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ABSTRACT

AN NP-ComPLETE PROBLEM
ARISING FROM A BRUTE
FORCE SEARCH FOR LiMITS
OF SuBSETS OF B"

A brute force search for limits of a subset of B” = (0,1}"is shown to be NP-Coimplete. This
is accomplished by demonstrating equivalence to an extension of the known NP-complete problem
SATISFACTION. No results are postulated concerning sufficient conditions for the existerice

of such a limit.
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MoTIVATION

In a fundamental paper in 1967, E.
M. Gold proposes a paradigm for
learning processes entitled Identification
In the Limit (IIL). This branch of
learnability has developed the following
model over the years since Gold’s work
(See, for example, Ben-David (1992)).
Suppose there is a finite or countable
class of ‘concepts’ C that is known to
both a teacher and a student. The
teacher chooses a concept T from C, and
then repeatedly passes chunks of
information about T to the student. The
student, based on the information
passed to him, successively modifies his
conjecture concerning the identity of T.
The student is successful if the infinite
sequence of his conjectures stabilizes on
the correct concept T. One way to
mathematically represent this processis
to treat the concepts as elements of the
vector space {0,1}" = B". Information
from the teacher is presented in the form
of other elements of B” which are known
to agree with T for at least k of its
elements.
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Consider the problem of
transmitting data to Earth from a very
remote spacecraft. If the transmitter is
weak, or if there is a lot of interference
between the spacecraft and Earth, there
will be a great deal of noise that will
obscure the correct data. Many error-
detecting and error-correcting codes are
currently in use, but in severe cases,
they can require the transmission of
more bits than the data itself. We can
consider the spacecraft as the teacher in
the first example above, and the Earth
station as the student. How many
elements of B" (retransmissions of the
raw data) must be sent to guarantee that
we can correctly determine the correct
data value? If the spacecraft is far away
(say at the orbit of Pluto), the time
required to request a retransmission of
the data and then receive it is on the
order of 10.5 hours or more for each
request. If 10 retransmissions are
needed, this approach would occupy
over 100 hours. If, on the other hand,
one request can be made for the 10
retransmissions, they could all be
received in something on the order of 11
hours. But we must know how many
retransmissions would be required to
guarantee that we could determine the
correct data value.
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These problems give rise to the
following definition and the question
that follows it. The question was first
posed by Shai Ben-David (1992).

Definition: Let B”be the set of all n-
dimensional vectors over {0,1}, and A
be a subset of B”. The element x in B”
is said to be a K-LIMIT of the set A,
1<k <n, if for any choice of k
subscripts, there is an element y in A,
y not equal to x, such that x and y
agree on these k subscripts.

Question K-LIMIT: Is there an
integer K(k,n), such that for A a subset
of B7, 1A > K(k,n) implies that A
has a k-limit?

One approach that can be taken to
solving this problem is to look at all
subsets of B", determine which have
limits, and then find the largest subset
that does not have a limit. If this is done
for a number of different values of 1,
then perhaps a pattern can be
determined and a theorem would
follow. The difficulty here is that the
number of elements in B"is m = 2". This
means that the number of possible
subsets of B"is 2™. Even for small
values of n, this number is very large. If
n =5, for example, there are 32 elements
in B", and over 4 billion subsets that
would have to be considered. A more
common value for n in the spacecraft
problem is 32, and the number of
subsets is in excess of 101260000000 qn
almost unimaginably large number.
Problems of this type are said to be of
exponential complexity, because the time
necessary to work through the problem
increases exponentially with the size of
the problem (n in this case). We would
like to find an algorithm that would
solve the problem in a time period that
is at most a polynomial function of the
size of the problem.

BACKGROUND
A problem is said to be of class NP if
it is only solvable in polynomial time on

a non- deterministic computer. A non-
deterministic computer is one that has
the capability of pursuing all of its
possible sequences of action in parallel
(See, for example, Gersting 1982:362).
Since all contemporary computers are
deterministic, this is essentially
equivalent to saying that the problem
cannot be solved in an amount of time
that is polynomial in the size of the
problem. In a fundamental paper, Cook
(1971) showed that there is one
particular problem in the class NP that
has the property that every other NP
problem can be reduced to it in
polynomial time. That problem is
referred to as SATISFIABILITY, and is
stated by Garey and Johnson in their
book Computers and Intractability as
follows: (The format used here is the
traditional one for stating NP-Complete
problems. It consists of a statement of
the elements of the problem, and a
question that is to be answered either
yes or no.)

INSTANCE: Set U of logic
variables, collection C of clauses
over U.

QUESTION: Is there a satisfying
truth assignment for C?

A logic variable is one that can
assume one of two values: True or
False. Fora givensetU={u | 1<i<n],
the set V consisting of all the elements of
U and the logical negations of those
elements is referred to as the set of
literals over U. A clause is the disjunction
of a subset of the set V; i.e., an
expression of the form

C=V. +V. Pt V.
i i k

A satisfying truth assignment is an
assignment of True or False to each of
the logic variables in such a manner that
at least one of the terms in each clause is
True.

To establish that another problem is
NP-Complete, one must show that it is
either an extension of a known problem,
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or that it is equivalent to a known
problem. A problem X is equivalent to
problem Y if a solution to either one
gives rise to a solution of the other with
a transformation time that is a
polynomial in the size of the problem. X
is an extension of Y if a solution of X
always provides a solution to Y, but not
vice versa. We will use both methods in
the sequel.

In what follows, we will work
exclusively with 3-limits. The extension
to k-limits for arbitrary k is not
conceptually difficult, but it is a
notational nightmare. We leave it to the
reader to see that the extensions do
work.

We begin with an extension of the
problem SATISFACTION, proceeding as
follows. We begin with a set of logic
variables U = {u,, u,, ... u }. We
generate a new set of variables V = {v,,
v,, ...V } by assigning v, to be either u,
or-u,1<i<n. Aswill be shown, there
is usually a rule to be used in making
the choice between u, and -u, and once
this assignment has been made, it will
remain fixed through the remainder of
the problem. Now, there are m = [n(n -
1)(n - 2)]/6 selections of (i,j,k), with 1 <i
<j<k<n. Number these1,2,3,... m.
If the p™ such triple is (r,s,t), set X, =
v v v, (the juxtaposition of logic
variables here implies a logical and).
This defines a new set of logic variables
that we will call X. We are now
concerned about the relationship
between truth assignments for U and
truth assignments for X.

It is clear that any truth assignment
for U will generate truth values for each
element of X. Once each u, is assigned
to be either True or False, then the
values of the v s are also determined; if
v, = u, then the values are the same;
otherwise, they are opposites. With the
v,'s determined, it is a simple matter to
apply the rules of logic to determine the
value for each of the x 's.

Now, consider the problem of
assigning values to the x 's and

84 Olson

determining from those values what
would be the appropriate values for the
u’s. Ifall the x"s are false, then the
problem is straightforward — simply
assign all the v ’s to be false also, and
from that determine the values for the
u’s. Similarly, if all the xl’s are true, then
all the v's can be assigned to be true,
and then the u’s are again easily
determined.

This leaves us with the case that we
have some xs being true and some
false. For a given X, to be true, the three
v's involved in its definition must also
be true. We thus begin by taking all the
xs that are true, and assign all the v s
that appear in these terms to be true
also. Now consider any x that is false.
We must find a v, in the definition of
this x that is not in the set already
defined to be true, and assign it to be
false. If such a v cannot be found, there
is no truth assignment for the u’s to
produce the result in the x s; otherwise
we proceed to the next x, that is false.
The transition from the v s to the u ‘s is
again straightforward. Thus we will
either find a satisfying truth assignment
or a contradiction as above; in either
case the question has been answered in
polynomial time.

To summarize, we have the
following relationship. A given truth
assignment for the u’s will always
produce an assignment for the x.'s, but
the converse is not always true. In some
cases a truth assignment for the u s may
be deduced from one for the x,'s, but not
always.

For the set X described above,
define the expression

S=X1+X2+X3+.,.+Xm

to be a complete clause over the set X.
It is complete in the sense that it
contains every element of the set X.
Note that the nature of the set X, relative
to U, depends on the selection of the
literals in the set V. If U has n elements,
then there are 2" ways that the set V can
be chosen, and each such choice gives



rise to a corresponding set X. We should
properly refer to X as X(V) to clearly
express this dependency. If we have a
collection of V’s, say {V,V,, ...V }, then
we would also have a corresponding set
of Xs, {X(V,), X(V,), .. . X(V,)}. Letus
denote this set by Z. For each set of X’s
in Z, we can construct a complete clause;
the set consisting of these complete
clauses will be called S. In the
construction of these complete clauses,
we will assume that the terms of each
are numbered in a consistent manner.

By this we mean that if the p™ term in
X(V,)is v, ViV then the p™ term in
X(V)isv, v v , 2<r<k Wearenow
concerned about satisfying truth
assignments for the setS. The problem
that we wish to consider is as follows:

INSTANCE: A set S of clauses in the
logic variables of Z, which are in turn
expressions in literals over a set of logic
variables U.

QUESTION: Is there a truth
assignment for U that implies a truth
assignment for Z that in turn satisfies
S?

This problem is broken into two
steps. First, one must find a satisfying
truth assignment for S in terms of the
logic variables of Z. This is essentially
the problem SATISFACTION referenced
above. To get from there to the variables
of U is a polynomial time problem, as
described above. This problem is
therefore NP-Complete.

We will extend this problem by
imposing an additional condition on the
satisfying truth assignments. Inasmuch
as the terms in each complete clause are
numbered in the same manner, it does
make sense to compare the i'" term of
one clause with the i™ term of another
clause. We will refer to the following
problem as SEQUENTIAL
SATISFACTION:

INSTANCE: A set S of clauses in
the logic variables of Z, which are
in turn expressions in literals over a

set of logic variables U.

QUESTION: Is there a truth
assignment for U that satisfies S,
with the additional condition that
for some numbering of the
elements of S, the i*" term of the i'"
clause is satisfied?

Any solution to SEQUENTIAL
SATISFACTION is a solution to the
unnamed problem posed above, but the
converse is not true. The additional
restrictions only make solutions harder
to find, and this problem is also NP-
Complete.

RESULTS

We are now prepared to treat the
fundamental question of the paper as
stated in Section II. The elements of B"
are related to logic variables and truth
assignments in the following way. For a
given element b in B", we generatea V
as follows: if the i component of bis 1,
thenv, =u; if thei"™ componentisa 0,
then v, = -u. In this manner, we can
obtain a one-to-one correspondence
between the elements of B" and the sets
of literals V. If we have a subset A of
elements of B", then each element will
correspond to a V in this manner, and
we generate a set V. From this we
generate the set of logic variables Z, and
the corresponding set of complete
clauses S. Similarly, there is a one-to-
one correspondence between elements
of B" and truth assignments for the
variables U. Again, if b is an arbitrary
element of B", and if the i"" component of
Bis 1, then set u to be True; if that
component is 0, then set u to be false.
We can also proceed in the other
direction: given a truth assignment for
U, it can be transformed in a
straightforward manner into an element
of B". We are now prepared to prove the
following theorem:

Theorem: If T is a subset of B", b an
element of B", then b is a limit of T if
and only if there is a subset A of T
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such that the set V, and the truth
assignments generated by b

constitute a solution to
SEQUENTIAL SATISFACTION.

Proof: Suppose first that b is a limit
of T. Let A be the subset of T
consisting of those elements that are
used to establish the limit. Then for
any choice of 3 subscripts, there is
an element of A that agrees with b
on those 3 subscripts. Number the
possible arrangements of the 3
subscripts from 1 to m. Now,
consider the element of A that
agrees with b on the elements
defined by the i'" triple. If we label
this element a(i), then the i term in
X(V,,,) will be true. Since this is true
for any set of three subscripts, it
follows that the set V, and the truth
assignments generated by b form a
solution to the sequential
satisfaction problem.

Now, suppose that we have a set V
which together with the truth
assignment of b yields a solution to the
sequential satisfaction problem. That is,
foreach i, 1 €i <m, there is an element
of A, call it a(i), such that the i*" term in
the complete clause X(V, ) is true. This
says simply that a(i) and b agree on
those three subscripts. Since i was
general, there is an element of A that
agrees with b on any set of 3 subscripts;
in other words, b is a limit of A. Note
that if T is a superset of A, b will be a
limit of T also.

We now propose the following
decision problem, which we will call 3-
LIMIT:

INSTANCE: A set A of elements
fromB", |Al =k.

QUESTION: Does A have a 3-limit?
Corollary: 3-LIMIT is NP-Complete

Proof: A brute force approach to
this problem would involve finding
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all subsets of B" that have k
elements, and then trying all
elements of B" to find if a lirnit
exists. By the previous theorem, this
amounts to finding a solution to
SEQUENTIAL SATISFACTION.
Hence, this problem is also NP-
Complete.

CONCLUSIONS

The establishment of a problem as
being NP-Complete does not in itseif
imply that the problem is insolvable and
should be abandoned. Zadeh (1973) and
others established in the early 1970’s
that the Simplex method of solving
linear programming problems is in
general of exponential complexity, and
yet it is one of the most widely used
methods in linear programuming today.
Complexity here only establishes a
worst-case scenario. Garey and Johnson
(1979) summarize the significance of
establishing a result like the one above:

... . the primary application of the
theory of NP-Completeness is to
assist algorithm designers in
directing their problem-solving
efforts toward those approaches that
have the greatest likelihood of
leading to useful algorithms.

In light of this staternent, one should
note carefully that the original problem
k-LIMIT is still open: that s, is there a k
such that | Al > k will guarantee that A
has a limit in B"? However, the search
for such a k by brute force is not likely to
succeed for even moderate values of n
because of the complexity of such a
search. Itis possible, however, that
some of the work on the All-Nearest-
Neighbor problem will yield results that
will apply to this problem.
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