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ABSTRACT 
Awareness of potential inaccuracies in stand structure data derived from remotely sensed 

imagery is important in landscape-level analyses. Attributes of forest stand structure were 
estimated from aerial photographs using standardized photointerpretation procedures and 
accuracy assessments were conducted using error matrices by comparing the estimates to plot 
data. Over 500 stands were photo-interpreted by a single interpreter (1:15,840 nominal scale, 
normal color) for six forest structure attributes (canopy cover, stand height, DBH, cover type, 
crown diameter, and canopy layers). Percentage accuracy adjusted for chance agreement ranged 
from 29 percent to 59 percent; percentage accuracy varied according to the techniques used to 
evaluate individual attributes. Potential means for correcting biases and rating landscape analyses 
are discussed. 

Keywords: aerial photo interpretation, remote sensing, accuracy assessment, forest 
stand structure, landscape analysis. 

INTRODUCTION 
Defining relatively homogeneous 

patches (stands) across forested 
landscapes is crucial in assessing 
wildlife habitat, fire risk, forest health, 
and resource outputs for project 
planning. Ground-based survey 
methods for defining forest stand 
structure are prohibitive in time and 
cost for large landscapes. Efficient and 
accurate patch characterization from 
remotely sensed images is critical to 
landscape-level studies. Of equal 
importance is the accuracy of data 
collected from these images. 

Our primary objectives in this study 
were: 1) to determine the accuracy of 
obtaining forest stand structure 
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attributes from 1:15,840 nominal scale 
color aerial photographs, and 2) to 
compare two measures of accuracy used 
for data derived from remotely sensed 
images. 

Photointerpreted data have been 
used in wildlife habitat models (Short 
1988), old growth surveys (Rutledge and 
Hejl, 1990), and large-scale landscape 
assessments (Kalkhan et al. 1995; Allen 
1994, Gonzales 1994; Lehmkuhl et al. 
1994 , Green et al. 1993, Deegan and 
Befort 1990). In these types of studies it 
is necessary to be aware of the potential 
inaccuracy of photointerpreted data and 
the effect this inaccuracy may have 
upon the results. Deegan and Befort 
(1990) showed that inaccurate 
photointerpretation can have a 
substantial effect on forest cover type 
acreage estimations. Some researchers 
have used aerial photo data as "ground 
truth" reference data for maps 
constructed from satellite digital images 
(Green et al. 1993, Hudson 1987). 
However, errors in the reference data 
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may affect quality of digital image 
classifications as well as efforts to assess 
their accuracy (Congalton, 1991). 

Data obtained from aerial 
photographs continue to be important in 
natural resource management because 
of widespread accessibility, cost 
effectiveness, and relative ease in 
developing interpretation skills. Like all 
remotely-sensed data, however, the 
accuracy of the data should be assessed 
and incorporated appropriately into the 
analysis. 

Previous investigations into the 
accuracy of estimating stand structure 
attributes from aerial photographs have 
been conducted at the plot or single tree 
level (Spurr 1960, Worley and Meyer 
1955, Worley and Landis 1954); few 
studies have examined this issue at the 
stand or landscape scale (Deegan and 
Befort 1990). Our study explores 
accuracy at the landscape scale using 
structure attributes interpreted at the 
stand level. 

METHODS 

Study area 
The Finley Creek management area 

is located on the Flathead Indian 
Reservation, north of Missoula, 
Montana. The area ranges in elevation 
from 3,800 ft to 6,000 ft (1,158 m to 1,829 
m) and is generally west-facing. A wide
range of cover types are present in the
11,200 acre (4,532 ha) management area;
the drier, lower elevation slopes contain
ponderosa pine (Pinus ponderosa)/
Douglas-fir (Pseudotsuga menziesii) forest
cover types, whereas the highest
portions of the area are dominated by
whitebark pine (Pinus albicaulis) and
subalpine fir (Abies lasiocarpa) cover
types.

The lower elevation western part of 
the Finley Creek area has been 
extensively managed using both even­
and uneven-aged silvicultural methods, 
while the eastern portion of the area has 
no history of silvicultural activity with 

the exception of fire suppression 
activities. The eastern part of the 
management area is characterized by 
steep, rocky slopes, high-elevation lakes 
and meadows. 

Photo interpretation 
Confederated Salish/ Kootenai 

Tribal Forestry personnel provided 
stand boundaries in the form of an 
ARC/INFO file. We transcribed these 
boundaries on acetate sheets overlaying 
the aerial photos using even-aged 
cutting units, roads, lakes and talus 
slopes to reference the maps provided 
by the Tribe. Stand structure attributes 
were photo-interpreted in July 1995, 
using techniques described in Lillesand 
and Keifer (1994) and in Paine (1981 ). 
Photointerpreted stand structure 
attributes included DBH (diameter 4.5 ft 
above ground), crown diameter, height 
of the dominant and co-dominant trees, 
canopy layers, canopy cover, and cover 
type. A single investigator conducted 
the photointerpretation and field work 
to eliminate any bias between observers. 

The aerial photographs (1:15,840 
nominal scale, 9" x 9", normal color, date 
of exposure 8/90) were scaled and 
effective areas delineated. We 
measured height, canopy cover, and 
crown diameter with standard 
photointerpretation tools such as 
estimation templates (transparencies), 
parallax bar, a Bausch and Lomb zoom 
stereoscope (6-10 X power), and 10-
power hand lens. 

Cover type and stand canopy layers 
were estimated based on the texture, 
tone, and pattern visible on the image. 
We identified four cover-type classes 
based on the majority overstory species: 
DF (Douglas-fir), WL (western larch 
[Larix occidentalis]), LP (lodgepole pine 
[Pinus contorta]), and PP (ponderosa 
pine). We interpreted each stand as 
having one, two, or three layers; stands 
lacking distinct layers were assigned to 
class four. Canopy layers were required 
to have at least 20% canopy cover. We 
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determined stand cover type and 
canopy layers by visually estimating the 
conditions seen throughout the stand; 
no formal photo interpretation plots 
were measured within each stand. The 
DBH was visually estimated to the 
nearest inch from the aerial photos. 

Sampling design 
Following photointerpretation, we 

selected 51 stands randomly, 
approximately a 10 percent sample 
intensity, for field inventory. Simple 
random sampling was selected as the 
sampling scheme because the Kappa 
analysis technique (see below) assumes 
a multinomial sampling model 
(Congalton 1991). 

We systematically located five 1/5 
acre (0.05 ha) plots in each of the 51 
sample stands on maps plotted from the 
ARC/INFO files. 

Field methods 
Within each plot, we selected three 

representative dominant or co-dominant 
trees that best represented the stand 
conditions within the plot. We then 
recorded the DBH, height, crown 
diameter, and species of each tree. Tree 
measurements were taken using 
standard forest mensuration tools 
(diameter tape, logger's tape, 
clinometer). For each plot we estimated 
the number of canopy layers; each layer 
was required to have at least 20% 
canopy cover. Canopy cover within 
each plot was estimated considering 
only tree vegetation ten feet in height or 
greater because trees smaller than ten 
feet could not be distinguished from 
brush on the aerial photographs. 

Data compilation and analysis 
We calculated the mean plot value 

for DBH, height, crown diameter, and 
canopy cover; the mean of these values 
for all five field plots located within 
each stand was calculated to produce 
the stand value for each attribute. We 
determined stand cover type and 
canopy layers by using the majority of 
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the five plots. For example, if a stand 
had 3 plots with a cover type of Douglas 
fir, then the stand would be recorded as 
Douglas fir. In cases where a majority 
could not be determined, we selected a 
cover type and/ or canopy layer class 
based on observations made while 
traveling between plots within the 
stand. 

The two data sets (field and photo) 
were compared to develop an accuracy 
assessment for the photo interpretation 
work. The five-plot data set will 
hereafter be referred to as reference 
(ground) data. 

We used two different methods, 
error matrices and a Chi-square test, to 
assess accuracy in the analysis of the 
data. When conducting these 
assessments, we assumed for all 
attributes that the 'true' values are the 
field inventory values from the reference 
data set. 

Error matrix tables (Story and 
Congalton 1986). -Two-way error­
matrix tables were constructed for all 
attributes. In addition to estimating 
errors of commission, errors of 
omission, and overall accuracy, the error 
matrix tables displayed classes that were 
misinterpreted and for the interval 
attributes, which were inaccurately 
estimated. 

Of the two types of accuracy that 
can be determined from error matrices, 
we determined that errors of 
commission, or user's accuracies, were 
of greater importance in this study. The 
user's accuracy is the number of stands 
correctly classified divided by the total 
number of stands placed into that class 
(row total). User's accuracy is 
considered a measure of reliability of a 
map in depicting ground conditions; it 
is the probability that what is shown on 
the map is actually representative of 
what is on the ground (Story and 
Congalton 1986). Errors of omission, or 
producer's accuracies, are described as 
the probability that a particular stand is 
correctly represented on the map and 



may be useful in some circumstances. 
However, they do not represent the 
accuracy of the map in depicting ground 
conditions, which is a concern in 
applied use of maps and images by land 
managers. The producer's accuracy is 
calculated by taking the number of 
stands correctly classified and dividing 
by the total number of stands in that 
class in the reference data (column 
total). Interval attributes including 
DBH, height, crown diameter, and 
canopy cover, were collapsed into error 
matrix classes (Table 1 ). 

Using the error matrix table 
comparing the photo-interpreted 
estimates of stand DBH to ground 
values (Table 2), we show how the tables 
were analyzed. Stands were placed in 
cells in the table based on the estimated 
value of the attribute (row) and the 
ground value of the attribute (column). 
The shaded cells indicate the number of 
stands that were correctly classified 
(Table 2). The sum of the stands in the 
major diagonal divided by the total 
number of sample stands is the overall 
accuracy. 

Stands in cells to the right of the 
major diagonal were placed in a class 
lower than the reference data; these 
stands were underestimated. Likewise, 
stands in cells to the left of the major 
diagonal were overestimated. If the 
number of underestimated stands 
equals the number of overestimated 
stands, then the photo-interpreted 
estimate is not biased. 

Analysis of producer's accuracy 
provides information on classes where 
stands were consistently omitted from 
the correct class. User's accuracies can 
be explored in a similar way by 
examining the rows of the table and 
identifying those stands that were 
placed in the wrong class by the 
estimating technique. 

Three accuracy coefficients, Kappa 
(K), Tau (T), and overall accuracy (P), 
were calculated from the error matrices 
using methods described in Ma and 

Redmond (1995). T he Kappa and Tau 
coefficients represent adjustments to 
overall accuracy to account for chance 
agreement. 

To simplify the analysis, we focused 
on just one of the error matrix 
coefficients. We selected the Tau 
coefficient because of its ability to 
compensate for chance agreement. P

0 

docs not account for the chance 
placement of a stand into the correct cell 
in the matrix and therefore tends to 
overestimate accuracy (Ma and 
Redmond 1995, Congalton and Mead 
1983). Foody (1992) demonstrated that 
the Kappa (K) coefficient 
overcompensates for chance agreement 
and thus under-represents classification 
accuracy. When the three coefficients 
are calculated from the same matrix, K 
tends to be the highest value, P

0 
the 

lowest, and Te falling somewhere in 
between (Ma and Redmond 1995). T is 

e 

an improvement over K because it 
compensates for random chance 
agreement and for actual correct 
classification (Foody 1992, Ma and 
Redmond 1995). 

Chi-square test of a hypothesized 
variance (Freese 1960). - This test 
compares the estimates of an interval 
attribute to the true values so that the 
accuracy of an estimating technique can 
be determined. We used the chi-square 
test to calculate the probability, P(Z), 
that the estimate is within the user­
specified allowable error of the ground 
value (Table 3) and to determine if there 
is any consistent difference between the 
estimated values and the true values. 
An example of a source of bias would be 
an improperly calibrated instrument 
used in the estimating technique or 
perhaps using an incorrect constant in a 
formula. The chi-square test allows for 
the detection of bias and subsequent 
calculation of P(Z) assuming the source 
of bias was eliminated. We removed 
bias if it resulted in an increase of 0.05 or 
greater in the P(Z) value. The allowable 
error values (Table 3) are consistent 
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Table 1. Classes for error matrix tables. The interval attributes were collapsed into these 
classes for the error matrix analysis. 

1. 

2. 

3. 

4. 

5. 

DBH (inches) Height (ft) 

<5 (12.7 cm) 1. < 20 (6.1 m)

5 -8.9 (22.8 cm) 2. 20 -39 (11.9 m)

9 -14.9 (38.1 cm) 3. 40 -59 (17.9 m)

15 - 20.9 (53.3 cm) 4. 60 -70 (21.3 m)

> 21 (53.3 cm) 5. 71 - 99 (30.2 m)

6. > 99 (30.2 m)

Can·opy 
closure 

1. <25%

2. 26 • 59%

3. >60%

Crown diameter 
(ft) 

1. < 5 (1.3 dm)

2. 5 -8.9 (2.3 dm)

3. 9 -14.9 (3.8 dm)

4. 15 -20.9 (5.3 dm)

5. > 21 (5.3 dm)

Table 2. Error matrix table of the aerial photo estimates of stand DBH. Shaded cells indicate 
stands that were correctly classified. Accuracy values for the table are overall accuracy (P

0
) = 

0.53, Tau (T,) = 0.41, and Kappa (K) = 0.27. 

Photo­
interpreted 

data 

Class 

2 

3 

4 

5 

Reference (ground) data 

2 3 4 5 User's Row 

Accuracy total 

8 

(%) 

33 

1 67 

2 50 

6 

21 

20 

3 

Producer's 

Accuracy(%) 67 56 56 25 

Column total 

Table 3. Allowable error for chi-square test. 
These values were used in the chi-square test 
of a hypothesized variance (Freese, 1960) for 
the interval attributes. 

Attribute Allowable error 

DBH +!- 3' (7.62 cm) 

Height +/-10' (3.05 m) 

Crown diameter +/-4' (1.2 m) 

Canopy closure +/-10% 

with errors reported for images of this 
scale in the literature (Worley and 
Landis 1954, Worley and Meyer 1955, 
Spurr 1960). We rearranged the basic 
equations presented by Freese (1960) 
algebraically so the probability the 
estimate is within the allowable error of 
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3 25 18 4 51 

the ground value could be easily 
determined. The chi-square technique 
assumes a normal distribution of the 
data. Normal probability plots were 
examined to test this assumption. 

The Tau coefficient (T ) and the Z 
probability corresponding to the chi-
square test of a hypothesized variance 
were the accuracy measures used to 
evaluate the estimation techniques. 

RESULTS 

Photointerpretation error 
matrices 

Table 4 summarizes the stands that 
were accurately interpreted and those 
that were mis-estimated for the interval 
a ttri bu tes. 

2 

5 

2 

" 



DBH. - The User's accuracy figures 
indicate we were best able to interpret 
DBH in classes 3 and 4. Over 80% of 
the stands were in these two classes 
(Table 2). 

Height. - Estimates of stand height 
from the photos were generally 
underestimated, such that stands were

frequently placed in lower classes by the 
photo-interpreter (Table 4). The User's 
accuracies for stand height classes 3 and 
4 were greater than 50 percent, and 86 
percent of the stands were in these two 
classes. 

Crown diameter. - Photo estimates 
of average crown diameter tended to be 
low. Thirteen stands were 
underestimated while 7 were

overestimated (Table 4). Like the 
estimates of DBH and height, the User's 
accuracies were high in the classes that 
contained the majority of the stands 
(classes 3 and 4). 

Canopy cover. - Estimates of 
canopy cover did not appear to be 
biased (Table 4). All of the stands were

either in class 2 or 3. Most of the 
underestimated stands were in class 3, 
whereas all of the overestimated stands 
were in class 2; thus interpreters were 
unable to distinguish classes 2 and 3. 
Accuracy is low considering that there 
were just three classes. 

Canopy layers. - Most of the 
sample stands were single-layered (class 
1) and there was substantial

misclassification between one-and-two 
layered stands. Fifteen stands were 
classified as one-layered when they 
were actually two-layered, indicating 
that it was difficult to detect the second 
layer of stand canopy. 

Cover type. - Over half of the 
sample stands were of the Douglas-fir 
cover type (27 out of 51); User's 
accuracy for Douglas-fir was high (74 
percent). User's accuracy for subalpine 
fir was also high (75 percent). Five 
stands were incorrectly classified as 
Douglas-fir; conversely six Douglas-fir 
stands were erroneously classified as 
other cover types. 

Error matrix coefficients calculated 
for each attribute show a similar trend 
as reported by Ma and Redmond (1995), 
with K coefficient values being the 
lowest, T values in the middle, and P 

• 0 

values the highest (Table 5). 

Chi-square test of a hypoth­
esized variance 

The P(Z) values were substantially 
higher than the corresponding Tau 
coefficient values (Table 6) for each 
attribute. The chi-square analysis was 
not applicable to the nominal attributes 
(canopy layers, cover type). Bias was 
detected in DBH, height, and crown 
diameter attributes; the P(Z) values 
(Table 6) were calculated with bias 
removed. 

Table 4. Summary of error matrix results for ordiruil attributes. Each cell represents the 
number of stands. 

Attribute Underestimated 

by> 1 class 

DBH 3 

Height 4 

Crown Diameter 5 

Canopy Cover 

Canopy Layers 

Underestimated Accurately Overestimated Overestimated Sample size 

by 1 class classified by 1 class by> 1 class (stands) 

9 27 12 51 

13 25 8 51 

8 31 7 51 

13 27 11 51 

15 33 3 51 
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Table 5. Error matrix accuracy coefficient 
values. The same error matrix for each 
attribute was used to calculate each 
coefficient. 

Variable Kappa Tau 

DBH 0.27 0.41 0.53 

Height 0.14 0.29 0.49 

Crown diameter 0.42 0.51 0.65 

Canopy cover 0.13 0.29 0.53 

Canopy layers 0.18 0.50 0.63 

Cover type 0.47 0.59 0.64 

Table 6. Summary table of the Tau and 
P(Z) accuracy measures for each attribute. 

Variable Tau P(Z) 

DBH 0.41 0.69 

Height 0.29 0.55 

Crown diameter 0.51 0.84 

Canopy cover 0.29 0.52 

Canopy layers 0.50 NIA 

Cover type 0.59 NIA 

DISCUSSION 

Spurr (1960) reported on the 
tendency to underestimate crown 
diameter which agreed with our 
findings. He stated that thin branches 
cannot be resolved on the photos 
causing an underestimation of crown 
diameter. This may be one factor 
explaining the significant bias detected 
in the chi-square equation for this 
attribute. However, the quality of film 
and lenses has increased tremendously 
since the 1960s and low resolution may 
not be the cause of this underestimation. 

The steep topography in parts of the 
study area resulted in shadows and 
changes in resolution that may have 
resulted in the overestimation of canopy 
cover. The detected error in our 
comparison might result from the 
tendency to underestimate canopy cover 
from the ground (Spurr, 1960). 
Estimates of canopy cover from aerial 
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photographs may be more accurate than 
estimations from the ground. We found 
that the percentage of ground obscured 
by overstory canopy for the entire �tand 
was easier to visualize from an aenal 
perspective than from a series of 
ground plots. This discrepancy may be 
partially responsible for the low 
reported accuracy for this attribute. 

Estimating canopy layers from the 
photos was difficult and we often 
depended more on the site . characteristics, topography, elevat10n,
and aspect of the stand rather than the 
texture, tone or patterns seen on the 
photograph (Paine 1981, Spurr 1960). 
Site characteristics were obtained from 
topographic stand maps. Our 
knowledge of the plant ecological 
relationships to physical site 
characteristics played an important role 
in the interpretation. The reported 
accuracy (T = 0.50) was fairly high 
considering" the difficulties described 
above. Perhaps greater familiarity with 
the vegetation conditions and how they 
relate to the physical characteristics of 
the stands would have resulted in an 
increase in accuracy for this attribute. 

Over half of the stands were in the 
Douglas-fir cover type; the remaining 
six cover types had six or fewer stands 
in each cover type class. The high 
reported User's accuracy for subalpine 
fir may be because this species tends to 
have a distinctly pointed crown 
compared to the other species and 
therefore was easier to distinguish on 
the photos. We chose single species 
cover types because of the large variety 
of species mixes that occur in the study 
area. We felt that it would be easier to 
identify the major species on the photos 
rather than try to define species mixes 
by canopy cover composition. Like the 
stand layers attribute, the site 
characteristics of the stand were often 
critical in making cover type judgments 
from the photos. Accuracy (T. = 0.59) is 
high when the difficulty of determining 
the dominant cover type species from 



the many mixed species stands is 
considered; the accuracy reported for 
cover type is not significantly different 
from that reported by Deegan and 
Befort (1990), who analyzed data from 
1:15,840 scale black and white infrared 
photos and ground plots in northern 
Minnesota (T = 0.54). 

e 

We detected significant bias in the 
chi-square calculations for DBH, height, 
and crown diameter; this may be 
partially due to the growth of the trees 
since the time the photos were taken. 
The photos were taken in August 1990 
and the field inventory was conducted 
in August - September 1995, which 
would have allowed growth to occur. 

For all of the attributes, the majority 
of stands were classified into one or two 
classes, with a few stands scattered 
among the remaining classes. In many 
of the under-represented classes, small 
sample sizes allowed for greater errors. 
For example, the DBH class 2 producer's 
accuracy would be reduced from 67 
percent to 33 percent if just one of the 
correctly classified stands had been 
misclassified (Table 2). A larger number 
of sample stands would presumably 
add stands to the under-represented 
classes and increase reliability of the 
producer's and user's accuracy figures. 
The User's accuracies for the classes 
where most of the stands were placed 
by the reference data were relatively 
high for most of the attributes, 
suggesting that our photo-estimating 
techniques may be more accurate than 
the error matrix coefficients indicated. 

Congalton (1991) points out that 
traditional statistical methods for 
determining sample size are not 
appropriate for error matrix tables and 
that a minimum of 50 samples per error 
matrix category is recommended. 
Adhering to this recommendation 
would mean field sampling 250 stands 
(half the stands in the study area) to 
populate an error matrix with five 
categories. We sampled 51 stands for 
practical reasons (field time, expense). 

We intended to sample 50 stands, one 
extra stand was accidentally sampled. 

Selection of class breaks and the 
number of classes can have a significant 
effect on error matrix accuracy 
coefficients. We selected these error 
matrix classes based upon their utility to 
Salish/Kootenai forestry personnel and 
because the class boundaries seemed 
logical for this region. The same data 
aggregated into a different number of 
classes may result in different accuracy 
coefficient values (Openshaw 1987). It is 
interesting to speculate on whether 
collecting data in an ordinal form would 
have any effect on error matrix accuracy. 
Biging et al. (1991) interpreted stands 
into broad classes using methods and 
imagery similar to this study; reported 
accuracies are somewhat higher. This 
may be because their classes were much 
broader than ours. Placing stands 
directly into categories seems to be 
popular (Lehmkuhl et al. 1994), probably 
because of the relative ease and speed 
with which stands are interpreted. In 
short, manipulating the number and 
width of classes and the class breaks can 
have a significant impact on accuracy 
and should be considered prior to data 
collection or aggregation into classes. 

The observed tendency for the P(Z) 
values to be higher than the 
corresponding Tau values is because the 
two methods measure accuracy in 
different ways. The P(Z) value is the 
probability that the estimate is within 
the allowable error of the ground 
estimate. Thus, with a reported P(Z) 
value of 0.68, in 68 out of 100 stands we 
would expect the estimate to be within 
the allowable error of the ground value. 
Error matrix values (T ) indicate the 

• 

percent chance that a stand is in the 
correct class. They can also be 
interpreted as the percent improvement 
over a random placement of stands into 
cells in the error matrix table. It seems 
that the two measures should be closer 
than the results (Table 6) indicate; the 
higher P(Z) values reported may be 
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because this technique considers the 
difference between each attribute pair 
(estimated - observed) whereas the error 
matrix technique lumps the interval 
attribute pairs into categories. In 
directly comparing the predicted versus 
estimated values, the effects of gross 
estimation errors in any one stand may 
be smoothed over by other, more 
accurately interpreted stands. 

The obvious difference between the 
two measures is that one measures 
interval scale data (chi-square) and the 
other measures categorical data. 
Collecting interval scale data allowed us 
to collapse the data using many 
different classifications. Thus, if a 
particular model or analysis requires 
different class breaks, we could collapse 
the interval data into the appropriate 
categories. This freedom is lost if the 
data were collected in categories. 

Although direct comparison of the 
two accuracy assessment techniques is 
not possible, the success of the 
estimating techniques in predicting the 
ground values of the interval attributes 
may be higher than the Tau coefficients 
indicate because of the problem of low 
sample sizes in many of the classes. The 
sample sizes recommended by 
Congalton (1991) are certainly 
reasonable for satellite images where the 
population consists of thousands pixels, 
but they are impractical when the 
experimental unit is the stand, not the 
pixel. We recommend using the chi­
square test when few ground plots are 
available. 

A question that a land manager 
must ask when faced with the need for 
landscape-level data is whether the 
increased accuracy of a ground-based 
inventory method justifies the extra 
expense. Photointerpretation is a cost­
efficient method of obtaining data, 
especially if imagery does not have to be 
purchased. Project objectives are critical 
to this discussion of efficiency versus 
accuracy. Resource managers may 
accept a higher level of error when the 
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goal is estimation of the areal extent and 
arrangement of various structure and 
cover types in broad classes across a 
large landscape. When a smaller 
landscape is being assessed for 
management planning, the level of 
acceptable error may be lower, perhaps 
to the point of justifying a ground 
survey of all stands. The objectives may 
involve collapsing attribute data into a 
stand type classification based on two or 
more of the attributes. In this case, the 
accuracies of each of the attributes used 
in the classification would be multiplied 
for the estimated accuracy of the stand 
classification. For example, if a stand 
type classification is based on diameter 
class and cover type and the Tau 
coefficients for these two attributes are 
0.75 and 0.80, then the accuracy 
coefficient of the classification would be 
(0.75)(0.80) = 0.60. 

A reasonable approach to landscape 
assessment would be to combine 
remotely-sensed data, existing ground 
data (stand exams), and field survey 
data into the landscape assessment, as in 
Morrison (1994). Ground data could be 
used to conduct an assessment of the 
photo-interpreted stands provided that 
the inventory methods were compatible, 
or to train photo-interpreters before data 
collection from the photos. 

CONCLUSIONS 
As more is learned about landscape­

level processes, there will be a greater 
need for efficient methods of collecting 
data across landscapes. Satellite image 
technology is progressing, but accurate 
classification of some forest structure 
attributes has not been attained (Spies 
1994, Cohen 1994). When compared to 
digital image processing, 
photointerpretation is a relatively low 
cost method that is within the means of 
most land management agencies. A 
multi-stage approach is probably best; 
satellite images may be used for data 
collection in broad classes across large 
areas, and aerial photographs for more 



specific data on mid-scale landscapes. 
For detailed, site-specific data field 
inventory will be necessary. 

In this study, we used 
photointerpretation methods similar to 
those used by most land management 
agencies. Other methods of collecting 
information from aerial photographs 
(Martin and Gerlach 1981, Teuber 1983) 
are certainly valid, but the methods 
used in this study seem to be commonly 
used in operational landscape 
assessments (Lehmkuhl et al. 1994). 

Accuracy assessments should be 
conducted on all projects where data 
from remotely sensed images are used. 
The accuracy assessment methods we 
describe could easily be implemented 
on most data sets. The number of field 
plots or sample stands may be restricted 
by expense, but as few as 50 plots 
(stands) provide insight into errors and 
misclassifications. Existing stand 
inventory data may be used in assessing 
the accuracy of remotely sensed or 
modeled data; this would minimize the 
amount of new field data needed. 
Knowledge of the accuracy of remotely 
sensed data will give increased 
confidence in decisions based upon the 
data and also provide feedback to 
improve future interpretation and 
classification projects. 

Forest structure attributes 
frequently are the defining 
characteristics for landscape elements 
such as the patch, matrix and corridor 
(Forman 1995). Landscape models have 
been developed to meet the challenge of 
implementing ecosystem management; 
some examples include SIMPPLE (Chew 
1995), FIRE-BGC (Keane et al. 1996), and 
FRAGSTATS (McGarigal and Marks 
1995) These models frequently utilize 
remotely sensed data of these forest 
landscape elements. The accuracy of 
these input data and the effect of errors 
on model output are frequently 
overlooked (Hess 1994). The application 
of some models may be pointless and 
misleading if the input data are not 

accurate to a certain extent. Land cover 
weighting schemes, which are often 
used in wildlife habitat models, can be 
adjusted based on observed 
classification error (Prisley and Smith 
1987). Further research into the effect of 
errors in spatial data on landscape 
models, and methods to adjust models 
based on these errors, is needed. 

Often land managers have data 
from several different sources at their 
disposal when making resource 
decisions. They need a method to 
weight these different data sets; an 
accuracy assessment provides a good 
basis for weighing the value of remotely 
sensed data (McCloy 1995). Resource 
professionals will continue to look to 
remote sensing technology as a cost­
effective way to obtain data as they 
assess forest resource patterns and 
processes across larger landscapes. 
Awareness of the limitations of this 
technology and of potential inaccuracies 
in these data are critical factors to 
consider when decisions are to be made 
based on a landscape-scale analysis. 
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