	145	533	287	4,513	1,126
Rainbow creeled	0		0		0		172	172	0		172	172
Brown catch	1,873	850	2,878	276	2,310	641	749	367	834	408	8,644	1,229
Brown creeled	0		0		0		0		0		8,644	1,22
Total CPMH												
Rainbow CPMH												
Brown CPM												

Table IV-5. Creel census of the South Platte River, Deckers, May-September 1984 (SM2).

Statistics	May		June		July		August		September		Totals	
	Mean	S.E.										
FM hours	3,627	245	3,609	669	2,373	346	1,101	237	1,517	242		
Total catch	3,115	1,763	3,969	845	2,292	566	1,109	361	1,517	242 252	12,227 11,081	862 2,083
Creel catch	0		0		0		49	86	0		11,49	2,083 86
Rainbow catch	1,197	942	1,321	403	455	251	374	167	408	153	3,756	1,079
Rainbow creeled Brown catch	0		0		0		49	86	0		3, 49	1, 86
Brown catch Brown creeled	1,918	847	2,648	586	1,836	502	618	219	304	183	7,325	1,180
Brown creeled Total CPMH	0		0		0		0		0		0	
Rainbow CPMif												
Brown CPMH												

Table IV-6. Creel census of the South Platte River, Cheesman Canyon, May-September 1984 (SM1).

Statistics	May		June		Ju1y		August		September		Totals	
	Mean	S.E.										
FM hours	7,306	1,024	4,719	695	4,563	461	2,445	278	3,342	215	22,377	1,367
Total catch	11,949	1,481	5,386	823	4,437	513	1,464	386	3,763	926	26,999	2,035
Creel catch	0		0		250	185	0		0		250	185
Rainbow catch	7,399	877	3,198	469	2,180	444	945	468	2,452	555	16,175	1,315
Rainbow creeled	0		0		27	27	0		0		27	27
Brown catch	4,550	932	2,189	718	2,256	265	519	178	1,310	513	10,824	1,323
Brown creeled	0		0		223	188	0		0		223	188
Total CPM	1.635											
Rainbow CPM	1.013											
Brown CPM	0.623											

Table IV-7. Creel census of the South Platte River, Cheesman Canyon, May-September 1984 (SM2).

Statistics	May		June		July		August		September		Totals	
	Mean	S.E.										
FM hours	7,306	1,024	4,719	695	4,563	461						
Total catch	10,290	1,919	5,605	1,294	4,466	561	2,445	265	3,342 4,038	215	22,377	
Creel catch	0		0		253	150	1,412		4,038	1,009	25,811	2,600
Rainbow catch	6,575	1,192	3,152	761	2,242	396	856	412	2,760		253	
Rainbow creeled	0		0		2, 32	31	856	412	2,760	704	15,584	1,680
Brown catch	3,714	829	2,453	899	2,224	377	557	169	1,278		- 32	31 1
Brown creeled	0		0		222	158	0	169	1,278	416	10,226	1,357
Total CPM									1		222	158
Raínbow CPM												
Brown CPMH												

Table IV-8. Creel census of the South Platte River, Scraggy View, May-September 1984 (SM1).

Statistics	May		June		July		August		September		Totals	
	Mean	S.E.										
FM hours	2,130	415	2,667	600	1,852	190	905	223				
Total catch	4,288	3,397	2,328	662	2,393	810	2,019	1,153	2,552	336 997	9,258 13,581	$\begin{array}{r} 748 \\ 3,868 \end{array}$
Creel catch	2,058	1,522	1,501	482	2,983	366	1,046	1,858	1,224	680	13,581 6,814	3,868 1,970
Rainbow catch	3,412	2,658	1,892	407	1,754	734	1,803	1,091	2,271	963	11,133	3,144
Rainbow creeled	1,604	1,186	1,344	382	763	384	830	- 830	1,076	651	5,618	1,677
Brown catch	876	769	436	289	639	145	216	216	281	134	2,448	1,871
Brown crecled Total CPMi	454	357	157	121	220	109	216	216	150	71	1,196	454
Total CPMH Rainbow CPMH	2.013		0.873		1.292		2.231		1.498		1.467	
Rainbow CPM	1.602		0.709		0.947		1.992		1.333		1.203	
Brown CPMH	0.411		0.163		0.345		0.239		0.165		0.264	

Table IV-9. Creel census of the South Platte River, Scraggy View, May-September 1984 (SM2).

Statistics	May		June		Ju1y		August		September		otals	
	Hean	S.E.	Mean	S.E.								
FM hours	2,130	415	2,667	600	1,852	190	905					
Total catch	3,422	2,705	2,376	692	2,335	822	1,639	223 756				748
Creel catch	1,720	1,239	1,524	476	$\begin{array}{r}2,370 \\ \hline 70\end{array}$	218	1,639 1,009	756 467	2,967 1,412	786 530	12,739	3,109
Rainbow catch	2,670	2,102	1,921	531	1,734	699	1,009	467 754	1,412 2,513	530 749	6,635	1,519
Rainbow creeled	1,306	951	1,360	410	-753	283	1,483 854	754 475	2,513	749	10,321	2,522
Brown catch	752	624	456	239	601	215	155	475 153	1,192	503	5,465	1,278
Brown creeled	414	306	164	101	217	127	155	153	454	152	2,418	735
Total CPMH	1.606				1	127	15	153	219	65	1,170	385
Rainbow CPM	1.253											
Brown CPMH	0.353											

SOUTH PLATTE RIVER
 FISHERMAN HOURS

Figure IV-1. South Platte River, fisherman hours and total catch, 1979-81, 84.

SOUTH PLATTE RIVERTROUT CAUGHT $\geq 12^{\prime \prime}$

Figure IV-2. South Platte River, rainbow catch, 1979-81, 84.

SOUTH PLATTE RIVER RAINBOW CATCH

Figure IV-3. South Platte River, trout caught ≥ 12 inches, 1979-81, 84.

SOUTH PLATTE CREEL CENSUS
967 ANGLER CONTACTS

CATCH/RELEASE DECKERS
 474
 8 TROUT/DAY
 SCRAGGY VIEW
 493
 ANGLER ATTITUDE TOWARDS SPECIAL REGULATION AT DECKERS

	DECKERS	$\frac{\text { SCRAGGY }}{\text { VIEW }}$	TOTAL
FAVOR	399	234	633 (66\%)
NO OPINION	N 38	97	135 (14\%)
OPPOSED	37	162	199 (20\%)

WOMEN \& CHILDREN ANGLERS ON THE SOUTH PLATTE (1984)

	DECKERS		SCRAGGY VIEW	TOTAL
CHILDREN	5.3%		8.5%	6.9%
WOMEN	5.7%		7.7%	6.7%

	DECKERS		SCRAGGY VIEW		
	248	79	$327(34 \%)$		
FLY	248				
LURE	211	125	$336(35 \%)$		
BAIT	15	289	$304(31 \%)$		

Figure IV-6. South Platte River, angler contacts, attitudes, woman and children, and tackle types by regulation area.

ATTITUDE OF ANGLERS CONTACTED IN			
8 TROUTIDAY ANGLING AREA TOWARDS SPECIAL REGULATIONS MANAGEMENT-			
YEAR	IN FAVOR	NO OPINION	OPPOSED
1980	2,212	149	185
1981	1,319	207	337
1984	234	97	163
TOTALS	S 3,765	453	685
	77%	9%	14\%
ATTITUDE OF ANGLERS CONTACTED IN A SPECIAL REGULATION AREA TOWARD SPECIAL REGULATION MANAGEMENT-			
YEAR INFAVOR NO OPINION OPPOSED			
1980	1,606	81	65
1981	450	30	60
1984	399	38	37
TOTALS	2,455	149	162
	89%	5%	6\%

OVERALL ANGLER ATTITUDES TOWARDS SPECIAL REGULATIONS MANAGEMENT ON SOUTH PLATTE, FRYINGPAN, AND ARKANSAS RIVERS 1980-1984.

ANGLERS SURVEYED $\quad 7,669$

ANGLERS IN FAVOR	6,220	81%
ANGLERS OPPOSED	847	11%
NO OPINION	602	8%

Figure IV-7. Angler attitudes towards special regulations management on the Arkansas, Fryingpan, and South Platte rivers, 1980, 81, and 84.

APPENDIX V

Aquatic Invertebrate Tables

UPPER COLORADO RIVER BASIN WATER STORAGE \& COLLECTION SYSTEM

Figure V-3. Upper Colorado River basin water storage and collection system, Grand and Summit counties.

PROBABILITY OF USE CURVES FOR THE "WILLOW FLY" NAIAD PTERONARCYS CALIFORNICA IN THE COLORADO RIVER

Figure V-4. Probability of use curves for the "willow fly" naiad. Pteronarcys californica in the Colorado River.

Figure V-8. Pteronarcys $\frac{\text { californica }}{\text { in the Colorado River on the State Ranch Wildife Area, 1982-84. }}$

Figure V-9. Pteronarcys $\frac{\text { californica }}{\text { in the Colorado River nad }}$ abundance and size distribution $/ \mathrm{m}^{2}$ in the Colorado River near Parshall, 1982-84.

PTERONARCYS CALIFORNICA SIZE, AGE, \& SEX DISTRIBUTION IN THE COLORADO RIVER - 1984

Figure V-10. Pteronarcys californica size, age, and sex distribution/m ${ }^{2}$ in the Colorado River, 1984.

STREAM FISHERIES INVESTIGATIONS

Federal Aid Project F-51-R

Job 1. Fish Flow Investigations
Job 2. Wild Trout Introductions
by
R. Barry Nehring

Wildife Researcher

James B. Ruch, Director
Federal Aid in Fish and Wildlife Restoration Job Progress Report

F-51
Colorado Division of Wildlife
Aquatic Research Section
Fort Collins, Colorado

STATE OF COLORADO

Roy Romer, Governor

COLORADO DEPARTMENT OF NATURAL RESOURCES

Clyde 0. Martz, Executive Director

COLORADO DIVISION OF WILDLIFE
James B. Ruch, Director
Ed Prenzlow, Deputy Director
Ed Kochman, State Wildiife Manager, Aquatic

WILDLIFE COMMISSION

Rebecca L. Frank, Chairwoman George VanDenBerg, Vice Chairman Larry Wright
Gene Peterson

Robert L. Freidenberger Wi11iam Hegberg Dennis Luttre11 E1don Cooper

FISH RESEARCH STAFF

Tom Powe11, Wildlife Research Leader, Coldwater Lakes and Streams Don Weber, Wildlife Research Leader, Warmwater and Special Projects Wilbur Boldt, Federal Aid Coordinator
Marianne Hershcopf, Librarian
William Babcock, Wildlife Researcher, F-84, Aquatic Data Analysis Patrick Davies, Wildlife Researcher, F-33, Water Pollution Studies John Goett1, Wildlife Researcher, F-53, Fish Forage Evaluations Mary McAfee, Wildife Researcher, F-59, Small Coldwater Reservoir Studies R. Barry Nehring, Wildlife Researcher, F-51, Coldwater Stream Studies Tom Nesler, Wildiife Researcher, Threatened and Endangered Species Rodney Van Velson, Wildlife Researcher, F-60, Wild Trout Studies William Wiltzius, Wildife Researcher, F-79, Kokanee Salmon Studies Judi Reeve, Senior Secretary
Leslie Guggenberger, Admin. Clerk Typist

Prepared by:

Approved by:

Wildlife Research Leader

Date:

Job Progress Reports are preliminary and subject to change. They may not be published or cited without permission of the Director. The results of the research investigations contained in this report represent work of the author and may or may not have been implemented as Division of Wildlife policy by the Director or Wildlife Commission.

TABLE OF CONTENTS

Page
LIST OF TABLES vii
LIST OF APPENDICES
LIST OF APPENDICES viii viii
JOB 1. Fish Flow Investigations 1
Introduction 1
Methods 2
Results and Discussion 5
Arkansas River 8
Blue River 8
Cache la Poudre River 9
Colorado River 9
Fryingpan River 10
Gunnison River 11
Middle Fork of the South Platte River 11
Rio Grande River 11
South Fork of the Rio Grande River 12
St. Vrain River 12
South Platte River 13
Taylor River 14
Conclusions 15
JOB 2. Wild Trout Introductions 16
Introductions 16
Methods and Materials 17
Results and Discussion 20
Animas River 20
Blue River 21
Gunnison River 22
Rio Grande River 23
Recommendations and Conclusions 26
LITERATURE CITED 27

LIST OF TABLES

Table 1. Fry average size (mm), range, and time of collection $\frac{\text { Page }}{3}$ by study stream.
Table 2. Flow investigations stream study sections for minimum 4 and optimum flow recommendations.
Table 3. Minimum and optimum flow recommendations for IFIM/PHABSIM 5 study streams by time period, species, and life stage.
Table 4. Mean monthly discharge (cfs) of the Colorado River at 10
Hot Sulphur Springs, pre (1905-1945) and post (1964- (1985) Big Thompson Project.
Table 5. Animas River "Wild Trout Introductions Study" fingerling 18 stocking records, 1981-87.
Table 6. Upper Gunnison River "Wild Trout Introductions Study" 19 fingerling stocking records, 1985-87.
Table 7. Rainbow trout stocking history for the Coller, State 19 Bridge, and Rio Grande fishery area (above Creede) of the Rio Grande, 1984-87.
Table 8. Animas River brown trout life table 1977-87 from 32nd 20 Street Bridge to Purple Cliffs for unmarked browns.
Table 9. Upper Gunnison River trout standing crop (15 cm and 22 larger) estimates, September 1985-87.
Table 10. State Bridge trout population statistics. 24
Table 11. State Bridge total rainbow trout per section. 24
Table I-1. Animas River standing crop and biomass estimates, . . . $\frac{\text { Page }}{29}$ December 1987.
Table I-2. Summary of Animas River trout population density and 30 biomass statistics from 1981 through 1987.
Table I-3. Blue River standing crop and biomass estimates, 31 October 19, 1987.
Table I-4. Gunnison River standing crop and biomass estimates, 32 September-November, 1987.
Table I-5. Summary of Gunnison River trout population statistics, 331981-87.
Table I-6. Rio Grande River standing crop and biomass estimates, 34 September 1987.
Table I-7. South Platte River standing crop and biomass estimates, 35 October 22-24,-1987.
Table I-8. Rainbow and brown trout numbers/ha and biomass (kg/ha) 36for the South Platte River, 1979-87.
Table II-1. Back calculated lengths (cm) of trout from F-51 study 37 streams 1987.
Table II-2. Life tables - Blue River - brown trout/ha. 41
Table II-2. Life tables - Gunnison River (numbers/ha). 42
Table II-2. Life tables - Rio Grande River (brown trout/ha). 43
Table II-2. Life tables - South Platte River (brown trout/ha). 44
Table II-2. Life tables - South Platte River (rainbow trout/ha). 46
Table III-1. Creel census, voluntary postcard (complete trip), 48 Rio Grande River Marshall Park Fisherman Area, June- August 1987, 非42539.
Table III-2. Creel census, count-interview (incomplete trip), 48
Rio Grande River Marshall Park Fisherman Area, June-August 1987, 非42539
Table III-3. Water temperature data for the Blue River, 1987. 49

State: Colorado
Project No.: 02-01-131

Name: State Fish Research

Title: Stream Fisheries Investigations
Period Covered: July 1, 1987 to June 30, 1988
Study Objective: To quantify the interrelationships, then determine and document, through professional publications, the impacts of special regulations, macroinvertebrate densities, flow regimes, and trout species introductions on established trout populations in selected major streams in Colorado.

Job No. 1
Job Title: Fish Flow Investigations
Job Objective: To quantify and document, through professional publication, the interrelationships between streamflow regimes and trout population dynamics on selected sections of the following streams: the Arkansas, Cache la Poudre, Colorado, Fryingpan, Gunnison, Middle Fork of the South Platte, Rio Grande, South Fork of the Rio Grande, South Platte, St. Vrain, and Taylor rivers.

INTRODUCTION

This job (during the current segment) is in a state of transition. Current documentation called for preparation of several reports and manuscripts as well as assisting regional biologists with set-up and analysis of IFIM/PHABSIM studies and making month1y minimum and optimum flow recommendations on 11 study streams.

A professional paper on the interrelationships between stream discharge, fry weighted usable area (WUA), and rainbow and brown trout year-class strength was given at the Western Division of the American Fisheries Society (WDAFS) meeting in Salt Lake City, Utah, in July 1987. The paper (Nehring and Miller 1987) is to be published in the WDAFS proceedings from that meeting.

A final report on the results of the IFIM/PHABSIM analyses completed on the 11 study streams has been completed and submitted under separate cover (Nehring 1988). That final report will serve as a rough manuscript for a paper on "field-proofing" the IFIM/PHABSIM methodology to be submitted to a major peer-reviewed journal during the $1988-1989$ segment. The paper will be presented at the national AFS meeting in Toronto, Canada, in September 1988.

The primary purpose of this job progress report is to make monthly minimum and optimum flow recommendations on all study streams where we have completed IFIM/PHABSIM studies.

METHODS

Several important insights into the interrelationships between streamflow, trout habitat (by life stage), and trout population dynamics came out of the IFIM/PHABSIM studies. In most instances, the limiting life stage for both rainbow and brown trout was the fry. In a few instances, the spawning/ incubation habitat was limiting. There were no instances where the data analysis indicated the weighted usable area (WUA) habitat values for the juvenile and adult life stages were limiting.

In light of the above general findings, minimum and optimum flow recommendations on a critical and seasonal period basis will be made for each of the study streams by life stage and species as follows:

1. Spawning/incubation/hatching
2. Two- to four-week-old fry
3. Juvenile
4. Adult

The flow recommendations for spawning, incubation, and hatching will be made as one minimum recommendation. Flows should not be allowed to fall (if at all possible) below the spawning level at any time during those three life stages. Reiser and White (1981, 1983); Becker, Neitzel, and Fickeisen (1982); Becker, Neitzel, and Abernethy (1983); and Neitzel and Becker (1985) made several salient points in evaluating the impacts of redd dewatering on salmonid reproductive success. Among other things, they found that redd dewatering for up to 8 hours or more for several days to weeks did not have a detrimental impact on egg and embryo survival as long as: 1) intra-gravel humidity levels were maintained at 100% saturation; and 2) maximum and minimum intra-gravel temperature extremes did not reach the lethal limit. These findings, however, applied only to the pre-hatching developmental period. Once hatching occurred, removal of intra-gravel water flows for even 1-3 hours resulted in heavy mortality for sac fry and intra-grave1 dwelling alevins. Thus, to minimize the negative impacts of flow reductions due to either thermal shock and/or loss of intra-gravel flows during the post-hatching intra-gravel life stage, one minimum flow recommendation will be made. Fry, juvenile, and adult life stage flow recommendations will be made for both minimum and optimum conditions.

Trout population data and USGS gaging record information were used together with the IFIM/PHABSIM data to formulate the minimum and optimum flow recommendations. Post-emergent fry collections have been made on all of the study streams to define the critical fry emergence period (Table 1). Spawning, incubation, and hatching periods were defined from field observations and general biological information and life history characteristics.

The flow recommendations made in this report are meant to be realistic guidelines for protecting minimum and optimum flow and habitat requirements for the rainbow and/or brown trout populations within the stream study sections as defined in Table 2. The recommendations are not meant to be rigid limits that must be steadfastly adhered to. Rather, they are guidelines that should adequately protect the wild trout populations found in the study streams to a reasonable degree. The minimum flow recommendation for
spawning, incubation, and hatching are the most critical of the recommendations. The critical time periods for spawning, incubation, and hatching occur to a large degree during the low flow periods when additional diversions and other man-induced flow reductions will often have dramatic negative impacts on the subsequent survival of the next trout year-class.

Table 1. Fry average size (mm), range, and time of collection by study stream.

Stream	Species	Date	Sample size (n)	$\begin{aligned} & \text { Mean } \\ & \text { size }(m m) \end{aligned}$	Standard deviation	$\begin{gathered} \text { Range } \\ (\mathrm{mm}) \end{gathered}$
Arkansas River	Browns	05/25/88	19	33.3	5.30	23-46
Blue River	Browns	05/23/88	11	20.7	1.68	18-23
Cache 1a Poudre	Browns ${ }^{\text {a }}$	04/27/88	35	13.6	2.10	11-17
Cache 1a Poudre	Browns ${ }^{\text {a }}$	05/24/88	14	21.2	1.93	17-23
Cache 1a Poudre	Browns ${ }^{\text {b }}$	05/24/88	10	24.1	2.13	22-28
Cache 1a Poudre	Browns ${ }^{\text {a }}$	06/24/88	14	27.1	3.10	24-36
Cache la Poudre	Whitefish ${ }^{\text {a }}$	06/24/88	11	25.7	0.90	24-27
Cache 1a Poudre	Browns ${ }^{\text {b }}$	06/24/88	18	38.7	7.68	24-48
Cache la Poudre	Rainbows ${ }^{\text {b }}$	06/24/88	18	26.0	7.68	24-48
Colorado River	Browns ${ }^{\text {c }}$	05/23/88	9	24.4	1.42	23-27
Colorado River	Browns ${ }^{\text {g }}$	06/24/88	8	37.5	4.87	31-44
Colorado River	Rainbows ${ }^{\text {g }}$	06/24/88	9	28.3	4.72	23-36
Fryingpan River	Browns	05/23/88	20	23.8	1.25	22-27
Fryingpan River	Browns	06/28/88	2	32.5	13.40	23-42
Fryingpan River	Rainbows	06/28/88	15	24.3	1.16	22-27
Gunnison River	Browns	05/25/86	10	31.5	3.03	28-37
Gunnison River	Browns	06/06/86	15	34.7	5.30	25-44
Gunnison River	Browns	06/26/86	15	45.5	7.10	34-55
Gunnison River	Rainbows	06/26/86	23	27.7	4.73	24-37
Gunnison River	Browns	07/14/86	7	61.7	4.27	55-66
Gunnison River	Rainbows	07/14/86	32	35.1	6.81	24-46
Gunnison River	Browns	04/11/87	1	23.0	--	--
Gunnison River	Browns	04/11/87	2	26.0	1.41	25-27
Gunnison River	Browns	04/25/87	11	24.6	1.36	23-27
Gunnison River	Browns	05/09/87		26.8	2.47	24-32
Gunnison River	Browns	05/23/87	32	28.7	3.48	24-38
Gunnison River	Browns	06/03/87	19	32.9	4.48	28-42
Gunnison River	Browns	06/12/87	32	33.0	4.01	29-47
Gunnison River	Browns	06/19/87	21	33.7	5.66	24-47
Gunnison River	Browns	06/24/87	13	39.7	4.21	33-46
Gunnison River	Rainbows	06/12/87		25.5	2.12	24-27
Gunnison River	Rainbows	06/24/87	17	28.1	2.56	23-33
Gunnison River	Rainbows	06/27/87	12	26.2	2.55	24-31
Gunnison River	Browns	05/07/88	10	27.2	3.01	21-32
Gunnison River	Browns	05/28/88	20	31.0	3.80	24-39
Gunnison River	Browns	06/16/88	8	42.8	3.96	38-49
Gunnison River	Rainbows	06/16/88	15	25.3	2.09	23-30
Rio Grande River	Browns ${ }^{\text {d }}$	05/26/88	13	23.6	1.45	20-25
Rio Grande River	Browns ${ }^{\text {e }}$	05/26/88	5	25.0	1.73	24-28

Table 1. Fry average size (mm), range, and time of collection by study stream (concluded).

Stream	Species	Date	Sample size (n$)$	Mean size (mm)	Standard deviation	Range (mm)
Rio Grande River	Browns $^{\text {d }}$	$06 / 29 / 88$	15	36.1	6.19	$23-43$
Rio Grande River	Browns $^{\mathrm{e}}$	$06 / 29 / 88$	38	31.3	3.66	$23-39$
Rio Grande River	Browns	$06 / 29 / 88$	3	27.0	6.08	$23-34$
S. Fk. Rio Grande	Browns	$06 / 29 / 88$	33	26.2	3.25	$20-32$
St. Vrain	Browns	$05 / 25 / 88$	12	29.2	3.24	$25-34$
South Platte	Browns	$05 / 12 / 88$	9	24.4	1.33	$22-26$
South Platte	Browns	$05 / 25 / 88$	12	26.2	1.19	$24-28$
South Platte	Browns	$06 / 20 / 88$	14	37.7	3.12	$34-46$
South Platte	Rainbows	$06 / 20 / 88$	27	26.1	2.71	$22-32$
Taylor River	Browns	$05 / 26 / 88$	12	24.7	2.57	$22-32$

a
$\mathrm{b}_{\text {Lower }}$ wild trout area.
CBelow Williams Fork confluence.
${ }^{\mathrm{d}}$ State Bridge section.
${ }^{\text {e }}$ Coller Wildlife Area.
$f_{\text {Rio Grande Fisherman Area. }}$
gabove Williams Fork confluence.

Table 2. Flow investigations stream study sections for minimum and optimum flow recommendations.

Stream	Counties	Upper terminus	Lower terminus
Arkansas River	Chaffee/Fremont	S. Fork-Arkansas River	Badger Creek
Blue River	Summit	Straight Creek	Slate Creek
Cache la Poudre River	Larimer	Little S. Fork-Cache 1a Poudre River	N. Fork Cache 1a Poudre River
Colorado River	Grand	Fraser River	Williams Fork River
Fryingpan River	Pitkin/Eagle	Rocky Fork Creek	Roaring Fork River
Gunnison River	Montrose/Delta	Crystal Dam	N. Fork Gunnison River
Middle ForkSouth Platte	Park	Trout Creek	S. Fork S. Platte River
Rio Grande River	Mineral/Rio Grande	Willow Creek	S. Fork-Rio Grande River
St. Vrain River	Boulder	S. Fork-St. Vrain Creek	Left-hand Creek
S. ForkRio Grande	Mineral/Rio Grande	Park Creek	Beaver Creek
S. Platte River	Jefferson/Douglas	Cheesman Dam	Horse Creek
Taylor River	Gunnison	Spring Creek	East River

RESULTS AND DISCUSSION

Table 3 contains the minimum and optimum flow recommendations for each study stream by species and life stage with the critical time periods. Table 1 contains data on the average size (mm), standard deviation, and range of fry sizes by species and date of collection for each study stream. This information was critical to the definition of the hatching and emergence times on each study stream.

Table 3. Minimum and optimum flow recommendations for IFIM/PHABSIM study streams by time period, species, and life stage.

Species	Life stage	Critical Time period	Minimum Flow	Optimum Flow
Arkansas River				
Brown	Spawning	10/15-11/15	200	400
Brown	Incubation	11/01-04/01	200	400
Brown	Hatching	03/01-05/15	200	400
Brown	Fry	04/01-06/01	200	400
Brown	Juvenile	06/01-10/15	200	400
Brown	Adult	12 months	200	400
Blue River				
Brown	Spawning	10/15-11/15	50	--
Brown	Incubation	11/01-05/30	50	--
Brown	Hatching	04/01-06/01	50	--
Brown	Fry	05/20-07/01	50	100
Brown	Juvenile	07/01-10/15	50	100
Brown	Adult	12 months	50	100
Rainbow	Spawning	04/15-06/01	50	--
Rainbow	Incubation	04/15-07/01	50	--
Rainbow	Hatching	06/01-07/01	50	--
Rainbow	Fry	06/15-07/15	50	100
Rainbow	Juvenile	07/15-10/15	50	100
Rainbow	Adult	12 months	50	100
Cache 1a Poudre River				
Brown	Spawning	10/15-11/15	50	--
Brown	Incubation	11/01-05/30	50	--
Brown	Hatching	04/01-06/01	50	--
Brown	Fry	05/20-07/01	50	50
Brown	Juvenile	07/01-10/15	50	100
Brown	Adult	12 months	50	100
Rainbow	Spawning	04/15-05/30	100	--
Rainbow	Incubation	04/15-07/15	100	-_
Rainbow	Hatching	06/15-07/15	100	--
Rainbow	Fry	07/01-08/01	50	50
Rainbow	Juvenile	08/01-11/01	50	50
Rainbow	Adult	12 months	100	150

Table 3. Minimum and optimum flow recommendations for IFIM/PHABSIM study streams by time period, species, and life stage (continued).

		Critical	Minimum	Optimum
Species	Life stage	Time period	Flow	Flow

Brown	
Brown	Spawning
Brown	Incubation
Brown	Hatching
Brown	Fry
Brown	Juvenile
Rainbow	Adult
Rainbow	Spawning
Rainbow	Incubation
Rainbow	Hatching
Rainbow	Fry
Rainbow	Juvenile
	Adult
Brown	
Brown	Spawning
Brown	Incubation
Brown	Hatching
Brown	Fry
Brown	Juvenile
	Adult
Rainbow	
Rainbow	Spawning
Rainbow	Incubation
Rainbow	Hatching
Rainbow	Fry
Rainbow	Juvenile
	Adult

Colorado River		
$10 / 15-11 / 15$	125	250
$11 / 01-04 / 01$	125	250
$04 / 01-06 / 01$	125	250
$05 / 15-06 / 15$	125	125
$06 / 15-10 / 15$	125	200
12 months	125	200
$04 / 20-05 / 10$		
$04 / 20-06 / 15$	175	300
$05 / 01-07 / 01$	175	300
$06 / 15-07 / 15$	125	300
$07 / 15-10 / 15$	125	125
12 months	125	175
		200

Fryingpan River
Incubation
$10 / 15-11 / 15 \quad 65 \quad 100$

Fry 05/15-06/15 50
100
Juvenile

Spawning
Incubation
Hatching
Fry
Adult

Fryingpa
1
1
0
0
0

$11 / 01-04 / 30$	65	100
$04 / 01-05 / 30$	65	100
$05 / 15-06 / 15$	50	100

06/15-10/15 $50 \quad 100$
12 months $50 \quad 100$
04/01-05/15 65100
04/15-06/15 $65 \quad 100$
06/01-07/01 $65 \quad 100$
06/15-07/15 $50 \quad 100$
07/15-10/15 $50 \quad 150$
12 months $50 \quad 250$

Brown
Brown
Brown
Brown
Brown
Brown
Rainbow
Rainbow
Rainbow
Rainbow
Rainbow
Rainbow

	Gunnison		River (Black Canyon)	
Spawning	$10 / 15-11 / 15$			
Incubation	$11 / 01-04 / 01$		1,200	
Hatching	$03 / 15-05 / 15$	300	1,200	
Fry	$05 / 01-06 / 15$	300	1,200	
Juvenile	$06 / 15-10 / 15$	300	300	
Adult	12 months	300	300	
		300		
Spawning				
Incubation	$04 / 01-05 / 15$	300	1,000	
Hatching	$04 / 15-06 / 15$	300	1,000	
Fry	$06 / 01-07 / 15$	300	1,000	
Juvenile	$06 / 15-07 / 15$	300	300	
Adult	$07 / 15-10 / 15$	300	300	
	12 months	300	500	

Table 3. Minimum and optimum flow recommendations for IFIM/PHABSIM study streams by time period, species, and life stage (continued).

	Critical	Minimum	Optimum	
Species	Life stage	Time period	Flow	Flow

Brown	Spawning	10/01-11/15	20	60
Brown	Incubation	10/15-05/01	20	60
Brown	Hatching	04/01-06/01	20	60
Brown	Fry	06/01-07/15	20	20
Brown	Juvenile	07/15-10/15	20	40
Brown	Adult	12 months	20	60
Rio Grande River				
Brown	Spawning	10/01-11/15	100	150
Brown	Incubation	10/15-05/01	100	150
Brown	Hatching	04/01-07/01	100	150
Brown	Fry	06/01-07/15	100	150
Brown	Juvenile	07/15-10/15	100	200
Brown	Adult	12 months	100	200
Rainbow	Spawning	04/20-05/15	200	500
Rainbow	Incubation	05/01-07/01	200	500
Rainbow	Hatching	06/15-07/15	200	500
Rainbow	Fry	07/01-08/01	100	300
Rainbow	Juveni1e	08/01-10/15	100	300
Rainbow	Adult	12 months	200	300
South Fork of the Rio Grande River				
Brown	Spawning	10/01-11/15	30	45
Brown	Incubation	10/15-05/30	30	45
Brown	Hatching	05/01-07/01	30	45
Brown	Fry	06/01-07/15	45	70
Brown	Juvenile	07/15-10/15	45	125
Brown	Adu1t	12 months	45	125
Brown	Incubation	11/01-04/01	20	40
Brown	Hatching	03/15-04/15	20	40
Brown	Fry	04/01-05/15	20	60
Brown	Juvenile	05/15-10/15	20	80
Brown	Adult	12 months	20	60
South P1atte				
Brown	Spawning	10/15-11/15	50	100
Brown	Incubation	11/01-04/30	50	100
Brown	Hatching	04/01-06/01	50	100
Brown	Fry	05/01-06/15	50	50
Brown	Juvenile	06/15-10/15	50	150
Brown	Adult	12 months	50	150

Table 3. Minimum and optimum flow recommendations for IFIM/PHABSIM study streams by time period, species, and life stage (concluded).

Species	Life stage	Critical Time period	Minimum Flow	Optimum Flow
Rainbow	Spawning	$04 / 01-05 / 15$	100	
Rainbow	Incubation	$04 / 01-06 / 01$	100	150
Rainbow	Hatching	$06 / 01-07 / 01$	100	150
Rainbow	Fry	$06 / 15-07 / 15$	50	150
Rainbow	Juvenile	$07 / 15-10 / 15$	50	50
Rainbow	Adult	12 months	100	150
				225
		Taylor River		
Brown	Spawning	$10 / 15-11 / 15$	50	100
Brown	Incubation	$11 / 01-05 / 01$	50	100
Brown	Hatching	$04 / 01-06 / 01$	50	100
Brown	Fry	$05 / 15-07 / 01$	50	50
Brown	Juvenile	$07 / 01-10 / 15$	50	200
Brown	Adult	12 months	50	250

Arkansas River
Minimum flows for all brown trout life stages in the Arkansas River (Table 3) within the study section is 200 cfs and the optimum is 400 cfs . The only time (in the past 20 years) that the minimum flow (at the Wellsville gage (within the study area) was less than 200 cfs was in 1977, the near record low water year. The 400 cfs optimum flow is met or exceeded the majority of the time. Therefore, both the minimum and optimum flow recommendation for the Arkansas River (Table 3) should be targets the water management agencies should be able to maintain almost all of the time. The data in Table 1 indicates the brown trout in the Arkansas River (on May 25th) are the largest fry (on average) of any group from any study stream in any year. They also had the widest range in size of any stream (in late-May) which indicates their hatching and emergence in the Arkansas River is spread over perhaps a 2 -month period, i.e., April-May.

Blue River

Minimum and optimum flow recommendations for both rainbow and brown trout in the Blue River are 50 cfs and 100 cfs , respectively, for all life stages (Table 3). According to flow records for the Blue River below Dillon Dam, the minimum flow recommendation of 50 cfs has been violated in 12 years since 1965 and 10 times in the past 10 years. Flow reductions below 20 cfs for a week or more during the critical winter-early spring brown egg incubation and hatching period have been commonplace occurrences since 1977. Since the Denver Water Department (DWD) operates Dillon Dam, these dramatic flow reductions clearly indicate the cavalier attitude of the DWD towards the needs of aquatic wildlife and other recreation uses and users of
water in streams. Flows in the Blue River below Dillon Dam have been dropped to the $9-18$ cfs range every year from 1976 through 1985! These reductions have almost invariably occurred from October through April during the critical winter period when all life stages of the brown trout are largely (if not totally) immobile in the gravel and very susceptible to freezing during dewatering operations.

Cache 1a Poudre River

Minimum flow recommendations for brown trout in the Cache la Poudre River are 50 cfs for all life stages, while optimum flows for juvenile and adult brown trout is 100 cfs . Spawning, incubation, and hatching minimum flow recommendations for rainbow trout are 100 cfs , while fry and juvenile rainbow minimum flows are 50 cfs . The adult rainbow minimum flow needed is 100 cfs , with an optimum of 150 cfs . While the minimum flow recommendations for rainbows are double those of browns for many life stages (see Table 3), they are flows that are almost always in the river for the spring-summer spawning, incubation, and hatching life stages under any sort of hydrological regime. The year-round adult rainbow minimum flow recommendation of 100 cfs is a flow level that is not currently met during the winter months in any year.

Colorado River
Minimum flow recommendations for brown trout in the Colorado River for all life stages are 125 cfs , while optimum flows vary from 125 to 250 cfs , depending upon life stage. Minimum flows for rainbow spawning, incubation, and hatching are 175 cfs , while minimum flows for fry, juvenile, and adult rainbows are 125 cfs . Optimum flows for rainbow trout (depending upon life stage) range from 125 to 300 cfs (Table 3).

Examination of the flow records for the Colorado River at Hot Sulphur Springs reveal that most of the minimum flows and, in many instances, the optimum flows for rainbow trout are met most of the time in the majority of calendar years. The adult rainbow trout optimum flow of 200 cfs is the only life stage that is significantly violated in the late summer to early spring (September-March) period in most years.

In contrast to the rainbows, minimum flows for brown trout spawning, incubation, and hatching are almost never met. Using the 125 cfs minimum flow recommendation and applying it as the standard, the records show that there were only 12 months out of 154 possible for the September-March period from October 1964 through September 1986 when the mean monthly flow for brown trout was reached only 7.8% of the time for the September-March period. Eight of those 12 months have come in the 1983-85 period, the direct result of the incredibly high water years in 1983 and 1984.

Table 4 shows the comparison between the mean monthly discharge from 1905 through 1945 (essentially pre-Granby Reservoir-Big Thompson Project) and 1964-1985 (the current operational scenario for the Colorado River at Hot Sulphur Springs. It should be noted, however, that the additional drain put on the Colorado River (at Hot Sulphur Springs) by the Windy Gap Dam and Diversion Project, as of 1985, is not reflected in the data. Given these statistics, it is obvious that the Colorado River should not be dewatered further.

Table 4. Mean monthly discharge (cfs) of the Colorado River at Hot Sulphur Springs, pre (1905-1945) and post (1964-1985) Big Thompson Project.

Mean monthly discharge	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
$1964-85$	72	73	100	254	697	919	513	164	89	89	85	75
$1905-45$	103	102	143	499	1845	3110	1200	434	246	225	152	115
$1964-85^{a}$	30.1	28.4	30.1	49.1	62.2	70.5	57.3	62.2	63.8	55.3	44.1	34.8

a Percent reduction from 1905-45 average

Rainbow trout have a three- to sevenfold advantage over brown trout in the spawning, incubation, and hatching arena (Nehring 1986). Thus, it is not too difficult to understand why the trout fishery in the upper Colorado River is the only one in the state where wild rainbows have dominated brown trout in numbers and density without the aid of a special protective angling regulations. It is also a classic example of the detrimental impacts of excessive dewatering of streams by impoundments and transmountain diversions. Ward (1984) indicates the annual flow of the upper Colorado River near Granby, Colorado, was reduced 91% with the construction and operation of Granby Reservoir.

Fryingpan River

Minimum flows for rainbow and brown trout for spawning, incubation, and hatching in the Fryingpan River are 65 cfs , while optimum flows for the same life stages are 100 cfs. Minimum flows for the fry, juvenile, and adult life stages are 50 cfs for both rainbow and brown trout. Optimum flows for fry, juvenile, and adult brown trout are 100 cfs . Optimum flows for fry, juvenile, and adult rainbow trout are 100, 150, and 250 cfs, respectively.

Ruedi Reservoir has controlled the flows in the Fryingpan River since May 1968. The impacts of impoundment and flow regulation of the Fryingpan River, as a result of Ruedi Reservoir, stand in stark contrast to the impacts of Granby Reservoir and other transmountain diversions on the Colorado River. Since October 1970 there have been only 21 months of 192 (82% of the time) when a minimum flow of 100 cfs was not met. There have been only 6 months out of 192 (a mere 3% of the time) when a minimum flow of 50 cfs has not been the mean monthly discharge in the Fryingpan River. The U.S. Bureau of Reclamation personnel that operate Ruedi Reservoir as a part of the Fryingpan/Arkansas Project, have done a phenomenal job of maintaining flows in the Fryingpan River to optimize the stream trout fishery that has developed there over the past two decades. In my estimation, their record of cooperation and concern for the best interests of the Fryingpan River aquatic resource is unparalled in Colorado in the 20th Century.

Gunnison River

The minimum flow recommendation for all life stages of rainbow and brown trout are 300 cfs . This flow provides good to excellent habitat conditions for virtually every life stage of both trout species. Discharge levels below 300 cfs begin to cause dramatic reductions in spawning habitat for both rainbow and brown trout as well as significant decreases in total wetted surface area.

Optimum flows for brown and rainbow trout spawning, incubation, and hatching are 1,200 and 1,000 cfs, respectively. These flows provide access to extensive higher elevation spawning beds composed of optimum-sized gravels that are not available at lower flows. The 300 cfs minimum and optimum flow is also recommended for rainbow and brown trout fry and juvenile life stages.

The optimum flow recommendation for adult rainbow and brown trout is 500 cfs.
Water and power management agencies (U.S. Bureau of Reclamation [USBR] Uncompahgre Valley Water User's Association [UVWUA] Western Area Power Administration [WAPA]) have become acutely aware of the public interest that has developed concerning the world-class trout fishery in the Black Canyon of the Gunnison in the 1980^{\prime} s. This awareness has resulted in much more attention and care being taken by these management agencies to minimize the timing, duration, and magnitude of flow fluctuations on the Gunnison River. As a result of this attention to detail, we have three consecutive very strong year-classes (1986-1988) of both rainbow and brown trout in the Gunnison Gorge.

Middle Fork of the South Platte River

Brown trout are the only viable resident wild trout species in this river above Spinney Mountain Reservoir at the present time. Minimum flow recommendations for all life stages of brown trout are 20 cfs , while optimum flow recommendations vary from 20 to 60 cfs , depending upon the life stage (Table 3). The lack of a USGS gage and discharge records for this section of river precludes any evaluation of how often the minimum and optimum flow recommendations can realistically be met.

Rio Grande River

Minimum flow recommendations for all life stages of brown trout are 100 cfs, while optimum flow recommendations range from $150-200 \mathrm{cfs}$, depending upon life stage (Table 3). Minimum flow recommendations for rainbow spawning, incubation, hatching, and adult life stages are 200 cfs versus 100 cfs for rainbow fry and juvenile life stages.

Optimum flow recommendations for brown trout range from $150-200 \mathrm{cfs}$, compared to $300-500 \mathrm{cfs}$ for rainbow trout, depending upon the life stage. Examination of the flow records for the Wagon Wheel Gap USGS gage indicate that the minimum flow recommendations can be met in most months of most years. The minimum flow of 100 cfs has been met or exceeded in every month since October 1979. Thus, water management agencies should have little problem in maintaining this minimum flow most of the time under present operational patterns.

South Fork of the Rio Grande River
Brown trout are the only resident wild trout species that currently exists in the South Fork of the Rio Grande below the confluence with Park Creek. Minimum flow recommendations for brown trout spawning, incubation, and hatching are 30 cfs , while 45 cfs is the minimum for fry, juvenile, and adult life stages. Optimum flow recommendations range from $45-125 \mathrm{cfs}$, depending upon life stage (Table 3).

Examination of the flow records for the USGS gage on the South Fork of the Rio Grande (SFRG) at South Fork, Colorado, for 1964-85 indicate that the minimum flow of 30 cfs for spawning, incubation, and hatching has been maintained in most years and in every year since 1979. Similarly, the optimum flow regimes of $45-125 \mathrm{cfs}$ are maintained in most months of most years, except during the fall-early spring periods (October-March). It is not surprising that the brown trout density and biomass in the South Fork of the Rio Grande River has remained as consistently high as it has. Year-class strength is determined primarily by the amount of fry habitat during June, the month of brown trout fry emergence on the SFRG (Nehring and Anderson, 1984). Barring any unforeseen water development projects in the basin that drastically alters the flow regime, the brown trout fishery in the SFRG should remain a valuable asset and "drawing card" for the tourist industry in the South Fork area.

St. Vrain River
Similar to the SFRG, brown trout are the only resident wild salmonid species in the St. Vrain River within the study area. The minimum flow recommendation for all life stages of brown trout is 20 cfs . Optimum flow recommendations range from $40-80 \mathrm{cfs}$, depending upon life stage (Table 3).

Examination of the USGS gage records for the St. Vrain River at Lyons, Colorado, indicate that the minimum flows drop below 20 cfs with regularity during the winter-early spring period. Minimum flows have occasionally dropped to catostrophically low levels, such as during the drought year of 1976-77 when mean monthly discharge never exceeded 10 cfs from December 1976 through March 1977. We have observed very high levels of mortality on adult brown trout between age 3 and 4 on the St. Vrain River from 1978 through 1981 (Nehring and Anderson 1985). Temperature records indicate that water temperature at the study site should not be limiting to brown trout. Thus, it is quite possible that flow-induced reductions in adult trout winter habitat may be limiting the adult brown trout component of the trout populations. Adult brown trout are the most cover-oriented trout species (Butler and Hawthorne 1968) and are susceptible to dewatering of under-cut banks and areas of over-hanging vegetation along the channel perimeter. This trout population did not respond to a catch-and-release regulation imposed on the fishery for approximately 5 years. Nehring and Anderson (1985) hypothesized that a lack of adult brown trout habitat associated with adequate cover (such as pools or overhead cover) was probably limiting this trout population.

Minimum flow recommendations for all life stages of brown trout are 50 cfs, while optimum flow recommendations for brown trout range from 50-150 cfs, depending upon the life stage. Minimum spawning, incubation, hatching, and adult flows for rainbow trout are 100 cfs , while 50 cfs is the minimum flow recommendation for rainbow fry and juvenile life stages. Optimum flow recommendations for rainbow trout range from 50-225 cfs for the various life stages. See Table 3 for details.

Maintenance of reasonable minimum flows during the most vulnerable life stages (spawning, incubation, hatching, and fry) are of paramount importance in maintaining thriving rainbow and brown trout populations in the South Platte River below Cheesman Reservoir, which is owned and operated by the Denver Water Department (DWD) as part of its water storage and supply system. However, maintenance of stable minimum flows for trout (or any other sort of recreation) has not been the hallmark of the DWD's flow management regime in the South Platte River.

The DWD would like the environmental community, angling groups, and the Colorado Division of Wildlife to believe that their water management plan and Cheesman Dam, in particular, are the primary reasons for the gold medal trout fishery that exists in Cheesman Canyon. However, nothing could be further from the truth. Rather, the catch-and-release regulation implemented on the Cheesman Canyon section of the South Platte in 1976 is the primary reason for the development of the world-class trout fishery. Tanner (1954) found that the average size of rainbow and brown trout caught in Cheesman Canyon was 11.9 inches and 10.4 inches, respectively. Anglers harvested an estimated 390 pounds of trout per mile in a 90 -day period, which is a harvest estimate of about 50 pounds/acre in a 90 -day period. Under the present catch-and- release regulation, the average size of rainbow trout in the population has been in the $13-14$-inch range, while the browns average about 12 inches in the population. Total estimated catch in 1954 from June 15 through September 15 was 2,352 for 8,751 hours of angling effort. Thus, total catch-per-man-hour (CPMH) was 0.27 . A creel census in Cheesman Canyon for June-September 1986 (Nehring 1987) revealed anglers caught an estimated 39,900 trout while angling for 34,600 hours of effort for an average CPMH of 1.15 . The operation of Cheesman Reservoir by the DWD has not changed measurably between the 1950's and 1980's, but the management of the Cheesman Canyon fishery has with the implementation of catch-and-release angling regulations in 1976. Anglers caught an estimated 46,600 trout 12 inches and larger and 12,700 trout 15 inches and larger in the Cheesman Canyon section of the South Platte River from May through September 1986 (Nehring 1987).

In the eventuality that Two Forks or some alternative Two Forks is built, whatever portion of the South Platte below Cheesman Reservoir remains a free-flowing stream should be protected with true minimum flow requirements that are adhered to by the DWD. Examination of the USGS discharge records reveal the way in which the DWD operates Cheesman Reservoir. Flows are operated totally towards maximization of the water yield and benefit of the DWD's water supply system. Winter flows regularly drop into the 20 cfs range, periodically to less than 10 cfs . April spawning flows for rainbows often are as high as $300-400$ cfs and then flows
are reduced to $30-60$ cfs during the incubation and hatching period. That was the modus operandi in 1981, 1982, and again in 1988. The trout fishery that exists in the South Platte below Cheesman Dam is as good as it is because of restrictive angling regulations. These regulations effectively reduce the harvest by about 95% or more, thus preserving older, larger fish for several years that are then available for spawning and successful reproduction when conditions are optimum, usually by accidental coincidence.

However, with meaningful minimum flow levels that are maintained during the spawning, incubation, hatching, and emergence periods fishing in the South Platte River would be even more consistent and better than it is now. At present, successful reproduction takes place largely by accident by the incidental convergence of natural hydrologic patterns and the DWD's operational pattern of Cheesman Reservoir. Typically, we have observed one strong rainbow year-class about once every 5 years, i.e., 1976, 1977, 1982, and a moderately good one in 1986. Clearly, it could be much better with some attention to detail during the critical April-June period.

Taylor River

Brown trout are the only viable wild trout population in the Taylor River. The minimum flow for all life stages of brown trout is 50 cfs , while optimum flows range from $50-250$ cfs depending upon time and critical life stage(s). The recommendations by life stage are contained in Table 3.

Since 1977, the USBR and UVWUA have done an excellent job of flow management out of Taylor River Reservoir that has dramatically improved the brown trout density and biomass in the Taylor River (Nehring, Anderson, and Winters 1983). The agreements to stabilize releases out of Taylor Reservoir prior to the onset of brown spawning in late October each year since 1976 has resulted in statistically significant increases in brown trout density. Brown trout density increased by 90% during the flow-stabilization period of evaluation (1979-82) over the pre-stabilization period of 1974-75 (Nehring 1988).

CONCLUSIONS

A few pertinent points need to be made in summary. First of all, the minimum flow recommendations made in this report (Table 3) are just that. It should not be construed that these minimum flow recommendations are safe levels for constant low-flows on a long-term basis, i.e., a year or more. Rather, they should be interpreted as short-term flow recommendations that will adequately protect the trout population through the various critical life stages. Second, even the optimum flows for trout are just recommendations. Optimum trout flows cannot be construed as being optimum flows for the total aquatic stream ecosystem. Without periodic flushing flows, for example, riffle areas will eventually become choked with organic and inorganic debris and the food producing capability of the stream will be jeopardized. I feel we can assume that the optimum flows have a high probability of protecting the total aquatic stream ecosystem for a long period of time (years) quite well. The optimum flows could more realistically be considered targets or guidelines for water resource management agencies to shoot for on a planning and operations basis.

Finally, these minimum flow recommendations are meant to be used as guidelines in deriving minimum flow recommendations for the Colorado Water Conservation Board. However, they apply only as guidelines and only for the stream segments as outlined in Table 1. Fine-tuning, in many cases upwards, might be biologically justified by area and regional biologists with a more intimate and thorough working knowledge of the riverine resources referred to in this report that lie within their respective area(s) of responsibility.

Study Title: Stream Fisheries Investigations
Job No. $\underline{2}$
Job Title: Wild Trout Introductions
Job Objective: To establish, then quantitatively describe, wild rainbow trout populations in the upper Gunnison (Almont to Gunnison), Rio Grande (above Creede to Del Norte), Animas (at and downstream from Durango), and Blue rivers (between Dillon and Green Mountain reservoirs).

Period Covered: July 1, 1987 through June 30, 1988

INTRODUCTION

New documentation was written for Federal Aid Project F-51 (Stream Fisheries Investigations) to cover a 5-year study plan from July 1, 1987 through June 30, 1992. Under the old documentation (1982-87) the study entitled, "Wild Trout Introductions," was designed as Job 4. Under the new documentation (1987-92), this job is designated as Job 2. The number of study streams has been expanded from one, the Rio Grande River, to four. The three streams added to the study are the Blue, upper Gunnison, and Animas rivers, as shown in the job objective.

Electroshocking surveys on some of the larger trout streams, such as the Rio Grande and Arkansas rivers, have shown brown trout to be the dominant species of salmonid almost to the exclusion of other salmonids such as the rainbow. Yet, our studies on many other streams where special regulations (Nehring 1987) have been used to protect the vulnerable rainbow stocks from over-harvest by anglers, reveal that rainbow populations will actually thrive, and in many cases, outcompete and outproduce brown trout. We have observed dramatic changes from brown trout dominance in streams managed under an eight trout/day angling limit to rainbow dominance 3-5 years after imposition of restrictive angling regulations. Rainbow trout become numerically superior to the browns in biomass, density, and numbers of quality size (35 cm or 14 in .) trout. Rainbows also provide a catch rate from 3-5 times greater than the brown trout on a per fish basis.

The objectives of Colorado's Gold Medal Trout Management program are threefold:

1. Maintain trout biomass at $45 \mathrm{~kg} / \mathrm{ha}(40 \mathrm{lb} / \mathrm{ac})$.
2. Maintain quality trout density ($\geq 35 \mathrm{~cm}$ or 14 in.$)$ at $30 / \mathrm{ha}$ ($12 / \mathrm{ac}$) on a sustained basis.
3. Maintain total catch-per-man-hour (CPMH) at 0.7 trout/hour or higher.

With these objectives in mind, it is almost a necessity that our gold medal waters be managed with a rainbow coexisting in sympatry with the brown trout. The second and third objectives are difficult to meet on a sustained basis with allopatric brown trout populations.

METHODS AND MATERIALS

Wild rainbow trout have been spawned in the Colorado River every spring since 1981. Annual egg-takes from this operation have ranged between 40,000 and 80,000 . Eggs have been incubated, hatched, and reared to fingerling size at four different hatcheries over the past 6 years; however, for the past 4 years, the eggs have been taken to the Bellvue Research Hatchery and Roaring Judy rearing units. Progeny from the Research Hatchery are being used to establish a brood stock of the Colorado River rainbows (CRR).

With the expansion of the study rivers from one (the Rio Grande) to four, including the Animas, Blue, and upper Gunnison rivers, the decision was made to use a strain of rainbow referred to as the Tasmanian rainbow (TAS) in conjunction with the Colorado River rainbow (CRR) as an additional study species. While the overall objective of the study is to establish "wild" rainbow populations in the four study rivers, a sub-objective of the study is to determine if a domesticated hatchery rainbow strain, such as the TAS, will perform equally well over the long-term in natural stream environments, or does a truly wild CRR strain outperform all other rainbow strains. Since we know that TAS rainbows worked very well in the Fryingpan River (Nehring 1987), the decision was made to use the TAS strain as the "domestic" fingerling rainbow stock in this experiment.

Population estimates are made once each year to evaluate the growth and survival of the CRR and TAS rainbow plants, as well as the density and biomass of the resident brown trout populations. Boat electroshocking techniques are employed on the large rivers in the study (Animas, upper Gunnison, and Rio Grande rivers) while walk shocking techniques are used on the smaller Blue River. Since none of the four study streams have an endemic rainbow populations, all rainbow stocks are of hatchery origin. The annual plants of rainbow fingerlings are separated on the basis of different fin clips and age/growth analysis using scale reading and back-calculated length analyses.

Table 5 contains the Animas River stocking history information by study section, species, numbers, sizes, marks, and stocking date.

The Blue River received two plants of rainbow fingerlings in late August, early September 1987. The plants consisted of 9,000 CRR rainbows from the Fish Research Hatchery that averaged 5 cm (1.97 in .) in size, were unmarked, and planted August 31st. The Blue River was also stocked with 25,000 TAS strain rainbow fingerlings that were marked with an adipose fin-clip. These fingerlings averaged $8.38 \mathrm{~cm}(3.3 \mathrm{in}$.$) in size and were$ also planted on August 31st. All fingerlings were point stocked out of the hatchery trucks.

Table 5. Animas River "Wild Trout Introductions Study" fingerling stocking records, 1981-87.

Date of plant			Average size		Marks	Number/ha
	Strain	Numbers	cm	inches		
Animas River 非1 (Purple Cliffs section)						
05/81	Browns	21,750	5.18	2.04	None	1,843
06/82	Browns	15,000	5.61	2.21	None	1,271
07/82	Browns	17,028	4.93	1.94	None	1,443
07/83	Browns	10,048	6.00	2.36	None	852
07/84	Browns	12,700	5.92	2.33	None	1,076
08/85	Browns	14,337	7.47	2.94	None	1,215
08/86	Browns	8,100	11.40	4.50	Adipose	686
08/87	Browns	9,990	9.65	3.80	Adipose	847
08/87	TAS	10,000	8.71	3.43	None	847
05/81 Animas River 非2 (32nd Street Bridge to Highway 160 Bridge						
05/81	Browns	21,750	5.18	2.04	None	.1,647
06/82	Browns	15,000	5.61	2.21	None	1,136
07/82	Browns	17,028	4.93	1.94	None	1,290
07/83	Browns	10,048	6.00	2.36	None	761
07/84	Browns	12,700	5.92	2.33	None	962
08/85	Browns	14,337	7.47	2.94	None	1,086
08/86	Browns	8,100	11.40	4.50	Adipose	614
08/87	Browns	9,990 ${ }^{\text {a }}$	9.65	3.80	Adipose	757
08/87	TAS	10,000 ${ }^{\text {a }}$	8.71	3.43	None	758

[^7]The upper Gunnison River from Almont to Rocky River Resort has been stocked with fingerling rainbows of various strains, numbers, and sizes since 1985, as shown in Table 6. The strains stocked include Hot Creek (California) rainbows (HCC), Bellaire (BELL) strain rainbows, and CRR and TAS strains of rainbows.

The rainbow fingerling stocking history for the three study areas of the Rio Grande River are shown in Table 7.

Table 6. Upper Gunnison River "Wild Trout Introductions Study" fingerling stocking records, 1985-87.

Date of plant	Strain	Numbers	Average size		Marks	Number/ha
			cm	inches		
09/04/85	HCC	10,000	16.50	6.5	Adipose	364
09/23/86	BELL	10,000 ${ }^{\text {a }}$	12.40	4.9	Adipose	364
09/23/86	CRR	12,500 ${ }^{\text {a }}$	5.08	2.0	None	455
08/28/87	TAS	25,000 ${ }^{\text {a }}$	8.38	3.3	Adipose	909
08/28/87	CRR	25,000 ${ }^{\text {a }}$	5.00	1.97	None	909

$\mathrm{a}_{\mathrm{A} 11}$ boat stocked except the 1985 plant of HCC rainbows.

Table 7. Rainbow trout stocking history for the Coller, State Bridge, and Rio Grande fishery area (above Creede) of the Rio Grande, 1984-87.

Date of plant	Planting method	Strain	Numbers	Average size		Marks	Number/ha
				cm	inches		
State Bridge section (50 ha)							
10/22/84	Boat	CRR	10,000	5.3	2.1	None	198
09/11/85	Boat	HCC	10,000	15.5	6.1	Adipose	198
09/25/85	Boat	CRR	16,000	5.1	2.0	None	317
08/06/86	Boat	CRR	2,316	21.1	8.3	LP	46
09/24/86	Boat	BELL	10,000	12.5	4.9	Adipose	198
08/27/87	Boat ${ }^{\text {a }}$	CRR	23,250	11.2	4.4	Adipose	465
08/27/87	Boat ${ }^{\text {a }}$	TAS	23,250	8.13	3.2	None	465
Coller Wildlife area (16.3 ha)							
10/22/84	Truck	CRR	6,000	5.3	2.1	None	368
09/11/85	Truck	HCC	6,000	15.5	6.1	Adipose	368
09/25/85	Truck	CRR	8,400	5.1	2.0	None	515
09/25/86	Truck	CRR	6,000	5.8	2.3	None	368
09/24/86	Truck	BELL	6,000	12.5	5.0	Adipose	368
08/27/87	Boat	CRR	9,300	11.2	4.4	Adipose	570
08/27/87	Boat	TAS	9,300	8.13	3.2	None	570
Rio Grande fisherman area (15.3 ha)							
09/25/86	Boat	CRR	13,300	5.8	2.3	None	869
08/27/87	Truck	CRR	13,950	11.2	4.4	Adipose	911
08/27/87	Truck	TAS	13,950	8.13	3.2	None	911

[^8]
RESULTS AND DISCUSSION

Animas River

The Animas River running through Durango has had no documented natural reproduction of trout of any species for many years. Any number of factors (or combinations of factors) including siltation, sewage pollution, or heavy metal toxicity could be the reason(s) for the lack of reproduction. The Colorado Division of Wildlife (CDOW) has managed this river for most of the past decade with a mix of catchable rainbows augmented by large annual plants of Snake River cutthroat trout (SRN) and brown trout fingerling plants.

After several years under this management plan, it was determined that survival of the brown trout fingerling plants was much better than the SRN plants. In particular, the survival of larger brown fingerlings (10 cm or 4 in. average size) appeared to be much better and more cost effective than 2-inch (5 cm) fingerling plants (Nehring 1986). As a result of these preliminary investigations, it was decided to include the Animas River as an additional stream in this study beginning in 1987. CRR and TAS rainbow fingerling plants were to be included in the evaluation together with the continued plants of brown trout fingerlings, as shown in Table 5.

The data in Table 8 contains the population estimates for all unmarked brown trout for both stations (Animas 1 and 2) combined since 1981. The highest densities recorded (for brown trout at age 1+) prior to the time when the sizes of the fingerlings stocked were increased were in 1982 and 1984, when the age $1+$ brown estimates were 711 and 757 , respectively. Nehring (1986) reported that $75-90 \%$ of the 711 age $1+$ browns captured in 1983 were from a plant of 2,088 brown fingerlings that ranged in size from $7.6-15.2 \mathrm{~cm}$ ($3-6 \mathrm{in}$.), while those from the 1984 plant averaged 5.9 cm (2.33 in.) at stocking. The age 1+ survivor's estimate from the 1985 plants were 1,071 from a plant that averaged 7.47 cm (2.94 in.) in length and were the largest brown fingerlings planted up through 1985 (Tables 5 and 8).

Table 8. Animas River brown trout life table 1977-87 from 32nd Street Bridge to Purple Cliffs for unmarked browns.

Year/ date	1986	1985	1984	1983	1982	1981	1980	1979	1978	1977
$12 / 81^{\mathrm{a}}$						116	444	236	45	3
$11 / 82$										
$12 / 83^{a}$					711	354	369	123	30	0
$12 / 85$				271	484	204	64	2	0	
$12 / 86$		1,071	757	78	242	116	46	8		
$12 / 87$	31	86	237	138	274	184	78	11		

[^9]Beginning in 1986 and continuing through 1987, the average size of the brown fingerling plants were increased to approximately 10 cm (4 in .) in an effort to further increase the survival rate. In addition, both the 1986 and 1987 plants were given an adipose clip to discover once and for all what portion of the brown trout population was coming from natural reproduction, either in the Animas River proper or side tributaries such as Hermosa Creek. As shown in Table 8, estimated density of unmarked browns from the 1986 year-class captured during the December 1987 electroshocking operation was 31 for the entire section. In contrast, the estimate of adipose-clipped brown trout from the 1986 plant was 958. Thus, out of a total estimate of 989 brown trout from the 1986 year-class, 97% (958) were from the adipose-clipped hatchery plant and 3\% (31) were from unknown sources.

The population estimates for the 1987 plant of adipose-clipped brown trout for Animas 1 and 2 were 62 and 1,351, respectively. The 1987 plant of adipose-clipped brown trout averaged 14.7 cm and ranged in size from 11 cm to 20 cm . They averaged 9.65 cm when stocked in late August 1987. The average increase in length was 5.09 cm in slightly more than 90 days after stocking. One hundred percent of all browns under 20 cm in length sampled in December 1987 were adipose-clipped.

Tasmanian (TAS) rainbow fingerlings were also stocked in the Animas River (sections 1 and 2) in late August 1987. These fingerlings were not marked and averaged 8.71 cm in length at stocking. They ranged in size from $11-21 \mathrm{~cm}$ total length and averaged 16.3 cm . Population estimates for the TAS rainbows for the Animas River, sections 1 and 2, were 116 and 1,324, respectively. Reiterating, the population estimates for the 1987 adipose-clipped plants of brown trout fingerlings were 62 and 1,351 for Animas River sections 1 and 2, respectively. If the sections were stocked with equal numbers of both species as shown in Table 5, what could be the explanation for the poor survival of the fingerlings planted in section 1 of the Animas River? The most likely explanation is that those stocked in section 2 were hand-stocked in small numbers evenly throughout the entire reach out of a Jon boat. In contrast, those fingerlings stocked in section 1 were planted out of hatchery trucks at fewer distribution points and much higher densities at each point. This technique probably leads to high losses to predation by larger brown trout and/or avian predators such as king fishers and mergansers. Heavy predation losses to brown trout were noted in the fingerling plants made on the Coller Wildlife area of the Rio Grande in both 1985 (Nehring 1986) and in 1987.

It is gratifying to see that both rainbow and brown trout fingerlings stocked in the Animas River in 1986 and 1987 are surviving at least as well as expected, if not better.

Blue River
The Blue River (between Dillon and Green Mountain reservoirs) was first stocked with fingerling rainbows (both CRR and TAS strains) in late-August 1987. Due to their small size at stocking, the slow growth rates in the Blue River (high elevation and cold water temperatures), and only 45 days between stocking and our population estimates, no population estimates were possible. However, we did collect some fingerlings of both (CRR and TAS) strains at the three electroshocking sites in October 1988. A few were also
collected in late-April 1988 while electroshocking under the I-70 overpass in Silverthorne. We should get some indication of survival in October 1988 when the average size should be in the $12-15-\mathrm{cm}$ range.

Gunnison River

An $8-\mathrm{km}$ (5 miles) section of the upper Gunnison River has received heavy plants of three hatchery strains of rainbow, and one wild (CRR) strain rainbow since the late summer of 1985. The fingerlings stocking history was given in Table 6. The HCC strain rainbows stocked in 1985 had totally disappeared by September 1986, with an estimated survival of 0.11% one year after stocking. This was the identical survival of the HCC strain in the State Bridge (SB) section of the Rio Grande, while survival of the HCC strain in the Coller Wildlife Area (CWA) section of the Rio Grande was only 0.017\% (Nehring 1987).

In September 1986, this $8-\mathrm{km}$ section of the upper Gunnison was stocked with 10,000 adipose-clipped Bellaire (BELL) strain rainbows which averaged 12.4 cm (4.9 in.) at stocking. In addition, $12,500 \mathrm{CRR}$ strain rainbows averaging 5 cm (2 in .) were also stocked the same day. Results of the 1987 electroshocking of the upper Gunnison River stations as well as comparative data from 1985 through 1987 are given in Table 9.

Table 9. Upper Gunnison River trout standing crop (15 cm and larger) estimates, September 1985-87.

	1985	1986	1987
Almont to Lost Canyon Resort Bridge (12.4 ha)			
Brown	2,990	3,123	3,715
Wild rainbow ${ }^{\text {c }}$	287	863	1,079
Catchable rainbow	1,152	769	1,524
Adipose-clipped rainbow	6,138 ${ }^{\text {a }}$	$0^{\text {a }}$	$180^{\text {b }}$
Total rainbows	4,883	1,386	2,785
Total trout	7,277	4,674	6,457
Lost Canyon Bridge to Rocky River Resort Bridge (15.1 ha)			
Brown	3,759	4,676	3,618
Wild rainbow ${ }^{\text {c }}$	258	275	928
Adipose-clipped rainbow	1,307a	$11^{\text {a }}$	$71^{\text {b }}$
Catchable rainbows	132	223	95
Total rainbow	1,394	601	950
Total trout	5,160	5,322	4,568

${ }^{a_{H C C}}$ strain rainbows
$\mathrm{b}_{\text {BELL }}$ strain rainbows
C Includes CRR rainbow starting in 1987

Brown trout population estimates have consistently increased between 1985 and 1987 at the Almont to Lost Canyon Resort Bridge while they have fluctuated up and down at the Lost Canyon to Rocky River Resort section. Wild rainbow estimates have increased dramatically in 1987 over the 1985-86 estimates for both sections. Catchable rainbow stocking on the Almont to Lost Canyon Resort Bridge section has been an on-going management practice through 1987 as this section is either on public land or open to public angling by virtue of a stocking agreement between the CDOW and private landowners.

The HCC strain rainbows stocked in August-September 1985 were found in abundance in September 1985 during the population estimation period. However, they were almost totally gone from both sections by September 1986. Only 11 remained of the 10,000 stocked, for an estimated survival of 0.011%. Similarly, of the 10,000 BELL strain rainbows stocked in late-summer 1986, an estimated 251 remained in September 1987, for an estimated survival of 2.5%. Both plants were adipose-clipped. The HCC strain averaged 16.5 cm in length and the BELL strain averaged 12.4 cm in length at stocking. Thus, both strains were certainly large enough at stocking to survive the rigors of stream life, assuming the genetic material and "wildness" was present in those strains.

It will be 1988 or 1989 before we begin to see any potential survival for the 1986 and 1987 plants of CRR rainbows showing up in the population estimates as these cohorts were both under 5 cm average size at stocking. However, we did collect some of both the CRR and TAS strain rainbows during our September 1987 population estimation procedures.

Rio Grande River

The stocking records for numbers, sizes, strains, and dates for the three study areas on the Rio Grande River are presented in Table 11. During the current segment of the study, a third study area was added to this investigation. The new area, the Rio Grande Fisherman Area (RGFA), is approximately 19 hectares in area and 6 km (3.7 miles) long, located just upstream of the U.S.F.S. Marshall Park Campground near Creede, Colorado. The other two study areas are the State Bridge (SB) section near De1 Norte and the Coller Wildlife Area (CWA) near South Fork.

Rainbow and brown trout population and biomass estimates for the SB section of the Rio Grande River from 1981 through 1987 are given in Table 10. Stocking of CRR fingerlings began in October 1984 and has continued since then. The increase in rainbow density and biomass estimates since 1985 has been dramatic. Examination of the rainbow life table data (Table 11) clearly indicates the dramatic increases in rainbow year-class strength since 1984. Survival of the 1984 and 1985 plants 2 years after stocking has been very good. It appears, heavy mortality occurs between the fry (age 0+) and juvenile (age 1+) life stages. Minimum survival at age $1+$ for the 1984 and 1985 cohorts is 4.7% and 12.4%, respectively. We stocked 12,500 CRR fingerlings in September 1986 that averaged 5.1 cm in length. The 1986 rainbow cohort estimate was 544 , for a minimum survival estimate of 4.35%. The term minimum survival is used, since there are no restrictions on emigration out of the section either upstream or downstream. Survival of the 1984 and 1985 cohorts at age $2+$ was estimated at 4.07% and 5.7%,
respectively. The fry survival rates at age $1+, 2+$, and $3+$ for the SB section are very similar to those reported by Hume and Parkinson (1988) for steelhead fry ranging in size from 0.2-6 g. Hume and Parkinson (1987) reported that stocking densities of steelhead fry between 0.3 and 0.7 fry $/ \mathrm{m}^{2}$ maximized the production of steelhead parr and smolts. They also reported that downstream dispersal of point-stocked fry was very poor, similar to the findings in other studies (Mortensen 1977; Egg1ishaw and Shackley 1980). We have found this to be the case in our studies as well.

Table 10. State Bridge trout population estimates, Rio Grande River, 1981-87.

Year	Browns			Rainbows		
	N	kg/ha	$\mathrm{N} / \mathrm{ha} 35 \mathrm{~cm}$	N	kg/ha	N/ha 35 cm
1981	5,168	39.3	29	295	2.8	4
1982	6,753	38.9	35	143	0.8	1
1983	8,948	45.4	31	285	1.9	2
1984	6,597	32.9	15	325	1.7	2
1985	6,372	30.9	28	896	3.5	3
1986	6,373	32.0	24	2,077	5.2	2
1987	7,483	35.8	35	1,791	4.1	

Table 11. State Bridge total rainbow trout per section, Rio Grande River.

Sample period		1986	1985	1984	1983	1982	Year class			1978	1977	1976	1975
Month	Year						1981	1980	1979				
Aug.	1982						212	75	94	137	31	0	0
Sept.	1983					62	108	21	39	55	0	0	0
Sept.	1984				140	67	95	5	23	0	0		
Sept.	1985			466	233	87	79	29	0				
Sept.	1986		1,652	407	163	64	7						
Sept.	1987	544	740	153	80	34	1						

All three study sections on the Rio Grande received the largest stocking of CRR and TAS strain rainbows in 1987 since the study began (Table 7). It was also the first planting of CRR strain rainbows that exceeded 10 cm (4 in .) in size. I am hopeful that we will see a large increase in rainbow density at all three study areas with the increase in both numbers and average size of fingerlings stocked.

Survival of stocked rainbow fingerlings in the CWA section of the Rio Grande continues to be lower than that in the SB section. Attributing all of the "wild" rainbows and adipose-clipped rainbows collected in 1987 to the 1986 plants results in an estimate of 2.6% survival over one year, compared to an estimated survival of 4.35% for the 1986 cohort of CRR strain rainbow in the SB section.

However, the estimated survival rate for the CRR strain rainbow was 3.0%, while the survival of BELL strain rainbow was estimated at 0.33%, an order of magnitude lower than the CRR strain. This is much lower than the estimated survival of the BELL strain plant of 3.78% for the 1986 cohort in the SB section. Considering that the average size of the BELL strain rainbows was 12.5 cm (4.9 in .) at stocking versus an average size of 5.1 cm (2 in .) for the 1986 CRR strain cohort, the cost-effectiveness of the CRR strain rainbows is obvious. The cost per 1,000 two-inch fingerlings at Roaring Judy Hatchery (the source of most of the 1986 plants in the Rio Grande) is $\$ 35.07$ versus $\$ 100.14$ per 1,000 for the 5 -inch fingerlings. Thus, the CRR strain rainbow are approximately three times more cost-effective and they survive at a higher rate. The cost of the 1986 BELL plant should be adjusted for the 15% poorer survival rate (compared to the 1986 CRR plant). Thus, the true cost is $\$ 115.24$, which is 3.24 times greater than the cost of the CRR strain.

The economic comparisons of the two strains (Bell and CRR) are more dramatic on the CWA section. Reiterating, the estimated survival of the 1986 CRR cohort was 3.0% versus 0.33% for the BELL strain. Thus, survival of the CRR strain was 9.09 times higher, making the real cost of the BELL cohort $\$ 910.27$ per 1,000 fingerlings or approximately 26 times more costly, i.e., $\$ 910.27$ versus $\$ 35.07$ per 1,000 fingerlings.

The 1986 year-class of "wild" rainbows for the RGFA was estimated at 794. If all of these fish were considered to be survivors of the 1986 plant of 13,300 CRR rainbows, the estimated survival would be 5.97%, somewhat better than both the SB and CWA sections. No BELL strain rainbow were stocked in the RGFA section in 1986.

RECOMMENDATIONS AND CONCLUSIONS

Expansion of the "Wild Trout Introductions" study to four streams, including the Animas, Blue, upper Gunnison, and Rio Grande rivers, should provide an excellent test of "wild" (CRR) and domestic hatchery strain (TAS) rainbows in natural stream conditions. The Blue River is the only true tailrace fishery situation of the four study streams.

Thus far, we have evaluated three domestic strain rainbows, HCC, and BELL strain rainbows (Tables 6 and 7) on the upper Gunnison and Rio Grande rivers, as well as the Eagle Lake rainbow (ELR) on the Arkansas River (Nehring 1987.). Compared to the CRR strain "wild" rainbow, all three domestic strains have been dismal failures when survival in the wild for longer than one year is the primary evaluation criterion. However, based on the survival of the TAS strain rainbows in the Fryingpan River for more than 4 years (Nehring 1987) and excellent survival in the Animas River 4 months after stocking, I am hopeful this "domestic" TAS strain rainbow may be more successful at surviving in the wild.

The first stocking of the CRR strain rainbow in excess of 10 cm (4 in .) average size took place in 1987. Thus, beginning in 1988 we will have the first evaluation of any potential benefits of increased average size at stocking using this bonafide wild rainbow stock in the Rio Grande River. It is readily apparent already that the CRR strain of "wild" rainbow is far superior to most "domestic" strain rainbows when it comes to long-term survival ($1-3$ years) in natural stream environments in Colorado. While the performance of the TAS strain rainbow has been outstanding on the Fryingpan River (Nehring 1986, 1987), its performance in a more natural (non-tailrace) stream environment remains untested. Evaluation of the first stocking (1987) of TAS rainbows in the study streams will come during the 1988-89 segment.

Tentative conclusions about expected survival rates of fingerling plants in the natural stream environment are as follows. First, a survival rate of $5-10 \%$ one calendar year after stocking seems to be a reasonable expectation for rainbow fingerlings under 10 cm (4 in .) total length. Secondly, point stocking is much less effective than scatter-stocking, preferably by boat. Thus, survival of boat-stocked fingerling, both rainbow and brown trout, has been far superior to point-stocking (walking) techniques on the upper Gunnison, Rio Grande, and Animas rivers. These conclusions are supported by the findings of others (Hume and Parkinson 1987, 1988).

LITERATURE CITED

Becker, C.D., D.A. Neitze1, and C.S. Abernethy. 1983. Effects of dewatering on chinook salmon redds: tolerance of four developmental phases of one-time dewatering. N. Am. J. Fish. Mgmt. 3(4):373-382.
\qquad , \qquad , and D.H. Fickeisen. 1982. Effects of dewatering on chinook salmon redds: tolerance of four developmental phases to daily dewaterings. Trans. Am. Fish. Soc. 111:624-637.

Butler, R.L. and V.M. Hawthorne. 1968. The reactions of dominant trout to changes in overhead cover. Trans. Am. Fish. Soc. 97(1):37-41.

Egglishaw, H.J. and P.E. Shackley. 1980. Survival and growth of salmon, Salmo salar (L.), planted in a Scottish stream. J. Fish Biol. 16:565-584.

Hume, J.M.B. and E.A. Parkinson. 1988. Effects of size at and time of release on the survival and growth of steelhead fry stocked in streams. N. Am. J. Fish Manage. 8:50-57.
\qquad and \qquad - 1987. Effect of stocking density and the survival, growth, and dispersal of steelhead trout fry (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 44:271-281.

Mortensen, E. 1977. The population dynamics of young trout (Salmo trutta L.) in a Danish brook. J. Fish Biol. 10:23-33.

Nehring, R.B. 1988. Stream fisheries investigations. Fish flow investigations. Colo. Div. Wildl. Job 1 Final Report, Fed. Aid Proj. F-51. 34 p.
\qquad - 1987. Stream fisheries investigations. Special regulations evaluations. Colo. Div. Wildl. Job 3 Final Report, Fed Aid Proj. F-51. 118 p.
\qquad - 1986. Stream fisheries investigations. Colo. Div. Wild1. Job Prog. Rep., Fed. Aid. Proj. F-51. 124 p. and R.M. Anderson. 1985. Stream fisheries investigations. Colo. Div. Wildl. Job. Prog., Rep. Fed. Aid Proj. F-51. 171 p. and \qquad - 1984. Recruitment and survival of young-of-the-year (YOY) brown trout (Salmo trutta L.) in the South Fork of the Rio Grande River versus parent spawner density, stream discharge, and fry habitat. Proc. of the 19th Ann. Meeting, Colo.-Wyo. Chapter Am. Fish. Soc., March 7-8, 1984. 9 p.
\qquad , \qquad , and D. Winters. 1983. Stream fisheries investigations. Colo. Div. Wild1. Job. Prog. Rep., Fed. Aid Proj. F-51-R-8. 188 p. and D.D. Miller. 1987. The influence of spring discharge leve1s on rainbow and brown trout recruitment and survival, Black Canyon of the Gunnison River, Colorado, as determined by IFIM/PHABSIM models. Proc. West. Div. Am. Fish. Soc. In Press.

Reiser, D.W. and R.G. White. 1983. Effects of complete redd dewatering on salmonid egg-hatching success and development of juveniles. Trans. Am. Fish. Soc. 112:532-540.
and \qquad - 1981. Incubation of steelhead trout and spring chinook salmon eggs in a moist environment. Prog. Fish. Cult. 43:131-134.

Tanner, H.A. 1954. Cheesman project. Quarterly Rep., Colo Co-op. Fish. Res. Unit. 1:4-12.

Ward, J.V. 1984. Ecological perspectives in the management of aquatic insect habitat, Pp. 558-577 In V.H. Resh and D.M. Rosenberg, eds. The Ecology of Aquatic Insects, Praeger, NY.

Table I-1. Animas River standing crop and biomass estimates, December 1987.

Study area	$\frac{\text { Study }}{\substack{\text { Length } \\(\mathrm{m})}}$	$\frac{\text { Section }}{\frac{\text { Width }}{(\mathrm{m})}}$	Size Area (ha)	Species	Population statistics			
					N	$\begin{gathered} \text { C.I. } \end{gathered}$	N/ha	$\begin{aligned} & \text { trout/ha } \\ & \geq 35 \mathrm{~cm} \end{aligned}$
Animas 1-Four Corners Marine ${ }^{2}$ to Purple Cliffs above reservation	3,860	30.5	11.8	Brown-unmarked ${ }^{\text {a }}$	269	+125	23	14
				Brown-adipose clip ${ }^{\text {b }}$	199	+183	17	0
				Rainbow (TAS) ${ }^{\text {c }}$	83	$\pm+112$	7	0
				Catchable trout	163	- +89	14	1
				A11 rainbows	238	+134	20	1
				Total trout	693	± 241	59	16
Animas 2-32nd Street Bridge to Highway 160 Bridge near Holiday Inn	4,346	30.5	13.2	Brown-unmarkeda	323	+141	24	11
				Brown-adipose clipb	1,808	+1,084	137	110
				Rainbow (TAS) ${ }^{\text {c }}$	1,324	-1,084	100	0
				Catchable rainbow	1,316	+683	100	2
				A11 rainbows	4,218	+1,256	320	4
				Total trout	3,800	$\mp 1,058$	288	13

a Browns from 1985 and older year-classes.
$\mathrm{b}_{\text {Browns }}$ from adipose-clipped plants in 1986 and 1987.
${ }^{\text {CTasmanian }}$ strain rainbow plants from 1987.
dFormer designation was Pueblo Paving.

Table I-2. Summary of Animas River trout population density and biomass statistics from 1981 through 1987.

Statistic	$12 / 81$	$11 / 82$	$12 / 83$	$2 / 85$	$12 / 86$	$12 / 87$

[^10]Table I-3. Blue River standing crop and biomass estimates, October 19, 1987.

Study area description	Study section size			Population statistics					
	$\frac{\text { Study }}{\text { Length }} \begin{aligned} & (\mathrm{m}) \end{aligned}$	section Width (m)	$\frac{\text { size }}{\text { Area }}$ (ha)	Species	N	$\begin{aligned} & \text { 95\% } \\ & \text { C.I. } \end{aligned}$	N/ha	kg/ha	$\begin{aligned} & \text { trout } / \mathrm{ha} \\ & \geq 35 \mathrm{~cm} \\ & (14 \mathrm{in} .) \end{aligned}$
Stream improvement section above Blue River campground	305	20.1	0.613	Brown	737	± 112	1,203	193	51
				Wild rainbow	13	+5	21	7.2	10
				Rainbow ${ }^{\text {a }}$	40	± 13	65	22.1	36
				Brook	3	+3	5	0.4	0
				Total trout	777	$\pm 1 \overline{1} 1$	1,268	222.7	94
Blue River	366	18.6	0.680	Brown	549	± 165	807	132.3	59
U.S.F.S.				Wild rainbow	4	+2	6	2.2	2
Campground				Rainbow ${ }^{\text {a }}$	2	± 1	3	0.1	0
				Brook	1	± 2	1	0	0
				Total trout	541	$\pm 1 \overline{5} 5$	795	134.7	60
Blue River	274	24.7	0.678	Brown	490	+168	723	120.8	25
Wildlife Area-				A11 rainbow	15	± 18	22	4.3	11
near Ute Pass				Brook	1		--	--	0
turn-off				Total trout	522	± 179	770	125.1	37

aAdipose-clipped rainbows.

Table I-4. Gunnison River standing crop and biomass estimates, September-November, 1987.

Study area description	Study section size			Population statistics					
	Length (m)	Width (m)	$\begin{aligned} & \text { Area } \\ & \text { (ha) } \end{aligned}$	Species	N	$\begin{aligned} & 95 \% \\ & \text { C.I. } \end{aligned}$	N/ha	kg/ha	$\begin{aligned} & \text { trout } / \mathrm{ha} \\ & \geq 35 \mathrm{~cm} \end{aligned}$
Almont to Lost Canyon Resort Bridge 8 trout/day, public access	3,700	33.5	12.4	Brown	3,715	+907	300	92.6	36
				Rainbow-wild	1,079	+833	87	19.7	3
				Catch. rainbow	1,524	± 827	123	21.7	0
				Adipose rainbowa	180	± 120	15	1.7	0
				Other trout ${ }^{\text {b }}$	4	- --	--	--	0
				A11 rainbow	2,785	+1,056	225	43.1	3
				All trout	6,457	$\pm 1,276$	521	135.7	36
Lost Canyon Resort to Rocky River Resort Bridge - 8 trout/day restricted private access	4,500	33.5	15.1	Brown	3,618	+785	240	75.8	27
				Rainbow-wild	928	± 670	61	18.6	15
				Rainbow-adipose ${ }^{\text {a }}$	71	+47	5	0.7	0
				Catch. rainbow	95	+95	6	1.3	0
				Total rainbow	950	$\pm \overline{4} 40$	63	20.6	15
				Total trout	4,568	¢868	303	96.4	40
Duncan-Ute Trail 4 trout/day; 1 over 16 inches; catch-andrelease 12-16 inches	3,220	31.0	10.0	Brown	12,360	+3,970	1,236	170.2	51
				Rainbow	11,105	$\pm 3,326$	1,110	236.9	156
				Total trout	23,383	$\pm 5,123$	2,338	407.1	223
Smith Fork-North Fork 4 trout/day; 1 over 16 inches; catch-andrelease $12-16$ inches	6,440	31.0	20	Brown	6,382	+2,257	319	65.0	48
				Rainbow	12,154	$\pm 3,608$	608	185.7	114
				Total trout	18,403	$\pm 3,996$	920	250.7	160
North Fork-Austin 8 trout/day; limited access; heavy siltatio	12,900	45.7	59	Brown	4,699	+3, 030	68	17.8	14
				Rainbow	7,865	$\pm 8,966$	114	33.6	22
				Total trout	11,727	$\pm 5,432$	170	51.4	34

[^11]Table I-5. Summary of Gunnison River trout population statistics, 1981-87

Species	Size (cm)	1981	1982	1983	1984	1985	1986	1987
Duncan - Ute Trail area (2 miles $-3.2 \mathrm{~km}-10 \mathrm{ha}$)								
Brown	15 \& up	869	603	586	541	330	469	1,236
Brown	30 \& up	194	141	139	58	58	112	228
Brown	35 \& up	71	43	39	18	13	31	72
Brown	40 \& $\mathrm{up}^{\text {a }}$	119	97	81	59	32	37	211
Rainbow	15 \& up	339	392	427	217	346	275	1,110
Rainbow	30 \& up	140	181	253	162	333	193	273
Rainbow	35 \& up	84	97	146	110	261	190	194
Rainbow	40 \& upa	600	423	651	401	892	1,447	1,573
Brown biomass	(kg/ha)	201.2	143.8	134.5	54.6	53.6	69.8	170.2
Rainbow biomass	(kg/ha)	110.7	110.3	149.8	84.5	164.5	132.8	236.9
Smith Fork - North Fork section (4 miles - 6.4 km - 20 ha)								
Brown	15 \& up	115	186	407	351	249	128	319
Brown	30 \& up	14	40	128	61	55	76	105
Brown	35 \& up	8	16	34	22	26	38	53
Brown	40 \& up ${ }^{\text {a }}$	69	120	216	128	126	165	447
Rainbow	15 \& up	355	228	268	275	205	180	608
Rainbow	30 \& up	16	66	169	206	193	162	246
Rainbow	35 \& up	10	16	51	140	140	155	190
Rainbow	40 \& up	234	192	222	626	770	1,895	2,504
Brown biomass	(kg/ha)	25.8	48.0	104.5	41.8	45.4	33.3	65.0
Rainbow biomass	(kg/ha)	50.5	51.3	81.3	99.4	91.3	98.8	185.7

aA1l estimates are per hectare (2.47 acres) except for number 40 \& up which are for the entire section of river.

Table I-6. Rio Grande River standing crop and biomass estimates, September 1987.

Study area	Study section size Length (m) Width (m) (ha)			Population statistics					
				Species	N	$\begin{aligned} & 95 \% \\ & \text { C.I. } \end{aligned}$	N/ha	kg/ha	$\begin{aligned} & \text { trout } / \mathrm{ha} \\ & \geq 35 \mathrm{~cm} \end{aligned}$
State Bridge section	10,950	46.0	50.4	Brown	7,483	+1,422	148	35.8	35
				Rainbow-wild ${ }^{\text {a }}$	1,791	¥1,054	31	6.4	3
				Rainbow-adipose ${ }^{\text {b }}$	376	- +260	7	0.9	0
				Rainbow-L. pelv.c	3	- 3	0	0	0
				Total rainbow	1,791	$\pm 1,1 \overline{0} 0$	36	7.1	3
				Total trout	9,212	$\pm 1,625$	183	43.1	25
Coller Wildlife Area	3,540	46.0	16.3	Brown	4,164	+714	255	50.0	16
				Rainbow-wild ${ }^{\text {a }}$	280	¥157	17	3.0	1
				Rainbow-adipose ${ }^{\text {b }}$	31	- +40	2	0.1	0
				Rainbow-cat.	375	+282	23	3.6	0
				Total rainbow	764	∓ 373	47	6.7	1
				Total trout	4,909	± 795	301	56.7	17
Rio Grande Fisherman Area	5,990	31.7	19.0	Brown	2,862	+638	151	31.3	18
				Rainbow-wilda	1,112	\mp	59	10.5	5
				Rainbow-adipose ${ }^{\text {d }}$	615	∓ 873	33	1.2	0
				Rainbow-cat.	1,000	∓ 369	53	8.6	0
				Total Rbw	2,456	± 657	130	20.8	5
				Total trout	5,339	± 915	283	51.6	23

aRainbows from wild Colorado River stock spawned on the Colorado River (1984, 1985, 1986).
$\mathrm{b}_{\text {Rainbows }}$ from Bellaire hatchery strain stocked in September 1986.
${ }^{c}$ Catchable plant survivors from a pelvic-clipped plant of 2,316 Colorado River stock rainbows -
$4.2 / 1 \mathrm{~b}$; planted on August 6, 1986.
dargest of adipose-clipped CRR rainbows stocked in August 1987.

Table I-7. South Platte River standing crop and biomass estimates, October 22-24, 1987.

Study area description	Study section size			Population statistics					
	Length (m)	Width (m)	$\begin{gathered} \text { Area } \\ \text { (ha) } \end{gathered}$	Species	N	$\begin{aligned} & 95 \% \\ & \text { C.I. } \end{aligned}$	N/ha	kg/ha	$\begin{aligned} & \text { trout/ha } \\ & \geq 35 \mathrm{~cm} \end{aligned}$
Upper Canyon catch and release	183	18.0	0.329	Brown	234	± 4			19
				Rainbow	195	$\ddagger 5$	763	314.8	165
				Total trout	429		$1,677$		184
Lower Canyon catch and release	183	22.6	0.413	Brown			822		19
				Rainbow	230	$\ddagger 34$	735	317.3	177
					486	$\ddagger 39$	1,552	508.0	189
Above Deckers Bridge 2 trout over 16 inches	183	22.6	0.413	Brown			2,049	319.1	6
				Rainbow	224	$\ddagger 25$	716	185.1	52
				Total trout		± 33	2,756	504.2	54
Below Deckers Bridge 2 trout over 16 inches	183	23.2	0.424	Brown	621	+30	1,984	248.3	11
				Rainbow	278	± 20	${ }^{1} 889$	146.1	33
				Total trout	899	± 34	2,873	394.4	44
Scraggy View Picnic area (U.S.F.S.) 2 trout/day-no size restructions	183	23.2	0.424				1,741		7
				Rainbow	151	± 5	1,781	81.0	20
				Total trout		$\pm \overline{11}$	2,222	286.1	26
Twin Cedars area 2 trout/day-no size restrictions	183	23.2	0.424						
				Wild rainbow	148	∓ 25	356	46.4	3
				Total trout	552	± 23	1,325	160.8	3

Table I-8. Rainbow and brown trout numbers/ha and biomass ($\mathrm{kg} / \mathrm{ha}$) for the South Platte River 1979-87.

Table II-1. Back calculated lengths (cm) of trout from F-51 study streams 1987.

Table II-1. Back calculated lengths (cm) of trout from F-51 study streams 1987 (continued).

Table II-1. Back calculated lengths (cm) of trout from F-51 study streams 1987 (continued).

[^12].24

Table II-1. Back calculated lengths (cm) of trout from F-51 study streams 1987° (continued).

*Thermal check

Table II-2. Life Tables - Blue River (brown trout/ha).

| Sample period | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Season Year class | | | | | | | | | | |
| 1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 | 1979 | 1978 | 1977 | 1976 |

Spring 1983												
Spring	1984					308	293	192	46	17	2	
Fal1	1984				14	289	216	35	20	17	2	
Fall	1985			266	196	445	170	35	1			
Fal1	1986		624	131	357	167	67	8				
Fall	1987	322	634	109	256	64	33	3				
Spring 1981 Blue River Campgr												
Spring	1981								87	56	13	1
Spring	1983					160	124	44	4	-	--	--
Spring	1984					246	379	261	41	9	8	--
Fall	1985			210	164	292	319 96	57	16	7	--	--
Fall	1986		256	106	211	114	33	9	4	0		
Fall	1987	274	439	53	157	49	22	2	0			

Spring 1983		Blue River below Highway 9 Bridge (near Slate Creek)									
						122	252	185	23	--	
Spring	1984					340	214	197	70	16	3
Fall	1984				15	303	268	60	25	-	-
Fall	1985			98	179	331	97	23	3		
Fall	1986		278	51	204	102	29	8	2		
Fall	1987	215	310	50	207	39	16	1	0		

Table II-2. Life Tables - Gunnison River (numbers/ha) (continued).

Duncan - Ute Trail (brown trout)											
Fall	1981							641	170	31	3
Fall	1982						363	216	14	0	0
Fall	1983					242	300	40	2	2	0
Fall	1984				82	358	90	10	1	0	0
Fall	1985			36	56	208	30	0	0		
Fall	1986		345	24	84	14	1	0			
Fall	1987	982	188	6	20	6	1	0			
			Duncan - Ute Trail (rainbow trout)								
Fall	1981							197	91	41	10
Fall	1982						212	85	71	20	3
Fall	1983					111	128	160	18	10	0
Fall	1984				4	15	121	70	5	2	0
Fall	1985			7	4	170	151	11	3	0	
Fall	1986		61	11	32	84	63	8	0		
Fall	1987	902	77	4	21	36	39	2			

Fall 1986
Fall 1987

Rocky						River - Lost
	56	67	110	64	18	1
83	95	40	41	19	2	1

Fall 1986
Fall 1987

	Rocky	River	-	Lost	Canyon
	5	2	(rainbow	trout)	
87	30	16	4	4	4

Fa11 1981
Fall 1982
Fall 1983
Fall 1984
Fa11 1985
Fall 1986
Fall 1987
$\frac{\text { Smith Fork - North Fork (brown trout) }}{88}$
$\left.\begin{array}{rrrrrrrrr} \\ & & & & & & 88 & 13 & 3\end{array}\right) 2$

Smith Fork - North Fork (rainbow trout)

Fall	1981					,		177	26	9	6
Fall	1982						167	42	11	7	1
Fall	1983					43	133	86	6	0	0
Fall	1984				8	17	162	80	3	1	0
Fall	1985			1	6	108	84	4	1	0	
Fall	1986		13	16	37	65	39	5	0		
Fall	1987	483	171	11	24	21	21	4	0		

Table II-2. Life Tables - Rio Grande River (brown trout/ha) (continued).

Sample period		Year class											
Month	Year	1986	1985	1984	1983	1982	1981	1980	1979	1978	1977	1976	1975
Coller fly water													
Aug.	1981							65	41	66	64	8	0
Aug.	1982						76	80	93	3	0	0	0
Sept.	1983					74	132	65	12	3	0	0	0
Sept.	1984				61	144	72	24	3	1	0		
Sept.	1985			56	63	117	34	3	0	0			
Sept.	1986		68	66	40	68	11	0					
Sept.	1987	51	73	74	46	21	0						
State Bridge section													
Aug.	1981							26	19	36	11	3	2
Aug.	1982						65	21	33	12	2	0	0
Sept.	1983					59	77	21	18	4	0	0	0
Sept.	1984				39	42	28	16	5	1	0		
Sept.	1985			43	29	33	16	5	1	0	0		
Sept.	1986		45	29	27	19	7	1					
Sept.	1987	102	55	21	11	7	1	1					

Aug.	1982					71	98	190	19	0	0
Sept.	1983				61	123	58	38	13	0	0
Oct.	1984			43	30	50	89	14	6	0	
Oct.	1985		9	67	96	16	5	1	0		
Oct.	1986	33	45	63	13	13	11				

$\left.\begin{array}{llllllrrrrrrr}\text { Aug. } & 1982 & & & & & & 212 & 75 & 94 & 137 & 31 & 0\end{array}\right) 0$
${ }^{\mathrm{a}}$ Total rainbows/section not per hectare.

Table II-2. Life Tables - South Platte River (brown trout/ha) (continued).

Sample period		Year class											
Season	Year	1986	1985	1984	1983	1982	1981	1980	1979	1978	1977	1976	1975
Upper Canyon section - catch-and-release													
Fall	1979									233	284	218	35
Spring	1980								6	230	385	75	0
Fall	1980								252	568	176	12	0
Spring	1981							12	162	318	43	8	0
Fall	1981							46	203	170	19	0	0
Fall	1982						165	205	203	43	0	0	0
Fall	1983					193	637	412	98	22			
Fall	1984				50	516	191	4					
Fall	1985			119	241	284	36	0					
Fall	1986		123	363	210	11	0						
Fall	1987	219	314	295	66	21	0						

Lower Canyon section - catch-and-release

Fall	1979		$\begin{array}{llll}202 & 364 & 421 & 57\end{array}$										
Spring	1980								22	237	595	195	0
Fall	1980								283	563	165	50	0
Spring	1981							36	187	539	242	8	0
Fall	1981							98	286	293	29	0	0
Fall	1982						164	189	235	128	22	0	0
Fall	1983					158	605	197	28	4			
Fall	1984				87	447	269	31					
Fall	1985			117	208	240	56						
Fall	1986		314	274	225	19	0						
Fall	1987	165	276	292	56	25	0						

Table II-2. Life Tables - South Platte River (brown trout/ha) (continued).
Sample period

Season Year | Year class |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table II-2. Life Tables - South Platte River (rainbow trout/ha) (continued).

Sample period		Year class											
Season	Year	1986	1985	1984	1983	1982	1981	1980	1979	1978	1977	1976	1975
Upper Canyon section - catch-and-release													
Fall	1979									106	682	583	56
Spring	1980									177	786	626	78
Fall	1980								35	344	655	288	139
Spring	1981							4	26	375	505	187	70
Fal1	1981							10	155	434	137	49	7
Fal1	1982						101	70	132	328	209	32	0
Fall	1983					763	182	335	218	81	8		
Fall	1984				84	497	522	156	168	29	1		
Fall	1985			10	70	780	412	63	37	5	0		
Fal1	1986		14	15	168	666	218	43	4				
Fal1	1987	61	41	136	388	137	0						
Lower Canyon section - catch-and-release													
Fal1	1979									105	758	685	88
Spring	1980									93	732	703	114
Fall	1980								20	621	503	71	0
Spring	1981							8	38	494	873	392	0
Fall	1981							23	86	465	224	45	0
Fall	1982						44	44	68	300	239	44	4
Fall	1983					848	235	398	232	109			
Fall	1984				72	238	522	189	127	44			
Fall	1985			15	39	433	248	32	23	1			
Fall	1986		39	3	78	418	211	64	8				
Fall	1987	119	32	72	345	165							

$\frac{\text { Below Deckers Bridge section }}{445139} 650$
Fa11 1982
Fa11 1983
Fall 1984
Fa11 1985
Fa11 198
$\begin{array}{llllllr}\text { Fall } & 1987 & 454 & 104 & 159 & 141 & 31\end{array}$

Table II-2. Life Tables - South Platte River (rainbow trout/ha) (concluded).

Scraggy View section													
Fall	1979									89	134	13	0
Spring	1980									53	67	17	1
Fall	1980								162	68	6	0	0
Spring	1981								86	50	6	0	0
Fal1	1981							44	62	20	2	0	0
Fall	1982						91	28	31	13	0	0	0
Fall	1983					247	142	17	0	0	0	0	
Fall	1984				51	75	12	0	0				
Fall	1985			24	48	114	12	0	0				
Fall	1986		174	33	36	63	15	0					
Fall	1987	299	79	57	41	6	0						
				Twin Cedars									
Fall	1982						237	29	15				
Fall	1983					84	31	4	0				
Fal1	1984				74	58	4	2	1				
Fall	1985			21	57	2	0	0	0				
Fall	1986		55	23	23	20	2						
Fall	1987	278	44	19	10	2	0						

Table III-1. Creel census, voluntary postcard (complete trip), Rio Grande River Marsha11 Park Fisherman Area, June-August 1987, 非2539.

Statistics	June mean	July mean	August mean	mean	Totals
FM hours	1,123	3,493	2,900		S.E.
Total catch	1,410	3,069	3,629	8,108	1,402
Creel catch	966	1,829	2,373	5,168	1,121
Rainbow catch	493	2,012	3,052	5,557	826
Rainbow creeled	270	1,261	2,070	3,601	632
Brown catch	917	763	577	2,257	702
Brown creeled	697	324	303	1,324	678
Rainbow CPMH	.439	.576	1.052	.739	.085
Brown CPMH	.817	.218	.199	.300	.085
Total CPMH	1.256	.879	1.251	1.079	.150

Table III-2. Creel census, count-interview (incomplete trip), Rio Grande River Marshall Park Fisherman Area, June-August 1987, 非42539.

	June mean	July mean	August mean	mean	Totals	
SM hours	1,116	3,478	2,900	7,494	663	
Total catch	347	1,971	1,976	4,294	672	
Creel catch	228	1,020	1,666	2,914	526	
Rainbow catch	62	1,311	1,652	3,025	499	
Rainbow creeled	62	877	1,449	2,388	429	
Brown catch	285	660	324	1,269	373	
Brown creeled	166	144	216	525	176.5	
Rainbow CPMH	.056	.377	.570	.404	.059	
Brown CPMH	.255	.190	.112	.169	.048	
Total CPMH	.311	.567	.681	.573	.079	

Table III-3. Water temperature data for the Blue River, 1987.

	May	Jun	Jul	Aug	Sep	Oct
Upper						
Mean monthly $\mathrm{T}(\mathrm{C})$	7.7	11.5	12.4	8.1		
Mean monthly Range	10.8	13.3	14.1	11.1		
Mean monthly Range	$13.8-7.7$	$15.8-10.8$	$17.2-11.0$	$13.4-8.8$		
	5.1	9.2	9.1	5.6		
Lower $^{\text {a }}$						

aJune, September, and October were partial months.

[^0]: a Deckers area YOY/ha
 ${ }^{\text {b }}$ Cheesman Canyon 1+/ha

[^1]: ${ }^{\text {a }}$ Electroshocking pass only - not a population estimate. Water was too deep; channel deepened by 1 foot or more by 1984 runoff.

[^2]: ${ }^{\mathrm{a}}$ Number caught (no estimates).

[^3]: a Based on one electroshocking pass only; all other data based on population estimates.

[^4]: ${ }^{\text {a }}$ Total rainbows/section not per hectare.

[^5]: ${ }^{\text {a Number }}$ in parenthesis is young-of-the-year/ha.

[^6]: ${ }^{\text {a Sample taken about } 1 \text { mile below original Elsinore Cattle Company site. }}$

[^7]: aThese fingerling were hand-stocked and distributed out of a Jon boat floating through the section. All others were point stocks or dumps from stocking truck.

[^8]: aApproximately one-third of the trout were boat shocked in the upper one-third of the section while two-thirds were point stocked at two points approximately one-half and three-fourths of the distance through the section.

[^9]: $\mathrm{a}_{1} 981$ and 1983 estimates went only from Durango Hatchery to Purple Cliffs; thus, estimates are probably low when compared to 1982 and 1985.

[^10]: aEstimates in 1981 and 1983 ran from the Durango Hatchery to the Holiday Inn (1.2 miles).

[^11]: aAdipose-clipped Bellaire (BELL) strain rainbow, planted on September 23, 1986.
 bIncludes brook, cutthroat, and Snake River cutthroat.

[^12]: $\begin{array}{lllllll}56 & 2 & 15.1 & .30 & 8.6 & .32\end{array}$

