ABSTRACTS

BIOLOGICAL SCIENCES – TERRESTRIAL

Montana Chapter of the Wildlife Society 49st Annual Meeting

Multiplying Human Impacts Bordering Open Space: Challenges for Wildlife Habitat and Connectivity Protection

FEBRUARY 22-25, 2011

MISSOULA, MONTANA

GENERAL ABSTRACTS Alphabetical By First Author's Last Name (* Denotes Presenter)

EVALUATION OF WILDLIFE GUARDS AT ACCESS ROADS

Tiffany D.H. Allen,* Western Transportation Institute, Montana State University, P.O. Box 174250. Bozeman, Montana 59717

Marcel P. Huijser. Western Transportation Institute. Montana State University. P.O. Box 174250 Bozeman, Montana 59717.

David W. Willey, Department of Ecology, Montana State University, 310 Lewis Hall. Bozeman, Montana 59717

The reconstruction of 90.6 km of U.S. Highway 93 from Evaro to Polson, MT on the Flathead Indian Reservation includes 41 fish and wildlife crossing structures and 13.4 km of road with wildlife fencing. These measures are aimed at reducing wildlife-vehicle collisions, while allowing wildlife to cross the road. In fenced road sections, gaps for side roads are mitigated by wildlife guards (similar to cattle guards). We focused on a 1-km fenced section where animals can either cross the road using five crossing structures (4 culverts, 1 bridge), or they can access the road through two guards on the east side and cross using jump-outs, i.e., earthen ramps that allow animals in fenced areas to jump down to safety, on the west side. We monitored wildlife movements with cameras at the two guards and in one large crossing structure adjacent to a guard. We investigated how effective these guards are in keeping deer (Odocoileus spp.) from accessing the road. We also compared movements across a guard to those through a crossing structure. The guards were 85 percent or more effective in keeping deer from accessing the road, and 93.5 percent of deer used the crossing structure instead of an adjacent guard when crossing the road. Though the guards were not an absolute barrier to deer, the results indicated that deer were substantially discouraged from crossing the guards, and the vast majority crossed the road using the crossing structure rather than the guard, indicating that guards are an effective means of mitigation.

USING CAMERAS EFFECTIVELY TO MONITOR WILDLIFE

Ryan Alter,* Alter Enterprise, LLC., 107 S. Easy Street, Missoula, Montana 59802, ryan@alterenterprise.com

Tracy Holland, Alter Enterprise, LLC., P.O. Box 593, Lolo, Montana 59847, tracy@alterenterprise.com

There are two important wildlife management issues that can be solved by using the appropriate wildlife camera. The first is human interference in wildlife behavior studies. As much as researchers try to do everything possible so animals won't notice their presence during a study, most wildlife have a keen senses that alert them to humans nearby and cause them to react differently to situations. Using motion-sensored cameras eliminates the human factor and allows wildlife to behave more naturally. Another important issue that wildlife conflict managers come across is not having enough time in the day. Our study used remote uploading, wireless wildlife cameras to help biologists involved in conflict management situations with grizzly bears (Ursus arctos horribilis). The biologists were able to easily set up the cameras near residents who had complained of grizzly bears damaging property. Having the cameras automatically upload pictures allowed the biologist to observe the wildlife conflicts and the status of the deterrent measures from a remote location. The biologists could view the pictures almost immediately through their email and know what was occurring at the site. If there was a trap or deterrent set up, the biologist could see whether an animal was caught and needed to be removed, or could similarly observe that the trap was empty and would save themselves a trip to the site. This saved innumerable man hours of physically checking the traps and conflict sites and even saved the life of an owner's dog that had unknowingly been trapped in a leg snare.

HOW TO TRICK A WOLF: MANIPULATING PACK MOVEMENTS WITH BIOFENCING

David E. Ausband,* Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59812

Michael S. Mitchell, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59812

Wolves (*Canis lupus*) have a relatively wide distribution in the northern Rockies and can conflict with livestock production in certain areas. Tools currently available to mitigate wolf/ livestock conflict can be short-lived in their effectiveness or altogether ineffective. Wolves use scent-marking to establish territories and avoid intraspecific conflict. We hypothesized that human-deployed scent-marks could be used to manipulate wolf pack movements in Idaho. We deployed 64.7 km of biofence within three wolf pack territories during summer 2010. Location data from collared wolves showed little to no trespass of the biofence. Sign surveys at predicted rendezvous sites yielded little to no recent wolf use of exclusion areas. Lastly, a habitually depredating wolf pack was not implicated in any depredations. Our pilot test provides preliminary evidence that wolf movements can be manipulated using human-distributed scent-marks.

WOLF MANAGEMENT IN THE NORTHWESTERN UNITED STATES

Edward E. Bangs,* USDA Fish and Wildlife Service, 585 Shepard Way, Helena, Montana 59601, ed_bangs@fws.gov

Mike Jimenez, USDI Fish and Wildlife Service, Jackson, Wyoming Carolyn Sime, Montana Fish, Wildlife and Parks, Helena, Montana 59620 Jon Rachael, Idaho Department of Fish and Game, Boise, Idaho Curt Mack, Nez Perce Tribe, Lapwai, Idaho Doug Smith, USDI National Park Service, Yellowstone National Park, Wyoming Kenneth Mills, Wyoming Game and Fish Department, Pinedale, Wyoming Jeff Green, USDA APHIS, Wildlife Services, Denver, Colorado

Gray wolves (*Canis lupus*) were deliberately eliminated from the northern Rocky Mountains (NRM) by 1930. Restoration began in 1986. There are currently nearly 120 breeding pair and 1800 wolves. Wolf restoration initially proceeded with more benefits and fewer problems than predicted. However, conflicts have steadily increased since 2002 when the population first met its minimum recovery goal. About \$40 million has been spent since 1974 and the management program currently costs >\$4 million/yr. Wolves were delisted in 2008 and 2009 but relisted by federal court order in 2009 and 2010. While the NRM wolf population is biologically recovered, public opinion remains divisive and the legal, political, and policy decisions will continue to be litigated by a diversity of interests. Science is a poor tool to resolve the differing human values that continue to be debated with great passion through wolf symbolism.

CURRENT STATUS OF TRUMPETER SWAN REINTRODUCTION AT THE FLATHEAD INDIAN RESERVATION

Dale M. Becker,* Tribal Wildlife Management Program, Confederated Salish and Kootenai Tribes, P.O. Box 278, Pablo, Montana 59855, daleb@cskt.org

Janene S. Lichtenberg, Tribal Wildlife Management Program, Confederated Salish and Kootenai Tribes, P. O. Box 278, Pablo, Montana 59855, janenel@cskt.org

The Confederated Salish and Kootenai Tribes, in partnership with other agencies and non-governmental organizations, commenced a project to reintroduce trumpeter swans (*Cygnus buccinator*) at the Flathead Indian Reservation in 1996. Between 2002 and 2010 191 swans were released on the Reservation. Released swans generally wintered locally in the lower Flathead River drainage and its tributaries, likely due to mild winter weather conditions, abundant open water and ample food resources. Wintering swans from the project were also observed in southwestern Montana, northeastern Colorado and eastern Idaho, but few of these known migrants survived. Collisions with overhead power lines accounted for the majority of documented mortalities. Cooperative efforts with the local electrical utility are underway to mark lines and the marking seems to have reduced the incidence of collision mortalities. The first wild-nesting trumpeter swans from the reintroduction project were observed in 2004 with continued successful nesting each subsequent year and a total production of 89 fledged cygnets. Future plans for the reintroduction project include additional releases of captive-reared swans, continued monitoring of released and wild hatched swans, wetland habitat restoration projects, and marking of additional power lines.

AVIAN SCAVENGERS AND LEAD RIFLE AMMUNITION: WHERE WE'RE AT, CHALLENGES, AND SOLUTIONS

Bryan Bedrosian,* Craighead Beringia South, P.O. Box 147, 6955 E 3rd St., Kelly, Wyoming 83011, bryan@beringiasouth.org

Derek Craighead, Craighead Beringia South, P.O. Box 147, 6955 E 3rd St., Kelly, Wyoming 83011 Ross Crandall, Craighead Beringia South, P.O. Box 147, 6955 E 3rd St., Kelly, Wyoming 83011

Birds have long been recognized at risk of lead poisoning from ammunition sources, but only in recent years has rifle ammunition been identified as a source of lead toxicity in raptors and other scavenging birds. Several studies have indicated increased lead exposure in eagles but the implications to population dynamics remain unclear. We have monitored blood lead levels of Common Ravens (Corvus corax), Bald Eagles (Haliaeetus luecocehpalus), and Golden Eagles (Aquila chrysaetos) in Jackson Hole, Wyoming, since 2004 to investigate effects of spent rifle ammunition on avian scavengers. Data from ravens and Bald Eagles indicated a strong relationship between big-game hunting seasons and elevated blood lead levels. In 2009, we initiated a voluntary non-lead ammunition program in collaboration with Grand Teton National Park and the National Elk Refuge. Free, non-lead ammunition was distributed to hunters in the area. Hunter surveys indicated that 24 percent of successful hunters on the Park and Refuge used non-lead ammunition and we detected a 28-percent drop in the mean lead levels of ravens monitored from previous years after the harvest totals were controlled for. We continued the voluntary program in 2010 by selling reduced-priced non-lead ammunition, and there was greater participation in the voluntary non-lead program (33%). Further, we have outfitted 13 Bald Eagles with satellite transmitters to document the potential geographic impact our local hunting season has on the continental eagle population and found that 90 percent of eagles outfitted during the big-game hunting season breed/ summer in central Canada.

LANDSCAPE-SCALE CONSERVATION AND MANAGEMENT OF MONTANE WILDLIFE: CONTEMPORARY CLIMATE MAY BE CHANGING THE RULES

Erik A. Beever,* U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana 59715

Chris Ray, University of Colorado, Dept. of Ecology and Evolutionary Biology, Boulder, Colorado 80309

Jennifer L. Wilkening, University of Colorado, Dept. of Ecology and Evolutionary Biology, Boulder, Colorado 80309

Philip W. Mote, Oregon Climate Change Research Institute and Oregon Climate Services, College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331

Peter F. Brussard, University of Nevada, Program in Ecology, Evolution, and Conservation Biology, Reno, Nevada 89557

Both paleontological and contemporary results have suggested that montane ecosystems to be systems of relatively rapid faunal change compared to many valley-bottom counterparts. In addition to experiencing greater magnitudes of contemporary change in climatic parameters than species in other ecosystems, mountain-dwelling wildlife must also accommodate often-

greater intra-annual swings in temperature and wind speeds, poorly developed soils, and generally harsher conditions. Research on a mountain-dwelling mammal species across 15 yrs of contemporary data and historical records from 1898-1956 suggest that pace of local extinctions and rate of upslope retraction have been markedly more rapid and governed by markedly different dynamics in the last decade than during the 20th century. This may mean that understanding past dynamics of species losses may not always help predict patterns of future loss. Given the importance of clinal variability and ecotypic variation, phenotypic plasticity, behavioral plasticity, and variation in climatic conditions, for widely-distributed species' geographic ranges to be determined by different factors in different portions of their range is not uncommon. Consequently, greatest progress in understanding distributionalchange phenomena will occur with coordinated, landscape-scale research and monitoring. Landscape Conservation Cooperatives and Climate Science Centers are newly emerging efforts that may contribute greatly to such broad-scale investigations, e.g., climate-wildlife relationships. Based on our empirical findings and our review of related literature, we propose tenets that may serve as foundational starting points for mechanism-based research at broad scales to inform management and conservation of diverse montane wildlife and the ecosystem components with which they interact.

EVALUATING THE GENETIC DISTINCTIVENESS OF THE SALMON RIVER DRAINAGE BIGHORN SHEEP AND THEIR CONNECTIVITY TO NEIGHBORING POPULATIONS

Nathan Borg,* University of Montana , Missoula Montana 59812 nathan.borg@umontana.edu Lisette Waits, University of Idaho, Moscow, Idaho, lwaits@uidaho.edu Pete Zager, Idaho Department of Fish and Game pete.zager@idfg.idaho.gov Mike Mitchell, University of Montana, Missoula, Montana 59812, Michael.Mitchell@mso.umt.edu

Rocky mountain bighorn sheep (Ovis canadensis canadensis) were historically abundant in Idaho, but currently population levels remain low. Bighorn Sheep (BHS) in the Salmon River drainage are considered one of Idaho's only remaining native sheep populations because they were never completely extirpated from their historic range. In addition, there has been little or no genetic influence via translocation of sheep from outside the drainage potentially making this BHS population genetically unique to Idaho. Contrastingly, surrounding populations to the west and east were extirpated or severely reduced and have subsequently been reintroduced or heavily augmented through use of translocations from Canada and several western states. There is presumably some degree of population connectivity between the Salmon River sheep and surrounding areas but to date, this has not been investigated using genetic data. To assess the genetic distinctiveness of Salmon River bighorns and their connectivity to other populations, we have collected genetic data from 15 nuclear DNA microsatellite loci for 256 BHS using blood and horn shaving samples across a 33,786-km2 study area in central Idaho. The number of BHS genetic groups will be determined using Bayesian clustering algorithms, and the degree of connectivity between populations will be examined using Fst and assignment tests. Future directions include comparing radio-location data and genetic information to investigate structure/connectivity and potential for disease transmission of SRD bighorns as well as examining relationship between lamb productivity/ survival and genetic diversity/gene flow.

A REGIONAL ANALYSIS OF FACTORS AFFECTING ADULT FEMALE ELK SURVIVAL

Jedediah Brodie, Wildlife Coop Unit, University of Montana, Missoula, Montana 59812, jedediah. brodie@gmail.com

The Western Elk Research Collaborative has pooled elk (Cervus elaphus) telemetry data from seven states, one Canadian province, and Yellowstone National Park. We have collected data from 3550 individual elk across 51 populations. The vast spatial scale of this analysis affords us an unprecedented opportunity to understand how natural ecological conditions and human changes to the environment influence survival of this critical segment of the population. We use proportional hazards models and information-theoretic approaches to assess how predator diversity, harvest by humans, habitat conditions, land use, climatic factors, and interactions between these factors affect adult female survival across the region. Most of our variables are uniform within a given population, but we also assess the effects of "age" at the individual level. Some variables such as land tenure, road density, and forest cover are considered temporally static for the purposes of this study, whereas others such as precipitation, climate, and density dependence could vary over time within each population. The survival estimates we generate will ultimately help inform decision-support tools that managers could use at statewide and regional scales to explore how harvestable numbers of elk are influenced by management of habitat and predation in the context of climatic and habitat changes.

WINTER ECOLOGY OF THE SHIRAS MOOSE ON THE MOUNT HAGGIN WILDLIFE MANAGEMENT AREA

Braden O. Burkholder,* 1820 Meadowlark Lane, Butte, Montana 59701, bburkholder@mt.gov

Vanna J. Boccadori, Montana Fish, Wildlife and Parks, 1820 Meadowlark Lane, Butte, Montana 59701, vboccadori@mt.gov

Robert A. Garrott, Fish and Wildlife Management Program, Department of Ecology, Montana State University, Bozeman, Montana 59717, rgarrott@montana.edu

Moose (Alces alces shirasi) populations across Montana have expanded in the last century, both in geographic range and in population size. This expansion has had a negative impact on moose winter range in some locations where moose have overutilized key browse species. Excessive and unsustainable browsing has the potential to reduce local biodiversity and carrying capacity of moose and other ungulates. The browse species of interest in this study were willow (Salix spp), a highly palatable and abundant browse source for moose on many winter ranges, including our study area in southwestern Montana. The objectives of this study were to determine patterns of willow community use by selected female moose during winter and to quantify willow utilization across the study area to examine population scale habitat use through browse patterns. To accomplish these objectives we deployed GPS collars on 18 cow moose, 6 each in the winters of 2007, 2008, and 2009-2010. We also completed large scale, systematic browse surveys in the springs of 2008, 2009 and 2010. Results indicated cow moose spent the plurality of the winter within willow communities (48.4%, 48.2%, 51.8%, and 49.8% of locations in the winters of 2007, 2008, 2009, and 2010, respectively), but the estimated percentage of browsed willow twigs across the study area was low (11.5%, 8.0%, and 8.3% in 2008, 2009, and 2010, respectively). Our data suggest that while moose have the potential to significantly impact willow communities, this did not appear to be the case on the Mount Haggin WMA at current moose densities.

WHAT CAN WE LEARN FROM CALF/COW RATIOS?

Nicholas J. DeCesare,* Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, nick.decesare@umontana.edu

Mark Hebblewhite, Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812

Mark Bradley, Parks Canada, Jasper National Park, Box 10, Jasper, Alberta, T0E 1E0, Canada

Kirby G. Smith, Alberta Sustainable Resource Development, Edson, Alberta, T7E 1T2, Canada

David Hervieux, Alberta Sustainable Resource Development, Grande Prairie, Alberta, T8V 6J4, Canada

Lalenia Neufeld, Parks Canada, Jasper National Park, Box 10, Jasper, Alberta, TOE 1E0, Canada

Trends in population growth can be monitored with data for key vital rates without requiring knowledge of abundance. Adult female survival has the highest elasticity for ungulate population dynamics, but the more variable recruitment rates can be better predictors of local variation in growth rates. Recruitment is often monitored using young adult age ratios, which are difficult to reliably interpret given the contribution of multiple vital rates to annual ratios. We show how concurrent monitoring of adult female survival and age ratios allows both retrospective estimation of empirical population growth rates and the decomposition of recruitment-specific vital rates. We demonstrate the estimation of recruitment and population growth rates for one woodland caribou population using these methods, including elasticity and life-stage simulation analysis of the relative contribution of adult female survival and recruitment rates to variation in population growth. We show, for this woodland caribou population growth rates. We recommend the concurrent monitoring of adult female survival to reliably interpret age ratios when managing caribou and other ungulates.

STABLE ISOTOPE ANALYSIS OF SUMMER WOLF DIET IN Northwestern Montana

Jonathan J. Derbridge,* Wildlife Conservation and Management, School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona 85721, derbridge@email.arizona.edu

Paul R. Krausman, Boone and Crockett Professor of Wildlife Conservation, Wildlife Biology Program, University of Montana, Missoula, Montana 59812

Chris T. Darimont, Department of Environmental Studies, University of California, Santa Cruz, California 95060

When distinct $\delta 13$ C and $\delta 15$ N values of potential prey are known, stable isotope analysis (SIA) of wolf (*Canis lupus*) hair can be used to estimate diet variability at the individual, pack, and regional levels. Our objectives were to estimate intra-population diet variability, and determine proportions of prey consumed by wolves. We collected guard hairs of 45 wolves from 12 packs in northwestern Montana and temporally matched scats from 4 of the same packs, summer 2008 and 2009. We used hierarchical Bayesian stable isotope mixing models to determine diet and scales of diet variation from $\delta 13$ C and $\delta 15$ N values of wolves, deer (*Odocoileus* spp.), elk (*Cervus canadensis*), moose (*Alces alces*), and other prey. We calculated percent biomass of prey consumed from scats, and used bootstrapped scat data,

and Markov Chain Monte Carlo simulation data from stable isotopes to estimate confidence intervals of difference between results from each technique for the 4 packs with matched samples. Differences among packs explained most variability in diet based on stable isotopes, and moose was the most common prey item for 11 of 12 packs. From scat data, deer was the most common prey item for 3 of 4 packs, and estimates of moose consumed were significantly different from SIA estimates for the same 3 packs. The proportion of moose in wolf diet may have been overestimated by SIA because wolf-specific fractionation values were not available. Stable isotope analysis has the potential to efficiently provide useful management information, but experimentally derived fractionation values for wolves would likely improve the accuracy of estimates in future studies.

THE STATUS OF GOLDEN EAGLES IN THE WEST: MIGRATION, BREEDING, AND ENERGY INFRASTRUCTURE

Robert Domenech, Raptor View Research Institute, P.O. Box 4323, Missoula, Montana 59806, rob. domenech@raptorview.org

Golden Eagles (Aquila chrysaetos), are widespread raptors, breeding predominately in western North America, from northern Alaska to central Mexico, occupying a wide range of habitats from arctic tundra to deserts. Several studies have recently indicated decreasing population estimates for migrant and wintering Golden Eagles in the western US. Longterm point count surveys of migrating raptors along the Rocky Mountain Front flyway have indicated approximately a 50-percent decline in total autumnal and vernal Golden Eagle migrants observed over the past 15 yrs and suggest the rate of decline has been increasing. Regionally, specific populations in the Lower 48 and parts of Alaska have been well studied on their breeding grounds. Some of these populations appear to be stable, while others show declines. Observed declines, appear to be associated with habitat alterations. Oil and gas resource extraction has increased noticeably across many areas of the West. The demand for resource extraction is growing and now includes renewable energy facilities such as wind farms. Due to the greater than ever human presence on the landscape and projected increases in development, it is critical to assess eagle response to these changes within their current and historic breeding, migration and winter ranges. Mapping current Golden Eagle habitat use, locally and at the landscape level to better understanding the relationships between human activities and eagle ecology, are the vital first steps to creating a balance between maintaining viable Golden Eagle populations and sustainable development.

BLOOD-LEAD LEVELS OF FALL MIGRANT GOLDEN EAGLES IN WEST-CENTRAL MONTANA

Robert Domenech, Raptor View Research Institute, P.O. Box 4323, Missoula, Montana 59806, rob. domenech@raptorview.org

Heiko Langner, Department of Geosciences, University of Montana, Missoula Montana 59812

Vincent Slabe,* Raptor View Research Institute. P.O. Box 4323. Missoula, Montana 59806. vincentslabe@gamil.com 847-220-3760

Lead has long been documented as a serious environmental hazard to eagles and other predatory, opportunistic and scavenging avian species. The use of lead shotgun pellets for waterfowl hunting on federal and state lands was banned in 1991 due to lead poisoning in

Bald Eagles (*Haliaeetus leucocephalus*), Golden Eagles (*Aquila chrysaetos*) and numerous waterfowl species. At that time, this was thought to be the only major source of the lead exposure. More recently, lead poisoning from ingested lead-bullet fragments and shotgun pellets has been identified as the leading cause of death in California Condors (*Gymnogyps californianus*), leading to the recent ban of lead ammunition within the "California Condor Recovery Zone." Another on-going study on Common Ravens (*Corvus corax*) and Bald Eagles in Wyoming has shown a direct correlation between very high blood-lead levels and the on-set of rifle hunting season. Indeed, there is overwhelming evidence showing that lead toxicity is still prevalent in the environment and mounting data points to fragmented rifle bullets as the source. We sampled blood from 131 Golden Eagles captured on migration during the fall from 2006 and 2010 to quantify a suite of possible heavy metal contaminants, with an emphasis on lead.

THE DICHOTOMY OF CONSERVATION – MANAGING ELK IN THE WILDLAND/URBAN INTERFACE OF MISSOULA, MONTANA

Victoria L. Edwards,* Montana Fish, Wildlife and Parks, 3201 Spurgin Road, Missoula, Montana 59804, vedwards@mt.gov

The Missoula Valley in western Montana is home to nearly 800 wintering elk (Cervus elaphus), including the North Hills, Evaro, Jumbo, O'Brien Creek and Miller Creek herds. With the City of Missoula as the hub, the Valley has experienced substantial human population growth over the last 30 yrs. This increased growth and subsequent development has consumed and fragmented wildlife habitat and placed additional recreational demands on adjacent public lands. Wildlife biologists with Montana Fish, Wildlife and Parks have worked cooperatively with local governments, federal agencies, land trusts, other non-governmental organizations, and the general public to conserve and protect important elk winter range and habitat connectivity within the wildland/urban interface of the Missoula Valley. From a biological perspective, we have been extremely successful in managing for the persistence of elk populations. However, protecting winter range adjacent to and fragmented by human development has additional management challenges and costs. Since 1980, the North Hills elk herd has grown an average of 11 percent per year, with a 48-percent growth rate occurring between 2000 and 2007. Without an effective harvest, this population is expected to double in less than seven years. To protect elk winter range and to continue to keep elk wild, wildlife biologists have needed to become more creative with their management and conservation strategies. This presentation discusses those strategies, as well as the dichotomy of conserving elk winter range and managing elk on human developed landscapes.

MONTANA ELECTRONIC PRECIPITATION MAP

Phillip Farnes, * Snowcap Hydrology, Bozeman Montana 59715, farnes@montana.net

John Huddleston, Geophysical Computing Solutions, Livermore, Colorado, GeophysicalComputing@hughes.net

Kyle Flynn, Montana Department of Environmental Quality, Helena, Montana 59620, kflynn@mt.gov

A new average annual precipitation map (AAP) has been developed for Montana using GIS techniques including universal Kriging and elevation dependent linear regression. The map can be updated with new base periods or used for different parameters. The current map

uses the 1981-2010 AAP base period and universal Kriging. Results were compared to handdrawn maps to assure appropriate location of isohyets. Stations adjacent to Montana in Idaho, Wyoming, North Dakota, South Dakota, Alberta, and British Columbia were used to assure compatibility along the border and provide the capability to develop a comparable map for drainages flowing into Montana. Isohyetal lines were set at 2-in increments < 20 in AAP and 10-in increments > 20 in. Approximately 1400 stations were used for analysis of which ~ 1100 were in Montana and 300 in areas adjacent to Montana. AAP was estimated at snow courses using correlation between April 1 snow water equivalent and AAP from SNOTEL stations in their area. NWS Climatological stations and NRCS SNOTEL stations provided majority of locations having current AAP. Data from an old NWS storage precipitation gage network, NRCS storage gages, and RAWS stations were also incorporated as well as a few stations from individuals, USGS, USDA Forest Service, and others. To assure that precipitation at elevations above and below the data sites was applied correctly, synthetic points were developed using linear elevation-precipitation relationships from nearby measured sites. Maps will be available through Montana DEQ or Montana NRIS web sites electronically.

THE BIRD'S-EYE VIEW EDUCATION PROGRAM: USING BIRD Research To Educate The Public On The Importance Of Healthy Riparian Systems

Megan Fylling,* Avian Science Center, University of Montana, Missoula, Montana 59812 Megan. Fylling@mso.umt.edu

Richard Hutto, Avian Science Center, University of Montana, Missoula MT 59812

Kristina Smucker, Avian Science Center, University of Montana, Missoula, Montana 59812

Erick Greene,* Division of Biological Sciences, University of Montana, Missoula, Montana 59812, Erick.Greene@mso.umt.edu

Rob Domenech, Raptor View Research Institute, P.O. Box 4323, Missoula, Montana 59806

Heiko Langner, Department of Geosciences, University of Montana, Missoula, Montana 59812

Matt Vincent, Clark Fork Education Program, Montana Tech, Butte, Montana 59701

The Upper Clark Fork River Basin (UCFRB) has been degraded by over 100 yrs of mining and smelting activities. The UCFRB is the largest contiguous complex of federal Superfund sites in the nation. Restoration and remediation efforts were initiated in the late 1980s and will continue, at a minimum, through 2030. Any restoration activity should include public education and outreach so that land-use decisions in the future do not compromise the integrity of the ecosystems that support the region. We have developed a program, the Bird's-eye View Education Program, which integrates public education and research on the ecological health of the UCFRB. Specifically we focus on birds, inviting the public to observe research at songbird banding stations and Osprey (Pandion haliaetus) nests. Riparian-associated birds are likely to respond positively to riparian restoration activities and can be used as bio-indicators to measure success. In 2010 we operated three bird banding stations and monitored 19 Osprey nests. We captured 595 songbirds, collected 43 blood and feather samples from Osprey chicks, and served nearly 1000 participants. The program was an outstanding success and results from an assessment show that participants leave with a positive attitude toward the outdoor science experience and a general knowledge of Upper Clark Fork restoration, history, and its riparian ecosystems.

THE MOUNTAIN UNGULATE RESEARCH INITIATIVE: A COLLABORATIVE EFFORT TO ADVANCE UNDERSTANDING OF BIGHORN SHEEP AND MOUNTAIN GOAT ECOLOGY

Robert A. Garrott,* Fish and Wildlife Management Program, Ecology Department, Montana State University, 310 Lewis Hall, Bozeman, Montana 59717, rgarrott@montana.edu

P.J. White, National Park Service, Yellowstone Center for Resources, P.O. Box 168, Yellowstone National Park, Wyoming 82190, pj_white@nps.gov

Jay J. Rotella, Fish and Wildlife Management Program, Ecology Department, Montana State University, 310 Lewis Hall, Bozeman, Montana 59717, rotella@montana.edu

Bighorn sheep (Ovis canadensis) and mountain goats (Oreamnos americanus) are important components of the faunal assemblage of Montana's mountainous ecosystems representing high-profile large mammals that garner substantial public interest. While population restoration, augmentation, and introductions have traditionally been the predominant conservation activities associated with these species in Montana, basic ecological research has been limited. A new research initiative has been developed and funded to study bighorn sheep and mountain goat spatial and population ecology in a number of ecological settings within the Greater Yellowstone Ecosystem. The aspiration of the collaborators is to develop a long-term research program that could expand to other populations of these species in Montana if we are successful. Primary objectives of the studies include 1) understanding the ecological interactions between sympatric populations, 2) developing and refining habitat suitability models, 3) documenting spatial dynamics within and among populations and identifying important movement corridors, 4) collecting vital rate data to better understand population dynamics, and 5) investigating potential responses of bighorn sheep and mountain goats to gradual changes in the regional climate. The presentation will describe the collaboration and ongoing efforts to consolidate all available data on bighorn sheep and mountain goats in the GYE. These data are used to describe mountain goat range expansion within the GYE over the past half century and to conduct initial habitat modeling efforts. We will also describe our plans for initiating field studies in the near future.

IMPORTANCE OF RECRUITMENT TO ACCURATELY PREDICT THE IMPACTS OF HUMAN-CAUSED MORTALITY ON WOLF POPULATIONS

Justin A. Gude,* Montana Department of Fish, Wildlife, and Parks, 1420 East 6th Avenue, Helena, Montana 59620, jgude@mt.gov

Michael S. Mitchell, U. S. Geological Survey, Montana Cooperative Wildlife Research Unit, 205 Natural Sciences Building, University of Montana, Missoula, Montana 59812, USA, Michael. Mitchell@mso.umt.edu

Robin E. Russell, U. S. Geological Survey, Northern Prairie Wildlife Research Center, 8711 37th Street, SE, Jamestown, ND 58401, USA, rerussell@usgs.gov

Carolyn A. Sime, Montana Department of Fish, Wildlife, and Parks, 1420 East 6th Avenue, Helena, Montana 59620, casime@mt.gov

Edward E. Bangs, USDI Fish and Wildlife Service, 585 Shepard Way, Helena, Montana 59601, USA, ed_bangs@fws.gov

L. David Mech, U. S. Geological Survey, Northern Prairie Wildlife Research Center, The Raptor Center, 1920 Fitch Ave., University of Minnesota, St. Paul, Minnesota 55108, mechx002@maroon.tc.umn.edu

Robert R. Ream, Montana Department of Fish, Wildlife, and Parks Commission, 1420 East 6th Avenue, Helena, MT 59620, USA, and Wildlife Biology Program, University of Montana, College of Forestry and Conservation, Missoula, Montana 59812, ream@mt.net

Reliable analyses can help wildlife managers make good decisions, which are particularly critical for controversial decisions such as wolf (Canis lupus) harvest. Creel and Rotella (2010) recently predicted substantial population declines in Montana wolf populations due to harvest, in contrast to predictions made by Montana Fish, Wildlife and Parks (MFWP). Here we replicate their analyses considering only those years in which field monitoring was consistent, and we consider the effect of annual variation in recruitment on wolf population growth. We also use model selection to evaluate models of recruitment and human-caused mortality rates in wolf populations in the Northern Rocky Mountains. Using data from 27 area-years of intensive wolf monitoring, we show that variation in both recruitment and human-caused mortality affect annual wolf population growth rates and that human-caused mortality rates have increased with the sizes of wolf populations. We also show that either recruitment rates have decreased with population sizes or that the ability of current field resources to document recruitment rates has recently become less successful as the number of wolves in the region has increased. Predictions of wolf population growth in Montana from our top models are consistent with field observations and estimates previously made by MFWP. Familiarity with limitations of raw data helps generate more reliable inferences and conclusions in analyses of publicly-available datasets. Additionally, development of efficient monitoring methods for wolves is a pressing need, so that analyses such as ours will be possible in future years when fewer resources will be available for monitoring.

UNICOR: A SPECIES CONNECTIVITY AND CORRIDOR NETWORK SIMULATOR

B. K. Hand,* University of Montana, Division of Biological Sciences, Missoula, Montana 59812
R. T. Carlson, University of Montana, Division of Biological Sciences, Missoula, Montana 59812
E. L. Landguth, University of Montana, Division of Biological Sciences, Missoula, Montana 59812
J. Glassy, University of Montana, Division of Biological Sciences, Missoula, Montana 59812, Lupine Logic Inc, Missoula, Montana 59802, USA

Maintenance of species and landscape connectivity has emerged as an urgent need in the field of conservation biology. Current gaps include quantitative and spatially-explicit predictions of current and potential future patterns of fragmentation under a range of climate change scenarios. To address this need, we introduce UNIversal CORridor network simulator (UNICOR), a species connectivity and corridor identification tool. UNICOR applies Dijkstra's shortest path algorithm to individual-based simulations and outputs can be used to designate movement corridors, identify isolated populations, and characterize zones for species persistence. The program's key features include a driver-module framework, connectivity maps with thresholding and buffering, and graph theory metrics. Through parallel-processing computational efficiency is greatly improved, allowing for larger ranges (grid dimensions of thousands) and larger populations (individuals in the thousands), whereas previous approaches are limited by prolonged computational times and poor algorithmic efficiency; restricting problem-size (range and populations), and requiring artificially subsampling of target populations.

Functional Landscape Connectivity Of Greater Sage Grouse Habitat In A Multiple Use Landscape

Seth M. Harju,* Hayden-Wing Associates LLC, Natural Resource Consultants, 2308 S. 8th St., Laramie, Wyoming 82070, Seth@haydenwing.com

Chad V. Olson, Hayden-Wing Associates LLC, Natural Resource Consultants, 2308 S. 8th St., Laramie, Wyoming 82070, chad@haydenwing.com

Matthew R. Dzialak, Hayden-Wing Associates LLC, Natural Resource Consultants, 2308 S. 8th St., Laramie, Wyoming 82070, Matt@haydenwing.com

Maintaining connectivity of sage-grouse habitat is critical to managing sage-grouse populations in the presence of widespread human disturbance. We used an empirical approach to model connectivity of a landscape based on resource selection of free-ranging GPS-collared greater sage-grouse (*Centrocercus urophasianus*) in a natural gas field in central Wyoming. We analyzed resource selection during three movement states (encamped, traveling, and relocating) and incorporated turning angle to identify features that functioned as barriers or conduits to movement. To illustrate application of the results we used the resource selection model to create spatially-explicit predictive maps identifying areas that generally provided large amounts of high quality 'movement habitat.' We found that both males and females selected for vegetation variables at multiple spatial scales. When traveling or relocating, males and females tended to avoid natural gas and oil wells and associated infrastructure and avoided areas with high topographic roughness within 800m. High topographic roughness

was a barrier for traveling males. Relocating females were more likely to travel in a straight direction through areas of high road density and steep slopes. The predictive maps validated well using independent GPS location data. These results provide insight into habitat preferences of sage-grouse and can be used for both general and site-specific guidance on identifying habitats preferred or avoided during moderate and long distance movements of sage-grouse. When combined with critical seasonal use maps, e.g., nesting/brooding habitat and winter range, land managers could delineate areas of high value for connectivity of critical seasonal use areas.

EFFECTS OF RECREATIONAL DISTURBANCE ON MEXICAN SPOTTED OWLS ON THE COLORADO PLATEAU IN SOUTHERN UTAH

Chad Hockenbary,* Department of Ecology, 310 Lewis, Montana State University, Bozeman, Montana 59717. chad.hockenbary@gmail.com

David Willey, Department of Ecology, 310 Lewis, Montana State University, Bozeman, Montana 59717

The Mexican spotted owl (Strix occidentalis lucida) was listed as a "threatened" subspecies in 1993 by the USDI Fish and Wildlife Service. In the Canyonlands of Southern Utah, the spotted owl is associated with fragmented habitats characterized by steep rocky canyons that attract high levels of human use for recreation, including climbing, hiking, hunting, and ORVs. Human-use levels have strongly increased in the canyonland region, e.g., permits for access to popular canyon hikes increased 1714 percent during 1998-2002 in Zion National Park. To assess owl population status and estimate effects of human-use on spotted owls, we conducted an occupancy-based research project during the 2008, 2009, and 2010 breeding seasons (defined as March-August). We designed our study to estimate occupancy rates and detection probability among owl territories in four areas: Zion and Capitol Reef National Parks, Grand Staircase-Escalante National Monument, and Cedar Mesa. A primary objective was to estimate the potential effects of human recreation on occupancy of the owl territories ("sites"). In addition to occupancy, we estimated reproductive status. Preliminary results from our data analysis showed varying occupancy rates, with 83 percent occupancy at mesic sites (Zion and Cedar Mesa), and 43 percent at xeric sites (Capitol Reef and GSENM). Detection probability was estimated to be 89 percent. Human use did not appear to reduce occupancy or detection. Reproduction varied by year, with 2009 showing the highest number of young, and several years with relatively low production of juveniles. Our results suggest that current management of human-use in our study areas is not adversely affecting occupancy and reproduction by Mexican spotted owls.

THE FUTURE OF WILDLIFE EDUCATION

Tracy Holland,* Alter Enterprise, LLC., P.O. Box 593, Lolo, Montana 59847, tracy@ alterenterprise.com

Ryan Alter, Alter Enterprise, LLC., 107 S. Easy Street, Missoula, Montana 59802, ryan@ alterenterprise.com

Students today need to be motivated to learn using methods that stimulate their creativity and excite them to look deeper into a subject on their own. As wildlife specialists we can contribute a unique expertise that teachers love to share with their students. With distance learning you can provide a virtual field trip for students in ≤ 30 min. Share your knowledge and love of animals and nature with students all over the world using videoconferencing technology. Be a part of raising the future generation of conservationists. During this presentation, we will show you how both Alter Enterprise and California State Parks use technology to engage students from afar and how any biologist can do the same from their own conservation area. Not only is this form of educational outreach exploding throughout schools, museums and libraries all over the world, but it is also creating a new love and understanding of wildlife that will hopefully show an increase of park and refuge visits by students who have had their interest sparked.

UNLOCKING SOME OF THE UNTAPPED VALUE ASSOCIATED WITH OUR 20-YEAR LANDBIRD MONITORING DATABASE

Richard Hutto, Avian Science Center, University of Montana, Missoula, Montana 59812 hutto@mso.umt.edu

Twenty years ago, numerous partners initiated a region-wide landbird monitoring program. I will provide a brief history, will describe the data we now have in hand, and will present a few results that have important management implications. Finally, I will discuss the niche modeling potential buried in the data that we have amassed, and will propose that the strategic placement of additional monitoring points carries the greatest chance of yielding useful results for wildlife biologists who work for land management and conservation organizations. We hope to pilot the new approach within a 3-forest region associated with the Southern Crown's Collaborative Forest Landscape Restoration Partnership this year.

MULTI-SCALE EFFECTS OF FOREST ROADS ON BLACK BEARS

Benjamin S. Jimenez,* Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59812

Michael S. Mitchell, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59812

Pete Zager, Idaho Fish and Game, Lewiston, Idaho 8501

The black bear (Ursus americanus) population within the Coeur d'Alene River watershed of northern Idaho is exposed to high hunting and recreational pressure facilitated by a dense network of forest roads. Bears are hunted using bait and dogs in spring and fall, with an additional non-lethal summer pursuit season. To understand the effects of these roads on black bear behavior we used data collected from 28 adult bears fitted with Global Positioning Systems (GPS) collars from June 1 2007 through the fall of 2008. We used locations acquired at 20 minute intervals to assess habitat selection and activity patterns of males and females at home range (2nd order) and within home range (3rd order) scales, both annually and seasonally. We tested the hypotheses that black bears 1) will show no response to road density in 2nd order habitat selection in areas of relatively consistent road density, 2) will show a functional response to roads in 3rd order habitat selection, i.e., use of habitat near roads will be inversely proportional to traffic volume, 3) show seasonal shifts in activity patterns and movement rates in proximity to roads. Avoidance of areas containing primary food sources or increased activity and energy expenditure may have profound consequences for bears. Understanding how traffic volume and road density influences habitat selection and movement patterns can therefore play an important role in management of the species.

GRIZZLY BEAR POPULATION AUGMENTATION IN THE CABINET MOUNTAINS OF NORTHWEST MONTANA

Wayne Kasworm,* USDA Fish and Wildlife Service, Libby, Montana 59923, wayne_kasworm@fws.gov

Kimberly M. Annis, Montana Fish, Wildlife and Parks, Libby, Montana 59923 Timothy Manley, Montana Fish, Wildlife and Parks, Kalispell, Montana 59901 Heather Reich, Montana Fish, Wildlife and Parks, Kalispell, Montana 59901 Derek Reich, Montana Fish, Wildlife and Parks, Kalispell, Montana 59901 Jim Williams, Montana Fish, Wildlife and Parks, Kalispell, Montana 59901 Chris Servheen, USDA Fish and Wildlife Service, Missoula, Montana 59812

The Cabinet Mountains grizzly bear (Ursus arctos horribilis) population was estimated at 15 or fewer individuals in 1988 and believed to be declining toward extinction. In response to this decline, a test of population augmentation techniques was conducted during 1990-1994 when four subadult female grizzly bears were transplanted to the area. Two criteria were identified as measures of success: bears must remain in the target area for one year, and bears should ultimately breed with native male grizzly bears and reproduce. Reproductive success of any of the remaining individuals could not be established until 2006 when genetic analysis of hair snag samples collected from 2002-2005 indicated that one of the transplanted bears remained in the Cabinet Mountains and had reproduced. The detected bear was transplanted in 1993 as a 2-year-old and was identified by a hair snag within 5 mi of the original release site. Genetic analysis indicated she had produced at least six offspring, and two of her female offspring had also reproduced. This reproduction indicates that the original test of augmentation was successful with at least one of the transplanted individuals. Success of the grizzly bear augmentation test prompted continuation of this effort. The Northern Continental Divide Ecosystem area of north central Montana has been the source of seven additional bears transplanted to the Cabinet Mountains during 2005-2010. All were female bears except one: a young male was moved in 2010. Two female bears were killed and two female bears left the area. Fates and movements of these bears are discussed.

HISTORY OF THE WALL CREEK WILDLIFE MANAGEMENT AREA

Fred King (retired), Montana Fish, Wildlife, and Parks, 1400 South 19th Street, Bozeman, Montana 59718

As the manager for the Wall Creek Wildlife Management Area for 34 years, I will provide an overview of the history of the FWP purchase of the Wall Creek WMA as well as an overview of the history of the grazing system and elk and livestock use of the game range.

ENERGETICS AND SPACE USE OF FEMALE MOOSE DURING WINTER IN ALASKA

Ben Kraft, University of Alaska Fairbanks, Alaska, brkraft@alaska.edu

Space use and resource selection are a linked processes that are important determinants of individual and population fitness. Knowledge of those processes is important to understanding wildlife-habitat relationships. Knowledge of this information can improve the efficacy of wildlife management programs and provide baseline information in the face of changing environments. I present research findings investigating energetic and space use parameters of a population of female moose inhabiting two distinct, but adjacent, landscape types on the Kenai Peninsula, Alaska. I also examine how the inferences we derive from estimated space use patterns are influenced by the metrics we use to model space use by evaluating four contemporary home range models (Brownian bridges, fixed kernels, minimum convex polygons, and local convex hulls).

QUANTIFYING THE PREDATOR-PREY RELATIONSHIP: LESSONS LEARNED FROM A MULTIPLE-PREY, WOLF-HYBRID ZONE IN ALGONQUIN PARK, ONTARIO, CANADA

Karen Loveless,* Montana Fish Wildlife and Parks, Livingston, Montana 59047

Linda Rutledge, Trent University, Peterborough, Ontario, Canada

Chris Sharpe, Trent University, Peterborough, Ontario, Canada

Ken Mills, Wyoming Game and Fish, Pinedale, Wyoming

Brent Patterson, Ontario Ministry of Natural Resources, Peterborough, Ontario, Canada

We studied winter kill rates and prey selection in an eastern wolf/moose/white-tailed deer system in Algonquin Park, Ontario Canada. Eastern wolves (Canis lycaon) are a distinct species, known to hybridize with both gray wolves and eastern coyotes, resulting in genetic variation within the study area. Deer in Algonquin are seasonally migratory, and accessibility of deer shifts significantly over winter. Some wolf packs migrate off territory to forage on deer, while others remain on territory, relying on moose. Our objectives were to 1) identify factors influencing variation in prey use, and 2) compare methodologies for quantifying prey use in a multiple prey system. We used fine scale GPS collar data to identify kill sites, and calculated relative use of moose and deer for each pack using several measures, including prey biomass/wolf/day, days/kill/pack and a newly developed method of time spent at kill sites from GPS data. We also conducted stable isotope analysis to compare with field collected prey-use data. Variation in prey use among wolf packs was most influenced by accessibility to deer, vulnerability of moose, and genetic admixture, and mediated by winter progression. Methodological comparisons showed that prey biomass/wolf/day tended to overestimate large prey items, while days/kill/pack overestimated the importance of small prey. Stable isotope results were inconsistent, revealing some possible weaknesses of this approach. We found wide variation in kill rates and relative prey use with winter progression, and spatial variation in age-specific predation associated with differences in hunter harvest pressure.

TWENTY-ONE YEARS OF HARLEQUIN DUCK SURVEYS ON THE ROCKY MOUNTAIN FRONT: DO WE KNOW ANYTHING YET?

Wendy Clark Maples, Wildlife Biologist, Rocky Mountain Ranger District, Lewis and Clark National Forest, P.O. Box 340, Choteau, Montana 59422, wmaples@fs.fed.us

Harlequin duck (*Histrionicus histrionicus*) surveys have been carried out continuously on the Rocky Mountain Ranger District (RMRD) for 22 years, beginning in 1990. Streams are surveyed on foot in spring to assess occupancy by breeding pairs, and in summer to count broods. Habitat and activity data have been collected for 247 separate observations (comprising > 600 individual ducks). We have summarized the habitats in which harlequins have been observed, including potential differences between pair and brood observations. Harlequins on the RMRD tend to be found in habitats similar to those described for other areas: in fast-moving segments of streams and in areas with shrub or tree overstory. Most observations are in areas accessible to, but not immediately adjacent to areas of human use. Most observations do not occur in proximity to within-stream woody debris, which may differ from findings elsewhere. We have not yet collected data with which to evaluate whether harlequin ducks actively select for any of these habitat characteristics. In 2007 three major fires burned on the RMRD, affecting several key harlequin breeding streams. We altered our survey areas to focus on the most historically productive stream system in the hopes of detecting any impacts of fire on harlequin occupancy or productivity. We have also begun to survey streams that have not been surveyed since the original 1990-1992 inventory. We provide possible explanations for the absence of harlequin ducks on several apparently suitable stream systems, and discuss the direction we hope to take with future surveys and analyses.

CLIMATE CHANGE PREDICTED TO SHIFT WOLVERINE DISTRIBUTIONS, CONNECTIVITY, AND DISPERSAL CORRIDORS

Kevin S. McKelvey,* USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith, Missoula, Montana 59801, kmckelvey@fs.fed.us

Jeffrey P. Copeland, USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith, Missoula, Montana 59801

Michael K. Schwartz, USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith, Missoula, Montana 59801

Jeremy S. Littell, University of Washington Climate Impacts Group, 3737 Brooklyn Ave. NE, Seattle, Washington 98105

Keith B. Aubry, USDA Forest Service, Pacific Northwest Research Station, 3625 93rd Ave. SW, Olympia, Washington 98512

John R. Squires, USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith, Missoula, Montana 59801

Sean A. Parks, USDA Forest Service, Rocky Mountain Research Station, Aldo Leopold Wilderness Research Institute, 790 East Beckwith, Missoula, Montana 59801

Marketa M. Elsner, University of Washington Climate Impacts Group, 3737 Brooklyn Ave. NE, Seattle, Washington 98105

Guillaume S. Mauger, University of Washington Climate Impacts Group, 3737 Brooklyn Ave. NE, Seattle, Washington 98105

Recent work has shown a link between wolverine habitat and persistent spring snow cover through 15 May, the approximate end of the wolverine's reproductive denning period. We modeled the distribution of snow cover within the Columbia, Upper Missouri and Upper Colorado River Basins using a downscaled ensemble climate model. We bracketed our ensemble model predictions by analyzing warm (miroc 3.2) and cool (pcm1) downscaled GCMs. Based on the downscaled ensemble model, 67 percent of predicted spring snow cover will persist within the study area through 2030-2059, and 37 percent through 2070-2099. Contiguous areas of spring snow cover become smaller and more isolated over time, but large (>1000 km2) contiguous areas of wolverine habitat are predicted to persist within the study area through of wolverine habitat are predicted to persist within the study area through of wolverine habitat are predicted to persist within the study area through areas of wolverine habitat are predicted to persist within the study area through of wolverine habitat are predicted to persist within the study area through areas of wolverine habitat are predicted to persist within the study area through ut the 21st century for all projections. By the late 21st century, dispersal modeling indicates that habitat isolation at or above levels associated with genetic isolation of wolverine populations becomes widespread.

THE EFFECT OF FIX RATE AND FIX INTERVAL ON FIRST PASSAGE TIME ANALYSIS

Kurt A. Michels,* Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717, michels@math.montana.edu

Steve Cherry, Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717

First passage time analysis is a method of analyzing changes in animal movement along paths through habitats. First passage time is defined as the time required to traverse a circular region of a specified radius. Plots of variance in logged first passage times versus spatial scale have been used to help identify the scale at which search is concentrated. Two critical assumptions made when calculating first passage time are that movement is linear and speed is constant within a given circle. We investigate the robustness of first passage time results relative to these 2 assumptions using movement data collected on eight grizzly bears in the Greater Yellowstone Ecosystem. We found that the spatial scale identifying area restricted search was dependent on both fix interval and fix rate suggesting that how GPS collars are programmed influences first passage time results.

AVIAN COMMUNITY RESPONSE TO A RECENT MOUNTAIN PINE BEETLE EPIDEMIC

Brittany A. Mosher,* Montana State University, Department of Ecology, 309 Lewis Hall, Bozeman, Montana 59717, brittany.mosher@msu.montana.edu,

Victoria A. Saab, USDA Forest Service, Rocky Mountain Research Station, 1648 S. 7th Avenue, Bozeman, Montana 59717, vsaab@fs.fed.us.

Jay J. Rotella, Montana State University, Department of Ecology, 309 Lewis Hall, Bozeman, Montana 59717, rotella@montana.edu.

Jeffrey P. Hollenbeck, USGS Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, Oregon 97331, hollenb@peak.org

Recent epidemics of mountain pine beetles (*Dendroctonus ponderosae*) will fundamentally alter forests of the Intermountain West, impacting management decisions related to fire, logging, and wildlife habitat. We evaluated effects of a recent mountain pine beetle epidemic on site occupancy dynamics of > 60 avian species in four study units

dominated by ponderosa pine (*Pinus ponderosa*) in the Helena National Forest. Point count data were collected during the avian breeding seasons (May-Jul) of 2003-2006 (pre-epidemic) and again during 2009-2010 (post-epidemic). We used a Bayesian hierarchical model that accounts for detection probability to obtain occupancy estimates for rare and elusive species as well as common ones. We estimated occupancy and detection for all species with respect to the occurrence of the beetle outbreak, live tree density at fine scale (1 ha), and live tree density at coarse (landscape) scale (100 ha). Preliminary analyses focus on trends in occupancy for species of interest, such as the American Three-toed Woodpecker (*Picoides tridactylus*), as well as patterns of occupancy for nesting and foraging guilds. Results indicated diverse responses among species, with occupancy rates increasing for some and declining for others.

Using Genetics To Study Otter Connectivity And Population Size In Northwestern Montana

Darin Newton,* Wildlife Biology Program, University of Montana, Missoula, Montana 59212, darin.newton@umontana.edu

Kerry Foresman, Wildlife Biology Program, University of Montana, , Missoula, Montana 59212, kerry.foresman@umontana.edu

River otters (Lontra canadensis) have begun to recover in the Upper Clark Fork River (UCFR) after decades of mining and smelting activity severely impacted the population. An initial project in 2009 showed otters occur throughout the UCFR but at seemingly lower densities than other rivers in Montana. We are working to estimate otter population size in the UCFR and determine connectivity between other geographically close rivers. We are using 11 microsatellite loci amplified from tissue samples collected from trapped otters to look at connectivity between 5 rivers: the Bitterroot River, Blackfoot River, Clearwater River, UCFR, and Lower Clark Fork River. We are using heterozygosity and Fst values to indicate population substructuring as well as using principle component analysis to visualize any differentiation. Additionally, we are using hair collected from hair snares to genetically estimate population size in the UCFR. Initial results from tissues indicate that otters in the 5 rivers are highly connected, and no one population is more connected to the UCFR than another. These results are based on a small samples size; additional samples currently being analyzed will enhance our ability to interpret this situation. Additional samples will be collected in 2011 to strengthen the population estimate. This is one of a few projects, and the first in Montana, to use genetics to look at population substructuring in otters.

USING SPATIAL MODELS TO MAP BIRD DISTRIBUTIONS ALONG THE MADISON RIVER

Anna C. Noson,* Avian Science Center, University of Montana, Missoula, Montana 59812, anna. noson@umontana.edu

M.A. Fylling, Avian Science Center, University of Montana, Missoula, Montana 59812

R.L. Hutto. Avian Science Center, University of Montana, Missoula, Montana 59812

The Avian Science Center developed predictive maps of species distributions for the Madison River based on newly available riverine system data from the National Wetlands Inventory (NWI) and the Natural Heritage Program's Landscape Integrity Model. We used a maximum entropy model (MaxEnt) to predict species distributions using species occurrence

locations collected from 2003-2010. Models performed well for 13 species, demonstrating that available environmental data layers, including NWI, can be used to successfully predict species distributions along the Madison River for a number of important riparian bird species. These models allow fine-scale mapping of habitat suitability for riparian birds, which fills gaps in current data on species distributions, and can be used to prioritize riparian conservation and restoration projects.

Something's Fishy: A Genetic Investigations Of Sculpin Species In Western Montana

Kristy Pilgrim,* USDA Forest Service, Rocky Mountain Research Station, 800 E. Beckwith Missoula, Montana 59801, kpilgrim@fs.fed.us

Michael Young, USDA Forest Service, Rocky Mountain Research Station, 800 E. Beckwith Missoula, Montana 59801

Kevin McKelvey, USDA Forest Service, Rocky Mountain Research Station, 800 E. Beckwith Missoula, Montana 59801

David Schmetterling, Montana Fish Wildlife and Parks

Susie Adams, USDA Forest Service, Southern Research Station

Michael K. Schwartz, USDA Forest Service, Rocky Mountain Research Station, 800 E. Beckwith Missoula, Montana 59801

Sculpin (Cottus spp.) are small, cryptic, bottom-dwelling fish native to cool and coldwater systems throughout North America. Although three species of primarily streamdwelling sculpin are thought to occur in Montana (one of which is a species of concern), their taxonomy, distribution, and origin are not well understood. In western Montana, the present distribution of sculpin species may have been shaped by both historical events, e.g., the Columbian Ice Sheet, and contemporary landscape changes (passage barriers, climate change, pollution, etc.). To evaluate sculpin presence, and species diversity, we analyzed sculpins from river drainages throughout western Montana-the Clark Fork, Blackfoot, Flathead, Bitterroot, Kootenai, Gallatin, Madison, and Missouri-east and west of the Continental Divide. We analyzed 135 samples at the mitochondrial DNA COXI gene and at 11 microsatellite DNA loci. Preliminary results of genetic analysis suggest the presence of four distinct species with hybridization among three of the species in some locations. Hybridization led to uncertainty in species designations based on morphology, but even genetically pure fish were occasionally misidentified. One species may represent an undescribed taxon that is limited in its distribution to the St. Regis drainage, although its relation to sculpin in Idaho is unknown. A second species, previously thought to be *Cottus bairdii*, is distinct from that taxon and is distributed on both sides of the Continental Divide.

LONG-TERM EFFECTS OF PONDS, CLIMATE, AND UPLAND HABITATS ON PRAIRIE-NESTING DUCKS

Kevin M. Podruzny, Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, Montana 59717-3460, podruzny@msn.com

North American mid-continental breeding duck populations have historically demonstrated extreme annual variability, typically attributed to variation in annual spring

pond numbers. However, strengths of these relationships have not remained constant over time or space for some species. Possible explanations for changes in duck/pond associations include reduced quality of wetlands and reduced quantity or quality of upland habitats. Therefore, I hypothesized that changes in the associations between ducks and ponds could be attributed to spring precipitation, temperature, and upland habitats. I modeled observed duck numbers using random coefficient models structured to represent Gompertz population growth with environmental covariates. Varying modeled intercepts and slopes identified segment specific variation in carrying capacity and limiting environmental factors, respectively. I compared models of alternative a priori hypotheses describing duck abundances relative to various combinations of ponds, climate, and upland habitat using an information-theoretic approach.

Including additional climate and upland habitat covariates produced superior models to pond-only models when predicting duck abundances. Best models identified segment varying differences in the strengths of relationships between ducks and environmental covariates, implying spatial variability in factors limiting abundances. Top models were consistent with my hypothesis that climate and upland habitats provide additional information regarding duck population changes. Knowledge of important environmental covariates that improve spatiotemporal models provides waterfowl managers with opportunities to target management programs in areas with the greatest benefits, or to protect specific habitat components where they are most limiting. Identifying areas with different levels of population response can potentially identify interesting new explanatory variables.

LEAD, HEALTH AND THE ENVIRONMENT: OLD PROBLEM AND 21st Century Challenge

Mark Pokras, Wildlife Clinic & Center for Conservation Medicine-Tufts University, Cummings School of Veterinary Medicine, mark.pokras@tufts.edu

Conservation medicine examines the linkages among the health of people, animals and the environment. Few issues illustrate this approach better than an examination of lead (Pb) toxicity. Lead is cheap and there is a long tradition of its use. However the toxic effects of Pb have also been recognized for many years and our knowledge of the lethal and sublethal effects of Pb continues to grow dramatically. As a result, western societies have eliminated or greatly reduced many traditional uses of Pb, including many paints, gasoline and solders because of threats to the health of humans and the environment. Legislation in several countries has eliminated the use of lead shot for hunting waterfowl. Despite these advances, a great many Pb products continue to be readily available. Wildlife and environmental agencies recognize that angling and shooting sports deposit thousands of tons of Pb into the environment each year. Given what we are learning about the many toxic effects of this heavy metal, there is every reason to switch to non-toxic alternatives. To accomplish this, a broad, ecological vision is important. This presentation will briefly review the current state of knowledge on the toxicity of lead and its behavior in the environment, including the effects on wildlife, humans, and domestic animals. We will also discuss why wildlife professionals need to take a leadership role in bringing together all interest groups to find safe alternatives, to develop new educational and policy initiatives, to eliminate many current uses of Pb, and to clean up existing problems.

LITERATURE REVIEW AND SYNTHESIS OF THE EFFECTS OF Residential Development On Ungulate Winter Range In The Rocky Mountain West

Jean Polfus,* Research Associate, University of Montana, 520 Pattee Canyon Drive, Missoula, Montana, 59803, jeanpolfus@gmail.com

Doris Fischer, Land Use Planning Specialist, Montana Fish, Wildlife and Parks, P.O. Box 52, Sheridan, Montana 59749, dofischer@mt.gov

John Vore, Montana Fish, Wildlife and Parks, 490 N. Meridian, Kalispell, Montana 59901, jvore@ mt.gov

In the past 40 years human population and rural residential development at exurban densities have increased dramatically in the Rocky Mountain West resulting in increasing rates of conflict between high quality ungulate habitat and development. Roads and subdivisions near and in winter range affect ungulates in multiple ways and reduce management options. The literature review covered more than 100 articles on the effects of land use change, especially residential development at exurban densities, on five focal species; elk (Cervus elaphus), mule deer (Odocoileus hemionus), white tailed deer (Odocoileus virginianus), American pronghorn (Antilocapra antilocapra) and bighorn sheep (Ovis canadensis). The direct and indirect effects of exurban development on ungulate winter range vary by region, species, specific habitat type, development type, and human wildlife perceptions. Topics of particular interest included zone of human influence, minimum habitat patch size requirements, habituation, thresholds between functional and non-functional winter range, associated costs of exurban development, and cumulative effects. The literature sheds light on some of these issues, however, few studies addressed the impacts of land use change on population dynamics over the long term. For example, rigorous testing of the cumulative impact that multiple developments and development types, i.e., roads, housing, industrial development, have on seasonal habitat use and migratory behavior has been limited. Shortterm and small-scale observational studies must be replaced by well designed experiments to help managers and planners make more credible recommendations to direct future exurban development.

USING HUNTER SURVEY DATA TO ESTIMATE WOLF POPULATION SIZES IN MONTANA, 2007-2009

Lindsey Rich, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59812

Betsy Glenn, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59812

Mike Mitchell ,* Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59812

Justin Gude, Montana Fish, Wildlife, and Parks, Helena, Montana 59620

Carolyn Sime, Montana Fish, Wildlife, and Parks, Helena, Montana 59620

Reliable knowledge of the status and trend of carnivore populations is critical to their conservation. In the Northern Rocky Mountains, wildlife managers need a time- and cost-efficient method for monitoring the large, growing population of gray wolves (*Canis lupus*) at

a state-wide scale. We explored how hunter survey data could be incorporated into a multiyear patch occupancy model framework to estimate the abundance and distribution of wolf packs, wolves, and breeding pairs in Montana for 2007- 2009. We used hunter observations of wolves to estimate the probability that a given landscape patch was occupied by a wolf pack, and used additional data/models in combination with occupancy model output to provide estimates of total number of wolves and number of breeding pairs. Our modeling framework also allowed us to examine how geographic and ecological factors influenced occupancy and detection of wolf packs. Our models provided estimates of number of packs, number of wolves, and number of breeding pairs that were within 20 percent of Montana Fish, Wildlife, and Parks minimum counts for 2007-2009. We found occupancy was positively related to forest cover, rural roads, and elevation and detection probability was positively related to hunter effort and forest cover. We believe that patch occupancy models based on hunter surveys offer promise as a method for accurately monitoring elusive carnivores at state-wide scales in a time- and cost-efficient manner.

FACTORS INFLUENCING PIKA FORAGING BEHAVIOR IN THE NORTH CASCADES NATIONAL PARK SERVICE COMPLEX, WASHINGTON

Rachel M. Richardson,* Beartooth Wildlife Research, LLC, 700 9th Street, Farmington, Minnesota 55024. University of Montana, Missoula, Montana 59812, losbuows@gmail.com

Jason E. Bruggeman, Beartooth Wildlife Research, LLC, 700 9th Street, Farmington, Minnesota 55024, jbruggeman@frontiernet.net

The American pika (Ochotona princeps) is a small lagomorph restricted to talus slopes at higher elevations or latitudes throughout mountainous regions in western North America. Pikas respond to seasonal fluctuations in food availability by having, i.e., storing, vegetation for use during winter, and are considered a climate change indicator species because of their sensitivity to heat and restricted habitat requirements. Prior to 2009, no data existed on pika populations or foraging behavior in the North Cascades National Park Service Complex (NOCA) in Washington. To help address these data needs, we collected behavioral data on 95 foraging pikas throughout NOCA during summer 2009 and 2010 to better understand abiotic and biotic factors affecting foraging behavior and potential impacts of climate change on pikas. We calculated the proportion of time pikas spent grazing and having, and developed competing hypotheses for each behavior expressed as logistic regression models consisting of climate, vegetation, elevation, date, and year covariates. We selected top models for both behaviors using information-theoretic techniques, and found that time spent grazing decreased while having behavior increased through summer. Pikas spent more time having as elevation increased while time spent grazing was negatively correlated with elevation, suggesting possible constraints in time available for foraging at higher elevations. Time spent grazing was also negatively correlated with temperature, a result likely in response to thermoregulation limitations of pikas. These results demonstrate how multiple factors may affect pika foraging behavior, thereby providing an opportunity to assist resource managers in future decisions regarding pika conservation.

SURVIVAL AND MORTALITY OF MOUNTAIN LIONS IN THE BLACKFOOT WATERSHED, WEST-CENTRAL MONTANA

Hugh Robinson,* Montana Cooperative Wildlife Research Unit. University of Montana, Missoula, Montana 59812

Richard DeSimone, Montana Fish, Wildlife and Parks (Retired). Helena, Montana 59620

We investigated population effects of harvest on mountain lions (*Puma concolor*) using a pseudo-experimental before-after-control-impact (BACI) design. We achieved this through 3 yrs of intensive harvest followed by a recovery period. In December 2000, after 3 yrs of hunting, approximately two-thirds of district 292 was closed to lion hunting, which effectively created a refuge, representing approximately 12 percent (915 km2) of the total Blackfoot watershed (7908 km2). Hunting continued in the remainder of the drainage, but harvest levels declined between 2001 and 2006 as guotas were reduced. From January 1998 and December 2006, a total of 121 individual mountain lions were captured, 152 times, including 82 kittens, and 39 juveniles and adults. Of these, 117 individuals were collared and monitored on average for 502 days (~ 16 mos) with males remaining on the air for shorter periods (\bar{x} =284 days) than females ($\bar{X} = 658$ days). Hunting was the main cause of mortality for all age and sex classes across the study period, accounting for 36 of 63 mortalities documented. This was followed by illegal mortalities, natural, unknown, depredation, and vehicle collisions. Across the study period, any lion in the Blackfoot watershed had, on average, a 22 percent annual probability of dying due to hunting. We found human harvest to be an additive mortality source, i.e., hunting mortality was not compensated for by increased survival of remaining individuals that shapes the overall survival structure of mountain lion populations. As such, wildlife managers through the use of human harvest, have the capability to regulate mountain lion population growth.

Modifying Barrier Fences In Key Wildlife Linkages In Western Montana

Jim Roscoe, American Wildlands, 215 E. Helena, Dillon, Montana 59725, jroscoe@wildlands.org

American Wildlands has identified landscape level wildlife linkages and corridors throughout western Montana and eastern Idaho. We are working cooperatively to implement on-the-ground projects to maintain or enhance this habitat connectivity. On a local scale, wildlife movement through these linkages is often impeded by livestock and property boundary fences. Fences with bottom wire spacing less than 16-18 in above ground level and taller than 40-42 in are usually barriers and entanglement hazards to deer, elk, bighorn sheep, and pronghorn, particularly for their young. BLM and Forest Service policy directs that public land fences will accommodate wildlife movement using wildlife-friendly fence specifications have been available for years, and some modification has been completed. But hundreds of miles of wildlife-unfriendly fences still exist throughout southwestern Montana on both private and public lands, and the miles are increasing. In 2008, American Wildlands initiated a fence modification program to cooperatively "fix" wildlife-unfriendly fences located in key wildlife linkages with emphasis on pronghorn movement. To date, nearly 50 mi of fence have been modified or reconstructed in the Centennial Valley, Grasshopper Valley, and East Pioneers, mostly on private lands and often using volunteer labor. Modification costs are minimal for simple wire adjustments or removal to achieve appropriate wire spacing, and represent little or no cost to the landowner. Although more expensive, modifying net wire fences can have dramatic benefits for wildlife movements.

EFFECTS OF A REST-ROTATION GRAZING SYSTEM ON WINTERING ELK DISTRIBUTIONS ON THE WALL CREEK, MONTANA WINTER RANGE

Julee Shamhart,* Montana Fish, Wildlife, and Parks, 1400 South 19th Street, Bozeman, Montana 59718

Fred King, Montana Fish, Wildlife, and Parks, 1400 South 19th Street, Bozeman, Montana 59718

Kelly Proffitt, Montana Fish, Wildlife, and Parks, 1400 South 19th Street, Bozeman, MT 59718; kproffitt@mt.gov

Understanding livestock grazing effects on wildlife remains an important conservation issue. The purpose of this project was to evaluate the effects of a rest-rotation grazing system on elk resource selection within the Wall Creek winter range in southwest Montana. We collected bi-weekly observations of elk (Cervus elaphus) number and distributions across the winter range from 1988-2007. Using a matched-case control logistic regression model to estimate selection coefficients, we evaluated the effects of annual green-up conditions, winter conditions, landscape features, and grazing treatment on elk resource selection within the grazing system. We found that within the grazing system, elk preferentially selected for rested pastures over pastures that were grazed the previous summer. The strength of selection against the pasture grazed during the growing season was strongest, and pastures grazed during the early and late summer were selected for over the pasture grazed during the growing season. The number of elk utilizing the grazing system increased in the 19 years following implementation of the grazing system; however, total elk herd size also increased during this time. We found no evidence that the proportion of the elk herd utilizing the grazing system changed following implementation of the rest-rotation grazing system. Our results provide support for the principals of rest-rotation grazing systems. Wintering elk preference for rested pastures suggests rested pastures play an important role in rotation grazing systems by conserving forage for wintering elk. We recommend wildlife managers maintain rested pastures within rotation grazing systems existing on ungulate winter range.

Adaptive Wolf Management: The Regulated Public Harvest Component

Carolyn A. Sime,* Montana f Fish, Wildlife, and Parks, Helena, Montana 59620 Justin A. Gude, Montana Fish, Wildlife, and Parks, Helena, Montana, 59620 Robin E. Russell, Montana Fish, Wildlife and Parks, Helena, Montana 59620 Michael S. Mitchell, U. S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59812 Liz Bradley, Montana Fish, Wildlife and Parks, Missoula, Montana 59804 Nathan Lance, Montana Fish, Wildlife and Parks, Butte Montana 59702 Kent Laudon, Montana Fish, Wildlife and Parks, Kalispell, Montana 59901 Mike Ross, Montana Fish, Wildlife and Parks, Bozeman Montana 59718 Val Asher, Turner Endangered Species Fund, Bozeman Montana 59718 Quentin Kujala, Montana Fish, Wildlife, and Parks, Helena, Montana 59620 Kurt Alt (retired), Montana Fish, Wildlife and Parks, Bozeman, Montana 59718 John Ensign, Montana Fish, Wildlife and Parks, Miles City, Montana 59301 Ray Mule, Montana Fish, Wildlife and Parks, Billings, Montana 59105 Mark Sullivan, Montana Fish, Wildlife and Parks, Glasgow, Montana 59230 Graham Taylor, Montana Fish, Wildlife and Parks, Great Falls, Montana 59405 Mike Thompson, Montana Fish, Wildlife and Parks, Missoula, Montana 59804 Jim Williams, Montana Fish, Wildlife and Parks, Kalispell, Montana 59901

Montana's wolf (*Canis lupus*) conservation and management plan is based on adaptive management principles and includes regulated public harvest as a population management tool. The need and opportunity to implement public harvest in 2008, 2009, and 2010 required Montana Fish, Wildlife and Parks (FWP) to develop a stepped down adaptive management framework specific to harvest. For 2008 and 2009, FWP set modest objectives: implement a harvest, maintain a recovered population, and begin the learning process to inform development of future hunting regulations and quotas. In 2010, FWP used a formal Structured Decision Making Process to more clearly define priorities and challenges of setting a wolf season, outline objectives of a successful season, and evaluate consequences and trade-offs between alternative management actions. For all years, FWP used a modeling process to simulate a wide range of harvest rates across three harvest units and to predict harvest effects on the minimum number of wolves, packs and breeding pairs. Model inputs were derived from minimum wolf numbers observed in the field. Modeling allowed consideration of a range of harvest quotas, predicted outcomes, and risk that harvest could drive the population below federally-required minimums. It also facilitated explicit consideration of how well a particular quota achieved objectives and how to adapt future regulations and quotas. Legal challenges to federal delisting restricted implementation of the first fair chase hunting season to 2009. Montana's wolf population is securely recovered, despite the dynamic political and legal environments. Regardless, FWP remains committed to a scientific, data-driven approach to adaptive management.

HABITAT QUALITY INFLUENCES BIRD COMMUNITY STRUCTURE IN THE BIG HOLE RIVER VALLEY

Kristina Smucker,* Avian Science Center, University of Montana, Missoula, Montana 59812, Kristina.smucker@mso.umt.edu

Megan Fylling, Avian Science Center, University of Montana, Missoula, Montana 59812

Extensive restoration work along the Big Hole River aims at improving habitat conditions for the last remaining fluvial population of Arctic grayling (*Thymallus arcticus*) in the U.S. Riparian-associated birds are also likely to respond positively to such restoration activities. From 2007 to 2009 we conducted surveys to document bird communities during the pre-restoration phase. We detected 111 species across the three survey years, representing 45 percent of bird species known to breed in Montana. We used a repeated measures design to control for potential variation in relative bird abundance among years and to test for differences among three treatment types: reference, control, and restoration. Both vegetation characteristics and bird communities differed significantly among treatments. Eight species selected a priori to be indicators of high quality riparian habitat were significantly more abundant at reference points than at control or restoration points. These species will be used as indicators to measure the success of restoration efforts in the future. The outstanding diversity of birds associated with the Big Hole watershed speaks to the conservation value of restoring this stretch for birds as well as fish.

Synthesizing Moose Management, Monitoring, Past Research, And Future Research Needs In Montana

Ty D. Smucker,* Fish and Wildlife Management Program, Department of Ecology, Montana State University, Bozeman, Montana 59717, tsmucker@mt.gov

Robert A. Garrott, Fish and Wildlife Management Program, Department of Ecology, Montana State University, Bozeman, Montana 59717, rgarrott@montana.edu

Justin A. Gude, Montana Fish, Wildlife and Parks, Helena Montana 59620, jgude@mt.gov

Perceived declines in Shiras moose (Alces alces shirasi) in many areas across Montana in recent years have elicited concern from biologists, managers, and members of the public. Interest in moose research in Montana has correspondingly been mounting, however little new research has occurred. For this reason we attempted to synthesize existing knowledge and management programs for moose in Montana to provide collective awareness of the issues and research needs for moose. We used structured interviews of wildlife biologists and managers that work with moose to document current moose management in Montana. Most biologists reported that moose were stable or decreasing in their areas of responsibility. Predation was the most common concern for factors limiting moose, followed by habitat succession, hunter harvest, disease and parasites, Native American harvest, and habitat loss, fragmentation and degradation. In addition to information from post-season surveys of moose permit holders, biologists assessed moose populations using information from a variety of sources including landowner reports, hunter reports collected at check stations, unadjusted trend counts, bull: cow ratios, recruitment ratios, sightability-corrected population estimates and habitat condition. Nearly all respondents felt that available information was inadequate in various ways for making moose management decisions. Clearly identified research needs include calibration of currently employed moose population indices to actual trends in moose

populations, development of a survey program that will provide better and more moose survey data at the appropriate scale for management decisions, and research into how predation, habitat, disease, parasites, and climate affect moose survival and recruitment rates.

MERCURY MAGNIFICATION IN RIVERINE FOOD WEBS IN THE Northern Rocky Mountains: Clark Fork River Basin, Montana, U.S.A.

Molly F. Staats,* University of Montana, Geosciences Department, molly.staats@umontana.edu

Heiko Langner, University of Montana, Geosciences Department, heiko.langner@mso.umt.edu

At a local scale, such as the Clark Fork River Basin (CFRB), historic gold mining contributes the majority of mercury (Hg) found in the environment. Mercury enters aquatic systems in inorganic forms and is transformed to methylmercury (MeHg) by bacteria. MeHg has the ability to bioaccumulate within higher trophic levels, causing severe neurotoxic diseases and mortality. Hg concentrations observed within an aquatic food web are controlled by two factors, a source of inorganic mercury and the potential for that Hg to become methylated (methylation controlled by environmental conditions i.e.: water velocity, organic matter, etc.). A sufficient source of inorganic mercury and environmental conditions which promote Hg methylation can lead to maximum MeHg biomagnification. This study presents a comprehensive look at food web Hg biomagnification within the CFRB. Hg concentrations are characterized through blood or tissue samples from osprey, fish, and aquatic macroinvertebrates. Additionally we look at controlling Hg biomagnification factors, Hg of fine-grained sediment, percentage of wetlands and riparian land cover, and mean monthly discharge, to access the biomagnification process within the watershed and thus the Hg levels observed throughout these three trophic levels. Preliminary results show Hg levels of aquatic invertebrates have been found to be heavily influenced by the source of Hg (fine-grained sediment), while upper trophic level species exhibit a strong correlation to environmental characteristics of the sample reach.

TEMPORARY EMIGRATION OF FEMALE WEDDELL SEALS PRIOR TO FIRST REPRODUCTION

Glenn E. Stauffer,* Department of Ecology, Montana State University, Bozeman, Montana 59717, email: gestauffer@gmail.com

Jay J. Rotella, Department of Ecology, Montana State University, Bozeman, Montana 59717, rotella@montana.edu

Robert A. Garrott, Department of Ecology, Montana State University, Bozeman, Montana 59717, rgarrott@montana.edu

Temporary emigration (TE) from a breeding site is common in some colonial-breeding species, but implications are poorly understood because TE is difficult to quantify. We used capture-mark-recapture models and a dataset of 5450 female Weddell seals (*Leptonychotes weddellii*) born in Erebus Bay, Antarctica to investigate sources of variation in TE rates and evaluate possible implications for recruitment. Temporary emigration rates and recruitment rates were state- and age-dependent and annually variable. For seals that attended reproductive colonies the previous year, mean TE rates decreased from 0.98 (sd = 0.02) at

age 1 to 0.15 (sd = 0.16) at age 8, whereas mean recruitment rates increased from 0.06 (sd = 0.03) at age 5 to 0.52 (sd= 0.16) at age 10. Seals that did not attend reproductive colonies the previous year had greater TE rates and lower recruitment rates than seals that did attend colonies, but the confidence interval for the effect of TE on recruitment included zero. Our results suggest that 1) motivation to emigrate varies temporally depending on environmental conditions, 2) as seals grow older they have increased motivation to attend reproductive colonies even before they are ready to recruit, and 3) some seals appear to always be more likely than others to emigrate. We suspect that TE may allow seals to buffer variability in survival rates.

BLACK BEAR DENSITY IN GLACIER NATIONAL PARK, MONTANA

Jeff Stetz,* University of Montana, USGS Glacier Field Station, Glacier National Park, West Glacier, Montana 59936, jeff.stetz@gmail.com

Kate Kendall, Northern Rocky Mountain Science Center, USGS Glacier Field Station, Glacier National Park, West Glacier, Montana 59936

Amy Macleod, University of Montana, USGS Glacier Field Station, Glacier National Park, West Glacier, Montana 59936

No demographic information exists on the status of Glacier National Park's (GNP) black bear (*Ursus americanus*) population. In 2004, we sampled the black bear population within GNP plus a 10 km buffer using noninvasive hair collection methods as part of a 7.8 million– acre study of the regional grizzly bear (*U. arctos*) population. We collected 5645 hair samples from 550 baited hair traps, and 3807 samples from multiple visits to 1,542 natural bear rubs. Microsatellite analysis identified 601 (51% F) individuals from the 2848 samples identified as black bears. Data from individual bears were used in closed population mark–recapture models to estimate black bear population abundance. We developed an information-theoretic approach to estimate the effectively sampled area from which we calculated density for the 6600 km2 greater GNP area. Preliminary results suggest that the density of GNP's black bear population was equal to or greater than other interior populations sympatric with grizzlies, despite the high density of grizzlies. This project represents the first estimate of black bear density for this area, and demonstrates the efficiency of multi–species projects to inform management.

MANAGING MULTIPLE VITAL RATES TO MAXIMIZE GREATER SAGE GROUSE POPULATION GROWTH

Rebecca L. Taylor,* Wildlife Biology Program, College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, Montana 59812.

Brett L. Walker, Colorado Division of Wildlife, 711 Independent Avenue, Grand Junction, Colorado 81505

David E. Naugle, Wildlife Biology Program, College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, Montana 59812

L. Scott Mills, Wildlife Biology Program, College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, Montana 59812

Despite decades of greater sage grouse (*Centrocercus urophasianus*) field research, the resulting range-wide demographic data has yet to be synthesized into sensitivity analyses to guide management actions. We summarized range-wide demographic rates from 71 studies

from 1938-2008 to better understand greater sage-grouse population dynamics. We used data from 38 of these studies with suitable data to parameterize a two-stage, female-based population matrix model. We conducted analytical sensitivity, elasticity, and variancestabilized sensitivity analyses to identify the contribution of each vital rate to population growth rate (λ) and life-stage simulation analysis (LSA) to determine the proportion of variation in λ accounted for by each vital rate. Greater sage grouse showed marked annual and geographic variation in multiple vital rates. Sensitivity analyses suggest that, in contrast to most other North American galliforms, female survival is as important for population growth as chick survival and more important than nest success. In lieu of quantitative data on factors driving local populations, we recommend that management efforts for sage grouse focus on increasing juvenile, yearling, and adult female survival by restoring intact sagebrush landscapes, reducing persistent sources of mortality, and eliminating anthropogenic habitat features that subsidize predators. Our analysis also supports efforts to increase chick survival and nest success by managing shrub, forb, and grass cover and height to meet published brood-rearing and nesting habitat guidelines, but not at the expense of reducing shrub cover and height below that required for survival in fall and winter.

THE DECLINE AND ISOLATION OF FISHER POPULATIONS PRIOR TO EUROPEAN SETTLEMENT: INSIGHTS FROM DNA ANALYSIS

Jody M. Tucker,* University of Montana, 32 Campus Drive, Missoula, Montana 59812, USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, Montana 59801

Michael K. Schwartz, USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, Montana 59801

Richard L. Truex, USDA Forest Service, Rocky Mountain Region, 740 Simms Street, Golden, Colorado 80401

Kristine L. Pilgrim, USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, Montana 59801

Fred W. Allendorf, University of Montana, 32 Campus Drive, Missoula, Montana 59812

Historical and contemporary genetic information can provide insights into the nature of population expansions or contractions and temporal changes in abundance and connectivity. Fisher (Martes pennanti) populations in California are thought to have declined precipitously over the last 150 yrs and currently only two populations remain in the state that are both geographically and genetically isolated from each other. In this study we looked at whether the isolation of these two populations is a result habitat alteration and trapping that accompanied European settlement in the mid-1800s or if it is the result of a more ancient demographic event. We collected both historical and contemporary genetic samples from each of the two extant fisher populations. We successfully obtained microsatellite genotypes at 10 loci for 21 museum specimens (dated 1882-1920) and 275 contemporary individuals (2006-2009). We found significant temporal shifts in allele frequencies between historical and contemporary samples between regions indicating large amounts of genetic drift likely due to isolation and small population size. We found a strong genetic signal for a 90 percent contraction in effective population size of fisher and estimated that this decline occurred over a thousand years ago. As a decline in abundance of this magnitude likely resulted in contraction of the geographic range, our analyses suggest that fisher populations in California became isolated from one another far prior to the European settlement of the state.

HOARY MARMOT, WHITE-TAILED PTARMIGAN AND PIKA SURVEYS IN NORTHWEST MONTANA

John Vore,* Montana Fish, Wildlife and Parks, 490 N. Meridian, Kalispell, Montana 59901, jvore@ mt.gov

Chris Hammond, Montana Fish, Wildlife and Parks, 490 N. Meridian, Kalispell, Montana 59901, chammond@mt.gov

Montana Fish, Wildlife and Parks has long done survey and inventory of game species and largely within the past few decades has expanded the staff and program necessary to monitor non-game species, too. However, to date there has been little work done on three alpine species likely to be adversely impacted by climate change: the hoary marmot (Marmota caligata), white-tailed ptarmigan (Lagopus leucurus) and pika (Ochotona princeps). Prior to the 2010 field season, Montana Natural Heritage Program had only 31 hoary marmot, eight white-tailed ptarmigan, and 62 pika observations for northwest Montana outside of Glacier National Park. We discuss the beginning of focused survey and inventory effort for these three species in northwest Montana that include searching historical narratives, reaching out to other agencies and backcountry users, developing a species identification guide and sighting log for free distribution, and on-the-ground surveys. On one 4-day backpacking trip we saw or saw sign of 17 marmots in five "colonies" or local areas, 20 pikas and one ptarmigan as well as several other species. In addition to the current survey and inventory work we are outlining future more in-depth work including structured systematic surveys, future monitoring, research on marmot genetics and colony relatedness across the species range in Montana, and potential partners. We also discuss some new and novel approaches such as winter helicopter surveys and fecal DNA analysis for ptarmigan.

MOOSE DISTRIBUTION AND AGE AND SEX RATIOS IN NORTHWEST MONTANA AS REPORTED BY HUNTERS AT CHECK STATIONS

John Vore, * Montana Fish, Wildlife and Parks, 490 N. Meridian, Kalispell, Montana 59901, jvore@mt.gov

Bruce Sterling, Montana Fish, Wildlife and Parks, P.O Box 35, 601 N. Columbia St., Thompson Falls, Montana 59873, bsterling@mt.gov

Timothy Their, Montana Fish, Wildlife and Parks, P.O. Box 507, Trego, Montana 59934, tthier@mt.gov

Tonya Chilton-Radandt, Montana Fish, Wildlife & Parks, 385 Fish Hatchery Rd., Libby, Montana 59923, tchilton@mt.gov

We sought to better document moose (*Alces alces*) distribution and age and sex ratios in northwest Montana by asking hunters. During the 2010 hunting season we asked all hunters stopping at six check stations if they had seen moose, and if so, where, how many, and if they saw bulls, cows or calves. During the 13 days that check stations were open 17,564 hunters reported 490 sightings totaling 749 moose (313 bulls, 320 cows, 95 calves and 21 unknown) for an average of 1.5 moose per sighting (range 1 - 5). Across all check stations there was an average of 2.8 sightings and 4.3 moose seen per 100 hunters, but this varied from 0.9 sightings and 1.2 moose per 100 hunters at the Swan Check Station to 6.9 sightings and 10.4 moose per 100 hunters at Canoe Gulch. The bulls per 100 cows ratio averaged 98:100 across all check stations but varied from 67:100 at Canoe Gulch to 225:100 at the Swan. Likewise,

the calves per 100 cows ratio averaged 30:100 but varied from 8:100 at the Swan to 54:100 at Thompson Falls. Hunter-reported sex and age ratios at the North Fork Check Station agreed with those observed during a post-season helicopter survey in the same area ($\chi 2 p = 0.83$), but hunter-reported ratios at Olney were significantly higher than those observed by helicopter ($\chi 2 p = 0.01$). We discuss the difficulty of monitoring moose populations and the pros and cons of helicopter surveys and hunter-reported moose sightings.

CONSERVING MONTANA'S BIRDS AND THEIR HABITATS THROUGH PARTNERSHIPS

Catherine S. Wightman,* Montana Fish, Wildlife and Parks, P.O. Box 200701, Helena, Montana 59620

Amy Cilimburg, Montana Audubon, 1601 Tamarack Street, Missoula, Montana 59802

Beth Hahn, USDA Forest Service, Northern Region, P.O. Box 7669, Missoula, Montana 59807

Pete Husby, USDA Natural Resources Conservation Service, 10 East Babcock Street, Bozeman, Montana 59715

Janene Lichtenberg, Confederated Salish and Kootenai Tribes, Wildlife Management Program, P.O. Box 278, Pablo, Montana 59855

Kristina Smucker, Avian Science Center, University of Montana, Missoula, Montana 59812

Daniel Casey, American Bird Conservancy, 33 Second St. East, Suite 10, Kalispell, Montana 59901

Kenneth Sambor, Northern Great Plains Joint Venture, 2525 River Road, Bismarck, North Dakota 59503

The Montana Bird Conservation Partnership is a consortium of representatives from state, tribal, and federal agencies, non-governmental organizations, and individuals who are dedicated to conserving birds and their habitats in Montana. Our goals are to work collaboratively to keep common birds common and to conserve, protect and restore sensitive species and habitats. We work to recognize the social and economic value of birds to the people of Montana. We also use the best available science to identify conservation opportunities. Over 300 species of birds regularly breed, winter, or migrate through Montana. Of these, 82 are considered to have sensitive or at-risk populations. Montana's birds are threatened by habitat loss stemming from changing land use practices and energy and subdivision development. Global climate change may exacerbate these threats. We will present current Montana Bird Conservation Partnership projects, our action plan, focal species initiatives, and examples of successful conservation-in-action projects. Find out how you and/ or your organization can get involved at the local or state level. Learn more about the most exciting and forward-thinking bird partnership in the region!

BIOLOGICAL SCIENCES – TERRESTRIAL POSTER SESSION

BROAD-SCALE GENETIC AND COMPOSITIONAL MONITORING OF AQUATIC VERTEBRATE POPULATIONS: A PROOF OF CONCEPT IN THE INTERIOR COLUMBIA RIVER AND UPPER MISSOURI RIVER BASINS

Michael K. Young,* USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, Montana 59801, mkyoung@fs.fed.us

Kevin S. McKelvey, USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, Montana 59801, kmckelvey@fs.fed.us

Michael K. Schwartz, USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, Montana 59801, mkschwartz@fs.fed.us

Monitoring fish and amphibian populations is essential for evaluating conservation efforts and the status and trends of individual species, but measuring abundance is time-consuming and problematic at large scales. Also, relations between fish populations and their surrogates, such as habitat characteristics, are often obscure. As an alternative, genetic assessment and monitoring offers promise as an indicator of population status and trends by providing information on genetic diversity, connectivity among populations, and the prevalence of hybridization with non-native species. We have undertaken intensive sampling of native and nonnative fishes and amphibians in streams monitored by the Pacfish/Infish Biological Opinion Monitoring Program, which includes a spatially comprehensive, random sample of subbasins in the interior Columbia River Basin and upper Missouri River Basin. We have also developed a panel of ~ 100 single nucleotide polymorphism markers for cutthroat trout, redband trout, and rainbow trout to describe patterns of hybridization and landscape genetic structure. If fully realized, analyses of tissues sampled from over 1500 streams in Montana, Idaho, eastern Oregon, and eastern Washington on federal lands should permit broad-scale evaluations of the status and distribution of much of the aquatic vertebrate fauna and enable detection of responses to climate change. Preliminary results of sampling at nearly 700 sites on almost 300 western Montana and northern Idaho streams indicate that westslope cutthroat trout occupy headwater sites in most of their historical range except in the Kootenai and Missouri River basins, brook trout are more widely distributed than previously recognized, and the taxonomic complexity of sculpins is underappreciated.

Adult Female Survival In A Partially Migratory Elk Herd

Scott Eggeman, Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, Montana 59812, Se172254@umconnect.umt.edu

Mark Hebblewhite, Advisor, Assistant Professor of Ungulate Ecology, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, Montana 59812, mark.hebblewhite@umt.cfc.edu

Partial migration occurs when a portion of the population migrates, and results from density-dependence in the relative costs and benefits of migrating or remaining a resident. For elk (Cervus elaphus), partial migration is an adaptive strategy for maximizing optimum forage quality while reducing predation risk. I tested related hypotheses about the effects of migration status, season (summer, winter) and density on the winter range for adult female elk survival. I first tested whether migrants had higher survival, based on the hypothesized forage benefits of migration. Next, I tested the hypothesis that survival of adult female migrant and resident elk differs over time first, as a function of density and second, as a function of seasonal variation between summer and winter. I estimated survival for 204 radio-collared elk over 8 yrs using the non-parametric Kaplan Meier (KM) approach and regressed survival estimates against population size. I tested my hypotheses regarding season, migratory status, and density using the semi-parametric Cox-Proportional Hazards (PH) Model. I found weak evidence supporting my hypothesis that adult female survival is higher for migrant elk compared to resident elk. Migrants had twice the variation in survival rates and a greater risk of death during summer compared to residents. I observed strong evidence of density dependence from the Cox PH model and my regression of KM survival estimates for residents showed adult female survival decreased with increasing elk density over time. My results show preliminary evidence for density dependence affecting resident, not migrant, adult female elk in this population.

THE INFLUENCE OF CONIFERS AND ABIOTIC FACTORS ON BIG SAGEBRUSH COVER

Karen Kitchen, Department of Animal and Range Sciences, Montana State University, PO Box 172900, Bozeman, Montana 59717-2900

Brittany Mendelsohn, Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, Montana 59717-2900

Mike Frisina, Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, Montana 59717-2900

Jim Robison-Cox, Department of Mathematical Sciences, Montana State University, P.O. Box 172400 Bozeman, MT 59715-2400

Bok Sowell, Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, Montana 59717-2900

Expansion of conifers into sagebrush is a concern since it reduces sagebrush cover for wildlife. The objective of this study was to model the relationship between the cover of Douglas-fir (*Pseudosuga menziesii*) and Rocky Mountain juniper (*Juniperus scopulorum*), and the cover of Wyoming big sagebrush (*Artemisia tridentate* spp. Wyomingensis) and mountain big sagebrush (*Artemisia tridentate* spp. *Vaseyana*). Two hundred forty 30x30 m plots were established at three locations in southwest Montana in 2009 to establish this relationship. The best-fit model using AIC criteria found $(\sqrt{sagebrush \ cover} = Intercept_i - 0.401\sqrt{conifer \ cover}; R^2 = 0.61)$ a negative relationship between conifer cover and sagebrush cover. No abiotic factors (elevation, slope, aspect, soil depth, soil texture and percent rock) significantly influenced sagebrush cover. Douglas-fir trees were found to have three-times the canopy area of similar aged Rocky Mountain juniper trees. Conifer removal to increase sagebrush cover is not recommended, since the increase in sagebrush cover is small. If conifer control is deemed necessary, Douglas-fir should be removed before Rocky Mountain juniper, and begin at low levels of conifer cover.

THE SUITABILITY OF LARGE CULVERTS AS CROSSING STRUCTURES FOR DEER

Jeremiah Purdum, Western Transportation Institute, Montana State University, P.O. Box 17883 Missoula, Montana 59808, jepurdum@gmail.com

Marcel P. Huijser, Western Transportation Institute, Montana State University, P.O. Box 174250 Bozeman, Montana 59717-4250, mhuijser@coe.montana.edu

Whisper Camel, Confederated Salish and Kootenai Tribes, P.O. Box 278, Pablo, Montana 59855, whisperc@cskt.org

Len Broberg, Environmental Studies Program, University of Montana, Jeanette Rankin Hall 106A, Missoula, Montana 59812-4320, len.broberg@mso.umt.edu

Pat Basting, Montana Department of Transportation, P.O. Box 7039

Missoula, MT 59807-7039, pbasting@mt.gov

Most researchers that have investigated the use of wildlife crossing structures have done so through counting the number of animals present in the structures or the number of animals that crossed the road using the structures. However, we argue that crossing structure acceptance, as a percentage of all approaches, is a better measure of suitability. Once the acceptance of certain types and dimensions of crossing structures is known for different wildlife species, agencies can select crossing structures that meet certain goals. We used this method for one particular type of crossing structure; large diameter culverts. We placed wildlife cameras (ReconyxTM) at the entrance of nine corrugated metal arched culverts located along US Highway 93 on the Flathead Indian Reservation, Montana; to capture approach behavior. We specifically examined the number of successful and aborted crossing attempts. White-tailed and mule deer were the most frequently observed species and had an acceptance rate of 84 percent (n = 455) and 66 percent (n = 56) respectively. Only 49 percent (n = 426) of the groups that passed the structures successfully showed an alert posture versus 93 percent (n = 98) for the groups that aborted the attempts. The two deer species showed slightly different levels of alertness with an alert posture for 55 percent of white-tailed deer (Odocoileus virginianus) events and 68 percent for mule deer (O. hemionus) events for all crossing attempts combined. The data show that wildlife acceptance rates and behavior at structures can vary between species and data on varying structure type and dimensions will add to our understanding of structure acceptability for various target species.

VARIATION IN WEDDELL SEAL PUP MASS: MATERNAL INVESTMENT IN OFFSPRING

Jennifer M. Mannas, Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, Montana 59717

Robert A. Garrott, Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, Montana 59717

Jay J. Rotella, Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, Montana 59717

Kelly M. Proffitt, Montana Fish Wildlife and Parks, 1400 South 19th Avenue, Bozeman, Montana 59718

Life history theory predicts that individuals face physiological tradeoffs between current and future reproduction. These tradeoffs ultimately lead to reproductive costs which can affect survival, fecundity, condition of the female and offspring survival. Reproduction itself is costly and involves a number of sequential physiological processes that require different levels of energetic investment. In mammalian species gestation and lactation require the most energy and energy expenditure during these times is a characteristic of females and can vary among individuals. Mass measurements, used to quantify pre- and post-partum maternal investment, were collected from 887 Weddell seal (Leptonvchotes weddellii) pups at parturition and throughout lactation in Erebus Bay, Antarctica during the 2002 through 2010 field seasons. Preliminary analysis demonstrated high individual variation in pup mass within a season and modest variation among seasons suggesting that pup mass may be affected more by individual animal attributes than annual variation in environmental conditions. This variation in maternal investment was investigated using maternal traits taken from the long term database. We found that maternal traits have different affects on pup mass at different stages of investment. Maternal age and birth date were found to be influential on pre- and post-partum investment along with age at first reproduction on pre-natal investment and breeding status the previous year on post-natal investment. The variation in the influence of maternal traits on maternal investment may be due to the increased energy requirement of lactation and reproductive costs that females accrue throughout their lifetime.

Evaluating The Barrier Effect Of A Major Highway On Movement And Gene Flow Of The Northern Flying Squirrel

Joseph T. Smith. Department of Ecology, Montana State University, Bozeman, Montana 59717

Steven Kalinowski. Department of Ecology, Montana State University, Bozeman, Montana 59717

Robert Long. Road Ecology Program, Western Transportation Institute, Montana State University, Ellensburg, Washington 98922

Roads are pervasive sources of habitat fragmentation around the world, affecting an estimated 19 percent of the land area of the coterminous United States (Forman 2000). The barrier effect of roads has been demonstrated for species from multiple taxa. Still, information regarding the response of the vast majority of species to roads is lacking. We examine the effects of a major roadway on the movement and population genetics of Northern flying squirrels (*Glaucomys sabrinus*) in the Cascade Mountains of Washington, USA. During 2009 and 2010, flying squirrels (n = 16) were trapped and radio-tracked to gather data on movement within their home ranges and to detect movement across the roadway. Additionally,

DNA was extracted from cheek cells of 41 individuals and genotyped at 12 microsatellite loci to characterize patterns of population structure. Seven of 16 monitored squirrels crossed the highway at least once during their nightly movements. Randomization tests of the movement data do not indicate significant avoidance of crossing the highway corridor. Movement does not necessarily equate to gene flow, however, and forthcoming analysis of microsatellite data will help elucidate whether current rates of movement are sufficient to maintain genetic connectivity across the highway.

50-Year Golden Eagle Nesting Trends In South-Central Montana

Ross H. Crancall, Craighead Beringia South, Kelly, Wyoming 83011, crandall.ross@gmail.com Bryan Bedrosian, Craighead Beringia South, Kelly, Wyoming 83011 Derek Craighead, Craighead Beringia South, Kelly, Wyoming 83011

Golden Eagle (*Aquila chrysaetos*) migration counts in the western North America have shown a significant negative trend in recent years. However, the causes of these declines are unknown and it remains unclear if declining migration counts correlate to a declining population or changes in migratory behavior. Long-term research on nesting Golden Eagle populations is lacking and is needed to properly assess the current Golden Eagle population status in many areas. In 1962, intensive monitoring efforts were initiated in a roughly 1200-mi2 study area in south-central Montana. The objectives were, among other things, to determine density and productivity of Golden Eagles. This area was re-surveyed in the mid 1990s to begin looking at long-term population trends. In 2009, we initiated a multi-year effort to investigate potential changes in the nesting trends in the same study area over a half a century. The data collected to date indicate an increase in the nesting density, similar nest success rates, and a decrease in productivity when compared with both the 1960's and 1990s studies. The longevity of data collected in this study area allows for one of the longest-term comparisons for Golden Eagle nesting density and success in the West and provides invaluable insights into the status of nesting Golden Eagles in this region.

KEEPING COMMON SPECIES COMMON: INVENTORY AND MONITORING FOR A DIVERSITY OF WILDLIFE SPECIES

Lauri Hanauska-Brown, Montana Fish, Wildlife and Parks, 1420 East Sixth Ave, Helena, Montana 59620, lhanauska-brown@mt.gov

Bryce Maxell, Montana Natural Heritage Program, 1515 East Sixth Ave., Helena, Montana 59620, bmaxell@mt.gov

Scott Story, Montana Fish, Wildlife and Parks, 1420 East Sixth Ave, Helena, Montana 59620, sstory@mt.gov

Many of the over 500 vertebrate species found in Montana lack formal status assessments. Few monitoring efforts exist for these species and very few are statewide to include public and private lands. In 2008, the Montana Natural Heritage Program and Montana Fish, Wildlife and Parks designed a protocol for simultaneous multi-species survey. We sampled quarter-quadrangle grid cells selected at random over 3 yrs and covered the entire state. We surveyed all lentic sites for amphibians and all south-facing rocky slopes for reptiles within each cell. We also surveyed dominant habitats for bats using acoustic detectors and small-mammals using standard trap line techniques. The largest challenges included: securing private landowner contact information and permission, automating map creation for the hundreds of selected cells, the preservation of collected specimens, maintaining working acoustic equipment in inclement weather, housing and backing up huge amounts of data from remote locations, and analyzing large quantities of acoustic data. Small mammal and acoustic call identifications are ongoing. A preliminary summary of other data shows an investment of over 20,000 person hours for a total of: 211 grid cells surveyed, 40 small mammal species detected in 2486 captures, 16 bat species detected through thousands of acoustic calls, 12 amphibian species and eight reptile species detected, and 304 species detected as incidental observations. We intend to conduct occupancy modeling for many of the species detected using the grid cells as site. We discuss prospects for using this sampling scheme and methods for future monitoring.

USE OF WILDLIFE CROSSING STRUCTURES ON US HIGHWAY 93 ON THE FLATHEAD INDIAN RESERVATION

Marcel P. Huijser, Western Transportation Institute – Montana State University, P.O. Box 174250, Bozeman, Montana 59717, mhuijser@coe.montana.edu

Tiffany D. H. Allen, Western Transportation Institute, P.O. Box 174250, Bozeman, Montana 59717, tiffany.allen@coe.montana.edu

Whisper Camel, Tribal Wildlife Management Program, Confederated Salish and Kootenai Tribes, Pablo, Montana, whisperc@cskt.org

Kylie Paul, People's Way Partnership, 500 Linden St, Missoula, Montana 59801, kyliepaul@hotmail.com

Pat Basting, Montana Department of Transportation, 2100 W. Broadway Ave, Missoula, Montana, pbasting@mt.gov

In the 1990s, Montana Department of Transportation (MDT) proposed an expansion of U.S. Highway 93, in an area entirely within the Flathead Indian Reservation (FIR), home to the Confederated Salish and Kootenai Tribes (CSKT). In December 2000, the CSKT, MDT, and Federal Highway Administration (FHWA) signed a memorandum of agreement that enabled its expansion. It included wildlife mitigation measures to both mitigate impacts to wildlife and natural processes associated with the widening of US93 as well as to address the safety of the traveling public. Mitigation measures include 41 fish and wildlife-crossing structures, including 40 underpasses and one overpass, wildlife fencing, jumpouts, and wildlife crossing guards across 56 mi of highway. Crossing structures were placed in areas that have a history of wildlife crossings and wildlife mortality, and/or locations where the surrounding landscape and land use was best suited for the crossing structures. Research is underway to determine the effectiveness of the mitigation (see www.mdt.mt.gov/research/ projects/env/wildlife crossing.shtml). Between May 2008 and December 2009, eleven underpasses were monitored for wildlife use. Wildlife use of the structures was substantial with 3,000 deer crossings, 1500 coyote crossings, 300 bobcat crossings, 200 raccoon crossings, and 200 black bear crossings. Other species that used the crossings include mountain lion, elk, grizzly bear, moose, badger, river otter, muskrat, beaver, skunk, rabbit, and various bird species. For the wildlife mitigation measures to be considered successful, goals have been set by the CSKT, MDT, and FHWA, and more data need to be collected and analyzed before the researchers can conclude whether the mitigation measures have indeed reached those goals.

SENTINEL PLANT SPECIES – LOOKOUTS FOR THE LAND

Robert M. Skinner, Charles M. Russell NWR, U.S. Fish & Wildlife Service, Box 110, 333 Airport Road, Lewistown, Montana 59457, bob_skinner@fws.gov

Sentinel plant species are first to vanish with change to the evolutionary concert of ecological processes playing in a locale. The evolutionary concert of ecological processes is the combination of fire, hydrology, herbivory, and predation under which local flora and fauna first evolved. If first to vanish plant species populations are viable, other plant and animal species populations are likely to be viable also. Sentinels are lookouts for the beginning unraveling of connectivity within landscapes. Large recovery of ecological systems is linked with small recuperations of sentinel well being. Restoration of sentinels may be accomplished by the return of an evolutionary course of management. Sentinel plant species monitoring and management is not based on vegetation classification systems such as the National Vegetation Classification System or Ecological Site Classification. Classifications often do not change with the disappearance of management sensitive uncommon species (sentinel plants). Major declines in sentinel plant species critical to specific wildlife species can occur before classification systems will notice. Monitoring consists of demographic measurements of sentinel species at randomly selected locations. Resource selection modeling of these 'used' and of "unused' locations may be accomplished with the demographic measurements and GIS layers such as soils, topography, and management history. The purpose of the modeling is to predict the presence and health of the species, as a function of management, using statistical methods like logistic regression.

DETERMINING SEX IN GOLDEN EAGLES USING FOOT DISPLACEMENT

Vincent Slabe,* Raptor View Research Institute, POB 4323, Missoula, Montana 59806. Rob Domenech, Raptor View Research Institute, POB 4323, Missoula, Montana 59806. David Ellis, Institute for Raptor Studies, Oracle, Arizona 85623

The Golden Eagle (*Aquila chysaetos*) is one of the most widespread raptors in the world. Attempts have been made in the past to determine sex in Golden Eagles (GOEA) through individual and combined morphometric measurements. Due to the gender overlap within these measurements, the GOEA is one of several diurnal raptor species in North America that cannot be conclusively sexed in the hand. Sex in GOEAs is currently determined only through DNA analysis. Determining sex in the hand would increase the value of information collected by banders in the field, unable to devote time or resources to conduct blood or tissue assays. David Ellis, the author of the GOEA monograph, has developed an instrument under the assumption that foot volume could be definably different between male and female GOEA's. This method measures the volume of the eagle's foot, hallux claws, and lower part of the tarsus by the amount of water (cc) displaced. The technique is in its infancy and will be refined as needed. Since 2008, Raptor View Research Institute (RVRI) has measured foot displacement on 36 GOEAs captured on migration in Montana. Our preliminary data shows a 3 cc separation in foot displacement between male and female GOEAs.

MONTANA'S COLONIAL NESTING WATERBIRD SURVEY

Catherine S. Wightman, Montana Fish, Wildlife and Parks, P.O. Box 200701, Helena, Montana 59620

Janene Lichtenberg, Confederated Salish and Kootenai Tribes, Wildlife Management Program, P.O. Box 278, Pablo, Montana 59855

Amy Cilimburg, Montana Audubon, 1601 Tamarack Street, Missoula, Montana 59802

Wetlands are a dispersed but declining resource in Montana. They are considered a Tier 1 community (greatest conservation need) in Montana's Comprehensive Fish and Wildlife Conservation Strategy and are of critical importance to breeding waterbirds. Of the 17 colonially-nesting waterbirds in the state, 12 are Montana Species of Concern. Despite the conservation ranking of waterbirds and their habitats, information on the distribution and abundance of these wetland obligates is limited. The Montana Bird Conservation Partnership is participating in the USDI Fish and Wildlife Service west-wide colonial nesting waterbird inventory to contribute to regional population estimates and meet state information needs. We are focusing on Species of Concern. We counted nests at 123 wetland sites across the state in 2009 and at 133 sites in 2010. Colony size ranged from 1-4833 pairs. Most colonies were relatively small (1-195 pairs), except Franklin's Gulls and American White Pelicans. High water levels likely affected reproductive success in spring 2010. Additional survey work will be conducted in 2011. In addition to calculating estimates of population size, we plan to use these data, in conjunction with other work, to link waterbird populations to wetland condition for use in future conservation decisions and planning. Our work has particular relevance to predicted changes in timing and amount of precipitation associated with climate change, which will likely change wetland condition and distribution throughout the state.