
Shawn J. Riley 
Stephen D. DeGloria 

Robert Elliot 

A TERRAIN RUGGEDNESS 

INDEX THAT QUANTIFIES 

TOPOGRAPHIC 

HETEROGENEITY 

ABSTRACT 
Terrain is an important feature of the structural niche occupied by terrestrial species. However, 

most researchers refer to terrain only in qualitative terms that precludes testing hypotheses about 
the actual importance of terrain. We present an easily calculated terrain ruggedness index (TRI) 
that provides an objective quantitative measure of topographic heterogeneity. Our model computes 
TRI values for each grid cell of a digital elevation model using a "DOCELL" command in an Arc/ 
Info geographical information system that calculates the sum change in elevation between a grid 
cell and its eight neighbor grid cells. T he concept and algorithm we present can be used at any 
scale relevant to the species of concern and question being asked for which elevation data exist. 
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Terrain heterogeneity is an 
important variable for predicting which 
habitats are used by species and the 
density at which species occur across a 
variety of environments (Koehler and 
Hornocker 1989, Fabricius and Coetzee 
1992), and is often an important 
component of a species' niche 
(Whittaker et al. 1973). Terrain functions 
as concealment cover for prey (Riley and 
Dood 1984, Canon and Bryant 1997), 
stalking cover for predators (Kruuk 
1986), and affects the form and function 
of species (Geist and Bayer 1988). 
Terrain also affects the behavior of some 
species to disturbance from humans 
(Edge and Marcum 1991). Yet, most 
researchers describe terrain only in 
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qualitative terms such as undulating, 
broken, rugged, or dissected. Estimates 
of terrain heterogeneity have been 
mostly calculated using labor-intensive 
techniques or techniques designed for 
specific areas (Beasom et al. 1983, 
Fabricius and Coetzee 1992, Nellemann 
and Fry 1995). An easy-to-use, 
quantitative measure of terrain 
heterogeneity is needed to test 
hypotheses regarding terrain as a 
component of habitat and provide for 
more informative comparisons between 
areas. 

Beasom et al. (1983) presented a 
technique for assessing land surface 
ruggedness that was based on the 
intersection of contour lines on US 
Geological Survey (USGS) topographic 
maps and dots from a clear 
transparency. The technique is useful, 
but laborious if the area of concern is 
large. Technological advances in 
personal computers, the Internet, and 
software to analyze spatial data have 
provided easier access to geographical 
databases and permitted many new uses 
of spatial data (Koeln et al. 1996). As 
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part of a study on the effect of terrain on 
abundance of mountain lions (Puma 
concolor) (Riley 1998:12-34), we 
developed a terrain ruggedness index 
(TRI) that is derived from uses digital 
elevation models (DEM) using a terrain 
analysis function implemented in a 
geographical information system (GIS). 
This TRI provides a rapid, objective 
measure of terrain heterogeneity. 

Our model computes TRI values for 
each grid cell of a DEM using a 
"IX>CELL" command in Arc/Info that 
calculates the sum change in elevation 
between a grid cell and its eight 
neighbor grid cells (Fig. 1). We used a 
square grid network with 1 km.2 grid 
cells (Collins and Moon 1981). Grid cell
level TRI values were then averaged 
across any given area such as a county 
or hunting district for a total TRI. The 
TRI values also can be displayed in the 
form of maps that clearly reveal the 
distribution of terrain heterogeneity 
(Fig. 2). In our example, we used an 
"equal area" classification method to 
group continuous ranges of TRI values 
into seven classes of unequal range, but 
equal area. The range in TRI values for 
each grouping are as follows: level = 0 -
80 m; nearly level = 81-116 m; slightly 
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rugged= 117 - 161 m; intermediately 
rugged = 162 - 239 m; moderately 
rugged = 240 - 497 m; highly rugged =
498 -958 m, and; extremely rugged = 959 
- 4367 m. The classification scheme can
be easy changed in Arc/Info to meet the
particular needs of the map.

Several examples may help clarify 
the calculations used in our TRI model 
(Fig. 3). Figure 3a is a simulated peak 
with an elevation in the center grid cell 
much greater than in surrounding grid 
cells. The bowl or pit terrain depicted in 
Figure 3b is an inverse of Figure 3a and 
has an equal TRI value. The two types 
of terrain are viewed equally rugged by 
the model. A more gentle, undulating 
landscape is depicted in Figure 3c where 
the range in elevation is only 25 units 
and no grid cell has a greatly different 
elevation than the center. 

Digital elevation data are now 
readily available on the Internet from a 
variety of sources. We obtained our 
data electronically from uses databases 
(http://www.nrnd.usgs.gov/www / 
products/ 1 product.html). Digital 
elevation models depict elevations 
across a specified landscape and may be 
discrete measurements of elevation or a 
mean value for a specified portion of the 

If each square represents a grid cell on a digital 
elevation model, then 
TRI = Y [ I.(x - x

00
)2 ] 1 12 where x. = elevation of 
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each neighbor cell to cell (0,0). 

The docell command is: 

DOCELL ssdiff = ((sqr(el(0,0) - el(-1,-1))) + 
(sqr(el(0,0) - el(0,-1))) + ... (sqr(el(0,0) - el(l,l))). 

TRI = sqr(ssdiff) 

end 

Where: ssdiff = temprorary scalar, square feet, 
and el= name of elevation grid. 

Figure 1. A terrain ruggedness model that uses digital elevation model data and an Arc/Info
geographical information system. 
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Terrain Ruggedness Index 
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Figure 2. A terrain ruggedness map for the state of Montana. 
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Figure 3. Hypothetical square grid digital elevation data from a) a peak type topography, b) a 
pit type topography, and c) a gentle undulating topography and respective terrain ruggedness 
index (TRI) values. 
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landscape (Moore et al. 1991). Data are 
available for the entire United States 
from USGS 3 arc-second (1 ° latitude by 
1 ° longitude) DEM of North America. 

Researchers must be aware of 
potential biases that originate in DEMs 
when TRI values are interpreted. All 
DEMs contain inherent inaccuracies due 
to underlying sources of error in 
original data that were used to generate 
the DEM (Carter 1989). Whereas a DEM 
is referenced to a "true" elevation from 
published maps, there is no way to 
evaluate the accuracy of the original 
map data. In addition, most DEMs have 
some interpolation of elevations which 
may not accurately represent the true 
elevation at any particular location. The 
elevational accuracy of a DEM is 
greatest in flat terrain and decreases in 
steep terrain (Koeln et al. 1996). 

The scale of inquiry should match 
the species of concern and type of the 
question under inquiry (Bissonette 
1997). The TRI model we present is 
appropriate with large area habitat 
analyses where sources of error in DEMs 
will not appreciably affect biological 
interpretations of the data. The concept 
and algorithm we present could be used 
for smaller areas with higher quality 
data or corrected DEMs. 
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