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GRAVITY OVERRIDE OF 

IMMISOBLE FLUIDS IN 

POROUS MEDIA 

When one fluid is displaced by another in a permt!llble medium, the front between the two 
fluids changes its shape. The change in shape of the front depends on miscibility of the �o 
fluids, the density difference, and the time of contact. Inside a petroleum reservoir, when oil is 
pushed with a fluid, the front's changed shape is one of the important factors in determining the 
efficiency of the production system. Therefore, it is important to study the changing shape of the 
front, in order to extract oil in an efficient manner. Using Darcy's law and the convection-diffusion 
equation, a detailed mathematical study of the motion of the front and the fluid particles is 
presented fvr miscible fluids. The model is then restricted to immiscible fluids and numerical 
results are presented. This paper describes how the front between two fluids changes its shape 
because of a difference in density. 
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INTRODUCTION 

The phenomena of the simultaneous 
flow of two fluids through a porous 
medium occurs in many important 
problems of petroleum recovery, reser
voir engineering and groundwater 
hydrology. Consequently, many prob
lems have arisen and been solved in 
past years. Problems in hydrology and 
geology related to the flow of two fluids 
concern the more or less natural contact 
of two fluids inside the earth. However, 
in petroleum reservoir engineering the 
contact of the fluids is an artificial 
situation created in the oil field inside 
the reservoir. Examples are pushing the 
oil (with miscible or immiscible fluids) 
toward the production well to get more 
output, the under ground motion of a 
spilled contaminant that is moving 
towards a river or a lake, and seawater 
intrusion into a coastal freshwater 
aquifer. 

The problem discussed here comes 
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from an oil field where a fluid is injected 
through an injection well to increase the 
pressure inside the reservoir and to 
push the oil toward the production 
wells. When the injection fluid is 
injected at a very high pressure the 
pressure is distributed in the flow 
domain and the front between the two 
fluids (oil and injection fluid) moves 
toward the production wells. The 
motion and shape of the front between 
two fluids depends on the contrast of 
the fluids such as high or low density 
difference, high or low viscosity differ• 
ence, and high or low miscibility of the 
fluids. Initially the front between the 
two fluids can be assumed to be sharp 
and vertical. After awhile, because of 
miscibility, the front is not sharp any
more as shown in Figure 1. Using 
Darcy's law and the convection- diffu
sion equation, an extensive mathemati· 
cal study of the motion of the front 
between two fluids is possible. A 
mathematical model has been devel
oped that studies the change in the 
shape of the front, under gravitational 
force only, inside a porous medium. It 
has been assumed that the fluid par
ticles near the front are in motion only 
due to density differences of the two 
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fluids. The density difference between the two fluids causes a pressure gradient which 
makes the front move. 

production well 

• heavy fluid
{oil)

injection well 

(injection fluid) 

front after t seconds initial front 

Figure 1. Motion of the front inside the resemiir 

Diffusion and Flow 

If a liquid is in contact with another 
substance (solid or gas) there is free

interfacial energy prL'scnt between the 
two. This means that a certain amount 
of work has to be performed in order to 
separate a liquid fwm, say, a solid. The 
interfacial energy wmcs from the 
inward attraction of the molecules in the 
interior of a substance toward those at 
the surface. Since a surface possessing 
free energy contracts (if it can do so), the 
free interfacial energy manifests itself as 
intcrfacial tension, (Collins 1976). Thus 
the interfacial tension <1,k for a pair of 
�ubstance� i and k is dcfinl'd as the 
amount of work that must be performed 
to separate a unit area of substance i and 
substance k. For <1ir and water, at 20°C, 
<1,k = 72.5erg/cm'. The interfacial tension 

<1
1 

between a substance i and vacuum 
(or vapor of the same substance) is 
called surface tension. 

If the intcrfacial tension between 
two fluids is nonzero, the fluids do not 
mix. This is referred to as immiscible. If
the interfacial tension between two
fluids is zero then a distinct fluid
interface docs not exit and the fluids arc
miscible. If two fluids arc miscible then
molecules of one fluid can diffuse into
the other fluid. This is a spontaneous
process. Consider two fluids brought
into contact at a plane. Within either
fluid the molecules have a random
motion which is dependent upon the
absolute temperature. This motion is
isotropic, i.e. in ,my homogeneous
region there arc equal numbers of
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molecules moving in all directions with 
the same distribution of velocity. At the 
plane of separation there arc molecules 
of kind 1 on the left and molecules of 
kind 2 on the right. Due to random 
motion some molccu Jes of kind 1 cross 
the plane to the right and some of kind 2 
cross to the left. This process expands in 
both directions until a homogeneous 
mixture of two kinds of molecules 
exists. This process is termed molecular 
diffsion (Rafai 1956). 

Convection-Diffusion Equation 
Assume a linear fluid element 

between A and 8. If C is the average 
concentration of the fluid at a certain 

instant, then 

Ill Total mass= };1 Cdx. (1) 

Since mass is conserved, the rate of 
change of mass is equal to the change in 
mass per unit time due to flow plus the 
change in mass per unit time due to 
diffusion. That is 
i/ II 

,Jt /, Cdx = (vC(A) - vC(R) + (DC,(B) - DC, (A) 

where Dis the diffusion coefficient. But 

111
- (uC),d:r.

,I 

and 
(JJC,(IJ) - UC',(A)) !Ii 

(DC,),d:r.
This gives 

Ii' C,d.r + 

and so 

I
ll 

·' (C, f-

,I 

Iii !fl (vC),il:r - (DC,),d:r:
.I A 

(,,('), - (DC),)rl.r 

If the material can be regarded as 
having continuous properties then 

c, + (,,C), - (0(.',), = o. 
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In two dimensions this becomes 

r, = -'v · (iiC) + ,;, · (D'\IC). (2) 

Darcy's Equation 
In 1856 Henry Darcy described in an 

appendix of his book "la Fountaina 
Publiques de la Ville de Dijon" a series of 
experiments on the downward flow of 
water through sand filters, whereby it 
was established that the rate of flow 
depends on the pressure difference 
between the two end points and the 
length and the cross-sectional area of the 
sand pack (Hubbert 1969). The liquid 
used in Darcy's original experiment was 
water. Later, the experiment was 
repeated using different liquids and a 
generalized relation between the flow 
rate, density and viscosity of the liquid, 
and porosity, permeability, length, and 
cross-sectional area of the sand pack 
was established. 

Definition 0.1 Porosity The porosity 
of a porous material is the fraction of the 
bulk volume of the material occupied by the 
voids. The symbol usually employed for this 
parameter is <f,. Thus 

<I> = \ ·,, = \lo/ume of the pores
I ·,, Bulk volume • 

The porosity <f, is a dimensionless quantity. 

Two kinds of porosity can be 
defined, namely absolute or total 
porosity, and effective porosity. Absolute 
porosity is the fractional void space with 
respect to bulk volume regardless of 
pore connections. Effective porosity is 
that fraction of the bulk volume 
constituted by interconnecting pores. 
Many naturally occurring rocks, such as 
lava and other igneous rocks, have a 
high total porosity but essentially no 
effective porosity. The porosity can 
range from zero to more than 0.5. In 
most sedimentary rocks, however, the 
porosity is predominantly 
interconnected and seldom exceeds (J.3. 



Definition 0.2 Permeability This 
is the property of the porous material which
characterizes the ease with which a fluid 
may be made to flow through the material by 
an applied pressure gradient. Permeability is 
the fluid conductivity of the porous material. 

The permeability of the medium 
measures the facility with which fluids 
flow through the medium. For the 
present only a quantitative definition is 
necessary. Of two media through which 
the same fluid is made to flow under 
identical conditions, that the medium 
through which the flow is more rapid 
has the greater permeability. A medium 
may be said to be isotropic with respect 
to permeability if it is equally permeable 
in all directions. 

Inside the porous medium, where v 
is the fluid velocity and <J, is the porosity 
of the medium, Darcy's velocity ii is 
defined by 

II ji = -..;, (3) 

If a liquid with density p and Yiscosity µ 
is flowing through a porous medium 
which has permeability, k, then Darcy's 
velocity is given by ( Mu skat 1946 ,1nd 
Bear 1979) 

and thus 

,/' f 11,i+ ,,1} II k 

(4) 

(5) 

where r is the pressure and(; = W,s> is 
the gravitational acceleration. 

Darcy's L'xperiment and thL' 
derivation of these equations is 
discussed in dl'lail in C<1llins (1976). 

MODEL DEVELOPMENT 

Another form of Darcy's 
Equation 

From (5) one can take the 
divergence and, assuming that k· is 
constant, arrive at 

Since the fluid is assumed to be incom
pressible, the divergence of its velocity 
is zero. This fact eliminates the third 
term of (6). Also since<; is a constant 
vector, p"v· (; = 0. This eliminates the 
fifth term of (6). Hence (6) reduces to 

<v'' J' + �\/I . 11 -t \I'.(; - II 
k 

But using (4) gives 

., \/1 p ,-, r • (7)<v-r---t'v +flu)+(,,,.(,'j -11 
/I 

Since � = \(In,,.), (7) becomes,, 

Since p and µ arc both functions of the 
concentration, C, this equation can be 
written as 

'v'P - (In µl',C. (,P + pG) + (p)'(,C · G) = o, (8) 

If two fluids with densities p
1 

and p
2' viscosities µ

1 
and µ

2
, and concentrations 

C
1 
and C

1_ respecti\·ely, arc diffusing into
each other, then empirical results 
(Peaceman 1955) show that (i) the 
density /J of the mixture is a linear 
functiZm Lll C and (ii) iiµ is the viscosity 
oi the mixture then In(µ) is a linear 
function oi C, where C is the concentra
tion nf fluid LlnL'. Thus 

(9) 

and hence 

(1()) 
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Diffusion Equation and Velocity 
of the Sharp Front 

From (2)

{JC 

81 = -(V. if)C- v· vc+ vv. vc+ vv•c.

If we assume that the fluid is incom
pressible and that the diffusion coeffi
cient is constant, then this equation 
reduces to 

If at a certain instant of time concentra
tion and velocity are known then this 
equation can be solved numerically. 

In the particular case where there is
no mixing between the two fluids, then 
D = 0. The fluids are thus immiscible. 
Since C is a function of position and 
time, 

dC oC d.x 
dt = at +'vC· dt' <13)

where dx,;, (dx, dy). Following a particle
on a particular iso-concentration line, 
f = 0. Hence (13) gives 

ac d.x -
7ft = -v'C • dt = -'vC • V, (14)

where 'ii is the velocity of the front.
From (12) and using the fact that D = 0,

V . v'C = V • v'C

and so

vc 
Here n = 11vc11 is the unit vector in the
direction of v'C which is also the 
direction of the velocity of the front.
This implies that the speed, v, of the
front is 

(15)

This is the same as the normal
component of the velocity of the fluid
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particle on the front. Thus if the velocity
of the fluid particles on the front is 
known then the speed of the front can
be determined. By (3) and (4) 

ii=-�(v'P+ptf},

which gives

(16) 

and

whe�e v, and v, are the horizontal and
vertical components of v, respectively. 

At a certain instant of time if the 
• velocity components v,and v are 
known and the inclination ofthe front
from horiwntal is a then the velocity of
the front can be determined by the 
formula 

V = 11r sin a+ v,cos a. (18)

Initial Conditions 
Consider a rectangular box of length

I and height h (Fig. 2). Initially it is 
assumed that the front is vertical and in
the middle of the box; the heavy fluid is 
in the left-hand side of the box and the 
light fluid is in the right-hand side. 
Initially we have 

P(:r, y) = { P1g(h - 11) :r < l/2 • (19)
M(h - 11) :r � l/2, 

and

C(:r,II) = { 0
1 x < l/2. 

x � l/2,

p(:r,y) = { �

µ(x,y) = { /'I
1'2 

X < 1/2 
x � l/2,

X < 1/2 
:r � 1/2.

(20) 

(21) 

(22)

I 

I

I 

I 

(12) 
11 __ .!_(/JP +pg)' ,- ~ OJI (17) 

v-n=ii·n. 

V=ii•n. 



(0,hl 
(V2,hl 

hnvy Ouid light Ouid 

lknsity = p
1 

density :s p1 

(V2,0) 

Figure 2. The flow domain at t = 0. 

Boundary Conditions 
There is no flow through the 

boundaries. Hence i- and v must be 
' y 

zero. Then (16) and (17) give 

and 

DP DI' 
y-(r,O) = 

0
(:r,h) = -pg. 

!I !I 

RESULTS 

Algorithm 

(l,h) 

(1.0, 

(23) 

(24) 

1. (11), (16), and (17) arc discretized
using a finite difference method on a
rectangular domain.

2. Using the initial values of r, p, C, and
µ., (11) is solved using the Successive
Over Relaxation (SOR) method. SOR
method approximates the solution of
a system of partial diffl'rential
equations. An introduction of SOR
method can bl' found in (Peaceman,
1 I.J55).

\, u�ing tlw 11\'\\' J'fl'",'-,llrl' tn1111 -.tq0 
(2), \'t and \'_11 .irL•c.ilcul,ilL'd tn,m 
( ih) ,ind I 17), n·-.pl'cli1·l'k 

4. The new position of a point (x, y) 
on the front after time l!i.t is
(x+v,l!i.t, y+vyl!i.t).

5. Step (4) gives the new front after time
l!i.t. We assume that the change in the
shape of the front affects the density
at the neighboring points since the
fluids are carried along by it. A new
front after a certain time l!i.t is shown
in Figure 3. Initially the density at
(x, y+l!i.y) is p

1 
and at (x + �x, y+l!i.y)

is p2. After time l!i.t the dL'nsity at the
point (x, y+l!i.y) is interpolated by
using the formula

where A, = area ABDE, and A
1 

= area 
BCD. 

E ,------

(ll.y+Ay) 

A' 
_ _ _ _ _ _  , _ _ _ __ _ 

(1,y} 

' ' 
\ D :c 

- - Tl 
- - -, - - - - - - ------,''' ' 

' 

' �' 
,' 
\: 8 

1♦01,y+Ay)1 

- - - - - --i- - - - - -
,,,, ,, ''
'<'I � ' ' ' ' ' ' ' ' ' '' ' '

- - - - - - l - - J_ - - - - - - - - J ' ' 

(25) 

Figure 3. Initial front and the front after 
time I.

If thl' density at a certain grid point 
in the domain is p, then the average 
density of the fluid around the grid point 
in a rectangular box with length <lx and 
height <ly is I'· Initially the fmnt is 
vertical and thl' avl'ragc density <if the 
fluid in the box ABCE is p

1
. But after .i 

cert.iin time the fn,nt divides the box 
Al:3CE into two p.irt:;, the region Al:3DE 
,rnd thl' region BCD, whL're rl'gion BCD 
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contains a fluid of density p
2
,- This affects 

the average density of the fluid inside the 
box if it is approximated using (25). It is 
clear that when the moving front passes 
completely through box ABCE (Fig. 3), 
the whole box is filled with the fluid of 
density P

2
. so the average density of fluid 

in the box is p2,- Also (25) shows that as 
soon as the front passes the box ABCE, 
the area A

1 
in the equation becomes zero, 

that is, the average density of the fluid in 
the box is p

2
• 

6. Equation (9) gives the new
concentration at the grid points.

7. Using the new P, p, and C, perform 
steps (2)-(6) for the required number 
of time steps.

DISCUSSION 
Consider a rectangular flow domain. 

In the vicinity of the bottom of the front, 
the pressure difference is higher than at 
any other horizontal level in the box. So 
the bottom of the front moves faster than 
any other height toward the light fluid. In 
a box filled with uniform sand (Fig. 4), the 

'v 

h 

"' 

Figure 4: The flow domain.
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left side of the sand is saturated with a 
fluid of density p

1 
and the right side is 

saturated with a fluid of density pl' The 
front is initially vertical and in the 
middle of the box. Thus the pessure 
difference is (p

1 
-Pi)gh. Becau,e g, Piand 

p
2
are fixed, the pressure difference 

depends on the depth of the points only. 
Since the bottom of the box is the level 
of maximum depth, the heavy fluid 
moves toward the light fluid faster than 
any other level because velocity is 
proportional to pressure difference 
between two points. When the heavy 
fluid moves toward the light fluid its 
upper level descends and to fill the gap, 
the light fluid of the upper level moves 
toward the heavy fluid. In the bottom 
half of the box, the fluid particles of the 
heavy fluid move toward the light fluid 
with a velocity proportional to the depth 
of the point. This makes the light fluid 
move toward the heavy fluid in the 
upper half of the box. Thus, we get the 
moving front between the.two fluids as 
a consequence of a general circulatory 
motion of the fluid. Figure 5 shows how 
the light fluid overrides the heavy fluid 
under gravitational effects. 

'v 

h 

"' 



1.0 I 5 2.0 2.5 .1.0 .,5 4.0 45 5.0 5.5 6.0 
x-values

Position of the front after 1000 seconds

I O I 5 2 () 2 I 1.0 1 5 -1 I) -1 5 I O I I 6 0 
x-valuc,

Position of the front after .4()()() seconds

Figure 5. The sharp front at different times. 

Equation (11) is solved numerically for 
the pressure distribution inside the 
domain with the initial values of p

1 
= 1.2 

gm/cm3
, p2 = .8 gm/cm3

, µ
1 
= µ1

= 

1 centi poise, k = 1.0 Darcy 
It "" 11',;;) l(fl 11/1 pp1c;r)) 

1 ,, ,,,, 1 1 1,.1,,,;-;.1111 and rJ> = 0.3. 

The time step is 10 seconds. After 
every time step a new front is produced 
with a changed shape. The position of the 
front after 1000 seconds, 2000 seconds, 
4000 seconds, and 20000 seconds is shown 

C 

-i 

0 
"' 'T 
... 

C'O .... : 

' 0 
>-, .... : 

0 

l.O l.5 2.0 2.5 3.0 .15 4.0 4.5 5.0 5.5 6.0 
x-values

Position of the front after 2000 seconds

1.0 1.5 2.0 2.5 .10 : 15 -10 4.5 5 0 5 5 6.0 
x-values

Position of the front after 200000 seconds

in Figure 5. All the graphs show the 
changing position of the front from its 
initial vertical position to a new 
horizontal state. Here, miscibility is 
considered to be zero and the sharp 
front between the fluids has been 
tracked from its initial state to its steady 
state. The approximate motion of the 
front is consistent with the analytic 
description of the override of the light 
fluid over the heavy fluid described 
previously. 
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CONCLUSION 

The mathematical model derived in 
this paper simulates the simultaneous 
motion of two fluids in porous media. 
The numerical results are consistent 
with the analytic description of the 
physical phenomena discussed in the 
introduction. Also the qualitative 
behavior of the solution is verified by an 
experiment done by the Petroleum 
Recovery Research Center at New 
Mexico Tech. An extension of this work 
would be to include the thermal effects 
on the flow and to consider multiphase 
flow instead of a single phase flow as 
considered in this paper. A variation of 
this model may be used to describe the 
under ground motion of a spilled 
contaminant that is moving towards a 
lake or a river. 
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