

**BLACK-TAILED PRAIRIE DOG ABUNDANCE AND TRANSLOCATION EFFORTS
ON CHARLES M. RUSSELL NATIONAL WILDLIFE REFUGE^{TWS}**

F.E. Durban, J.L. Dockter Dullum, and M.R. Matchett
USFWS-CMR NWR
Box 110, Lewistown, MT 59457

Prairie dogs (*Cynomys spp.*) continue to decline from historic times as a result of agricultural cultivation, eradication programs and sylvatic plague (*Yersinia gesfis*). In 1997 the US Fish and Wildlife Service began a translocation program to re-establish black-tailed prairie dogs (*C. ludovicianus*) on previously "plagued-out" colonies

located on the Charles M. Russell National Wildlife Refuge (CMR) in southern Phillips County, north-central Montana. Successful translocations should speed prairie dog re-colonization and provide habitat for endangered black-footed ferrets (*Mustela nigripes*) and species of concern such as mountain plovers (*Charadrius montanus*), burrowing owls (*Speotyto cunicularia*) and ferruginous hawks (*Buteo regalis*). Seven release techniques involving various cages and holding pens and 1 passive technique using augured holes were evaluated during initial trials and 2 were selected for 1997 translocation efforts; 1) a chicken wire pen containing augured holes, and 2) augured holes without any containment. A total of 330 prairie dogs were translocated, 281 from other CMR colonies and 49 from a dog colony at Fort Harrison, Helena, Montana. The CMR prairie dogs were released at 4 sites, 2 with the chicken wire pen method and 2 at augured hole only sites on the Manning Corral prairie dog colony where no old burrow openings were present. The Fort Harrison prairie dogs were released at one site on the Big Snowy prairie dog colony where old burrow openings were still present. Prairie dogs were observed on all 5 sites 60 days post release and some are assumed to still be there based on presence of active burrows and fresh diggings. All releases appear successful, but observations this spring and subsequent reproduction and colony growth will help determine the most efficient techniques.