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. A brn:e force search for li7:1its of a subset of Bn 

= (0,1 Jn is shown to be NP-Complete. This
IS accomp!1Shed by demonstratmg equivalence to an extension of the known NP-complete problem 
SATISFACTION. No results are postulated concerning sufficient conditions for the existence 
of such a limit. 
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MOTIVATION 
In a fundamental paper in 1967, E. 

M. Gold proposes a paradigm for
learning processes entitled Identification
ln the Limit (ITL). This branch of
leamability has developed the following
model over the years since Gold's work
(See, for example, Ben-David (1992)).
Suppose there is a finite or countable
class of 'concepts' C that is known to
both a teacher and a student. The
teacher chooses a concept T from C, and
then repeatedly passes chunks of
information about T to the student. The
student, based on the information
passed to him, successively modifies his
conjecture concerning the identity of T.
The student is successful if the infinite
sequence of his conjectures stabilizes on
the correct concept T. One way to
mathematically represent this process is
to treat the concepts as elements of the
vector space {0,1}" = B". Information
from the teacher is presented in the form
of other elements of B" which are known
to agree with T for at least k of its n
elements.

Keith B. Olson, Montana Tech of the University 
of Montana, Butte, Montana 59701 

Consider the problem of 
transmitting data to Earth from a very 
remote spacecraft. If the transmitter is 
weak, or if there is a lot of interference 
between the spacecraft and Earth, there 
will be a great deal of noise that will 
obscure the correct data. Many error­
detecting and error-correcting codes are 
currently in use, but in severe cases, 
they can require the transmission of 
more bits than the data itself. We can 
consider the spacecraft as the teacher in 
the first example above, and the Earth 
station as the student. How many 
elements of B" (retransmissions of the 
raw data) must be sent to guarantee that 
we can correctly determine the correct 
data value? If the spacecraft is far away 
(say at the orbit of Pluto), the time 
required to request a retransmission of 
the data and then receive it is on the 
order of 10.5 hours or more for each 
request. If 10 retransmissions are 
needed, this approach would occupy 
over 100 hours. If, on the other hand 

I 

one request can be made for the 10 
retransmissions, they could all be 
received in something on the order of 11 
hours. But we must know how many 
retransmissions would be required to 
guarantee that we could determine the 
correct data value. 
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These problems give rise to the 
following definition and the question 
that follows it. The question was first 
posed by Shai Ben-David (1992). 

Definition: Let Bn be the set of all n­
dimensional vectors over (0,1), and A 
be a subset of Bn. The element x in Bn

is said to be a K-LIMIT of the set A, 
15 k 5 n, if for any choice of k 
subscripts, there is an element yin A, 
y not equal to x, such that x and y 
agree on these k subscripts. 

Question K-LIMIT: ls there an 
integer K(k,11), such that for A a subset 
of Bn, I A I > K(k,n) implies that A 
has a k-limit? 

One approach that can be taken to 
solving this problem is to look at all 
subsets of Bn, determine which have 
limits, and then find the largest subset 
that does not have a limit. If this is done 
for a number of different values of n, 
then perhaps a pattern can be 
determined and a theorem would 
follow. The difficulty here is that the 
number of elements in Bn ism= 2n . This 
means that the number of possible 
subsets of Bn is 2m. Even for small 
values of n, this number is very large. If 
n = 5, for example, there are 32 elements 
in Bn, and over 4 billion subsets that 
would have to be considered. A more 
common value for n in the spacecraft 
problem is 32, and the number of 
subsets is in excess of 101
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, an 
almost unimaginably large number. 
Problems of this type are said to be of 
exponential complexity, because the time 
necessary to work through the problem 
increases exponentially with the size of 
the problem (n in this case). We would 
like to find an algorithm that would 
solve the problem in a time period that 
is at most a polynomial function of the 
size of the problem. 

BACKGROUND 

A problem is said to be of class NP if 
it is only solvable in polynomial time on 

a non- deterministic computer. A non­
deterministic computer is one that has 
the capability of pursuing all of its 
possible sequences of action in parallel 
(See, for example, Gersting 1982:362). 
Since all contemporary computers are 
deterministic, this is essentially 
equivalent to saying that the problem 
cannot be solved in an amount of time 
that is polynomial in the size of the 
problem. ln a fundamental paper, Cook 
(1971) showed that there is one 
particular problem in the class NP that 
has the property that every other NP 
problem can be reduced to it in 
polynomial time. That problem is 
referred to as SATISFIABILITY, and is 
stated by Garey and Johnson in their 
book Computers and Intractability as 
follows: (The format used here is the 
traditional one for stating NP-Complete 
problems. It consists of a statement of 
the elements of the problem, and a 
question that is to be answered either 
yes or no.) 

INSTANCE: Set U of logic 
variables, collection C of clauses 
over U. 

QUESTION: Is there a satisfying 
truth assignment for C? 

A logic variable is one that can 
assume one of two values: True or 
False. For a given set U = { u, I 1 � i � n}, 
the set V consisting of all the elements of 
U and the logical negations of those 
elements is referred to as the set of 
literals over U. A clause is the disjunction 
of a subset of the set V; i.e., an 
expression of the form 

A satisfying truth assignment is an 
assignment of True or False to each of 
the logic variables in such a manner that 
at least one of the terms in each clause is 
True. 

To establish that another problem is 
NP-Complete, one must show that it is 
either an extension of a known problem, 
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or that it is equivalent to a known 
problem. A problem Xis equivalent to 
problem Y if a solution to either one 
gives rise to a solution of the other with 
a transformation time that is a 
polynomial in the size of the problem. X 
is an extension of Y if a solution of X 
always provides a solution to Y, but not 
vice versa. We will use both methods in 
the sequel. 

In what follows, we will work 
exdusively with 3-limits. The extension 
to k-limits for arbitrary k is not 
conceptually difficult, but it is a 
notational nightmare. We leave it to the 
reader to see that the extensions do 
work. 

We begin with an extension of the 
problem SATISFACTION, proceeding as 
follows. We begin with a set of logic 
variables U = {u

1
, u

2
, ... uJ We 

generate a new set of variables V = {v
1
, 

v
2
, ... v"} by assigning v, to be either u, 

or -u,, 1 � i � n. As will be shown, there 
is usually a rule to be used in making 
the choice between u, and -u,, and once 
this assignment has been made, it will 
remain fixed through the remainder of 
the problem. Now, there are m = [n(n -
l)(n - 2)]/6 selections of (i,j,k), with 1 � i 
< j < k � n. Number these 1, 2, 3, ... m. 
If the pth such triple is (r,s,t), set x = 

p 

v,V
5
V

1 
(the juxtaposition of logic 

variables here implies a logical and).
This defines a new set of logic variables 
that we will call X. We are now 
concerned about the relationship 
between truth assignments for U and 
truth assignments for X. 

It is dear that any truth assignment 
for U will generate truth values for each 
element of X. Once each u; is assigned 
to be either True or False, then the 
values of the v,'s are also determined; if 
v = u ,  then the values are the same; 

I I 

otherwise, they are opposites. With the 
v,'s determined, it is a simple matter to 
apply the rules of logic to determine the 
value for each of the x 's. 

Now, consider the problem of 
assigning values to the x

1
's and 
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determining from those values what 
would be the appropriate values for the 
u 's. If all the x 's are false, then the

I J 

problem is straightforward - simply
assign all the v,'s to be false also, and
from that determine the values for the
u 's. Similarly, if all the x 's are true, then

I J 

all the v,'s can be assigned to be true, 
and then the u,'s are again easily 
determined. 

This leaves us with the case that we 
have some x

1
's being true and some 

false. For a given xi to be true, the three
v 's involved in its definition must also 
be true. We thus begin by taking all the 
x's that are true, and assign all the v,'s 
that appear in these terms to be true 
also. Now consider any x

1 
that is false. 

We must find a v. in the definition of 
this x

1 
that is not in the set already 

defined to be true, and assign it to be 
false. If such a v cannot be found, there 

I 

is no truth assignment for the u's to 
produce the result in the x 's; otherwise 
we proceed to the next x. that is false. 
The transition from the� 's to the u 's is 

I I 

again straightforward. Thus we will 
either find a satisfying truth assignment 
or a contradiction as above; in either 
case the question has been answered in 
polynomial time. 

To summarize, we have the 
following relationship. A given truth 
assignment for the u,'s will always 
produce an assignment for the x.'s, but 

. J the converse 1s not always true. In some 
cases a truth assignment for the u/s may 
be deduced from one for the x 's, but not 

J 

always. 
For the set X described above, 

define the expression 
S = x

i 
+ x

2 
+ "3 + . . .  + x

m 

to be a complete clause over the set X. 
It is complete in the sense that it 
contains every element of the set X. 
Note that the nature of the set X, relative 
to U, depends on the selection of the 
literals in the set V. If U has n elements, 
then there are 2" ways that the set V can 
be chosen, and each such choice gives 



nse to a corresponding set X. We should 
properly refer to X as X(V) to !early 
express this dependency. lf we have a 
collection of V's, say {V

1
, V

2
, ... Vk}, then 

we would also have a corresponding set 
of X's, {X(V

1
), X(Vz), ... X(Vk)}. Let us 

denote this set by Z. For each set of X's 
in Z, we can comtruct a omplete dause; 
the set consisting of these complete 
clause will be called S. ln the 
construction of these complete clause 
we will assume that the terms of each 
are numbered in a consistent manner. 
By this we mean that if the pth term in 
X(V

1
) is v

1
_,v1

_1v1
.m, then the pth term in

X(V ) is v v v , 2 < r < k. We a re now r r,1 r,J r,m 

concerned about satisfying truth 
assignments for the set S. The problem 
that we wish to consider is as follows: 

INSTANCE: A set S of clauses in the 
logic variables of Z, which are in turn 
expressions in literals over a set of logic 
variables U. 

QUESTION: Is there a truth 
assignment for U that implies a truth 
assignment for Z that in turn satisfies 
S? 

This problem is broken into two 
steps. First, one must find a satisfying 
truth assignment for S in terms of the 
logic variables of Z. This is essentially 
the problem SATISFACTION referenced 
above. To get from there to the variables 
of U is a polynomial time problem, as 
described above. This problem is 
therefore NP-Complete. 

We will extend this problem by 
imposing an additional condition on the 
satisfying truth assignments. Inasmuch 
as the terms in each complete clause are 
numbered in the same manner, it does 
make sense to compare the ith term of 
one dause with the ith term of another 
clau e. We will refer to the following 
problem as SEQUENTIAL 
SATISFACTION: 

rNSTANCE: A set S of dauses in 
the logic variables of Z, which are 
in tum expressions in literals over a 

set of logic variables U. 

QUE
S
TION: Is there a truth 

assignment for U that satisfies 
with the additional condition that 
for some numbering of the 
elements of S, the ith term of the i th 

clause is satisfied? 

Any solution to SEQUENTIAL 
SATISFACTION is a solution to the 
unnamed problem posed above, but the 
converse is not true. The additional 
restrictions only make solutions harder 
to find, and this problem is also NP­
Complete. 

RESULTS 

We are now prepared to treat the 
fundamental question of the paper as 
stated in Section II. The elements of B" 
are related to logic variables and truth 
assignments in the following way. For a 
given element bin B", we generate a V

b 

as follows: if the ith component of bis 1, 
then v

i,,
,= u,; if the ith component is a O, 

then v
i,,
,= -u,. In this manner, we can 

obtain a one-to-one correspondence 
between the elements of B" and the sets 
of literals V

b
' If we have a subset A of 

element of B", then each element will 
correspond to a Vin this manner, and 
we generate a set V

A
' From thi we 

generate the set of logic variables Z, and 
the corresponding set of complete 
dauses S. Similarly, there is a one-to-
one correspondence between elements 
of B" and truth assignments for the 
variables U. Again, if bis an arbitrary 
element of B", and if the ith component of 
Bis 1, then set u to be True; if that 

I 

component is 0, then set u, to be false. 
We can also proceed in the other 
direction: given a truth assignment for 
U, it can be transformed in a 
straightforward manner into an element 
of B". We are now prepared to prove the 
following theorem: 

Theorem: Tf T is a subset of B", b an 
element of B", then bis a hmit of T if 
and only if there is a subset A of T 
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such that the set V
A 

and the truth 
assignments generated by b 
constitute a solution to 
SEQUENTIAL SATISFACTION. 
Proof: Suppose first that bis a limit 
of T. Let A be the subset of T 
consisting of those elements that are 
used to establish the limit. Then for 
any choice of 3 subscripts, there is 
an element of A that agrees with b 
on those 3 subscripts. Number the 
possible arrangements of the 3 
subscripts from 1 to m. Now, 
consider the element of A that 
agrees with b on the elements 
defined by the ith triple. If we label 
this element a(i), then the ith term in 
X(V a<) will be true. Since this is true 
for any set of three subscripts, it 
follows that the set V

A 
and the truth 

assignments generated by b form a 
solution to the sequential 
satisfaction problem. 

Now, suppose that we have a set V
A 

which together with the truth 
assignment of b yields a solution to the 
sequential satisfaction problem. That is, 
for each i, 1 � i � m, there is an element 
of A, call it a(i), such that the ith term in 
the complete clause X(V a<) is true. This 
says simply that a(i) and b agree on 
those three subscripts. Since i was 
general, there is an element of A that 
agrees with b on any set of 3 subscripts; 
in other words, b is a limit of A. Note 
that if Tis a superset of A, b will be a 
limit of T also. 

We now propose the following 
decision problem, which we will call 3-
LIMIT: 

INSTANCE: A set A of elements 
from B", I A I = k. 
QUESTION: Does A have a 3-limit? 

Corollary: 3-LIMIT is NP-Complete 

Proof: A brute force approach to 
this problem would involve finding 
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all subsets of 8" that have k 
elements, and then trying all 
elements of B" to find if a limH 
exists. By the previous theorem, this 
amounts to finding a solution to 
SEQUENTIAL SATISFACTION. 
Hence, this problem is also NP­
Complete. 

CONCLUSIONS 
The establishment of a problem as 

being NP-Complete does not in itself 
imply that the problem is insolvable and 
should be abandoned. Zadeh (1973) and 
others established in the early 1970's 
that the Simplex method of solving 
linear programming problems is in 
general of exponential complexity, and 
yet it is one of the most widely used 
methods in linear programming today. 
Complexity here only establishes a 
worst-case scenario. Garey and Johnson 
(1979) summarize the significance of 
establishing a result like the one above: 

.... the primary application of the 
theory of NP-Completeness is to 
assist algorithm designers in 
directing their problem-solving 
efforts toward those approaches that 
have the greatest likelihood of 
leading to useful algorithms. 

In light of this statement, one should 
note carefully that the original problem 
k-LIMIT is still open: that is, is there a k
such that I A I > k will guarantee that A
has a limit in B"? However, the search
for such a k by brute force is not likely to
succeed for even moderate values of n
because of the complexity of such a
search. It is possible, however, that
some of the work on the All-Nearest­
Neighbor problem will yield results that
will apply to this problem.
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