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ABSTRACT 

LIU PYRAMIDS AND 

FEEDBACK ITERATION 

FUNCTIONS ON MONOIDS 

General concepts of n-dimensional Liu pyramids on monoids and their feedback iteration 
functions are first created and established. Second, general concepts of initial sets and initial 
conditions are defined in order to connect the Liu pyramids and their feedback iteration functions. 
Four examples of 1-dimensional Liu pyramids and their feedback iteration functions, initial set, 
initial conditions are demonstrated. Then, the 2-dimensional case is discussed in detail. Finally, 
Liu notation is introduced and employed in the discussion of 3- and higher-dimensional cases. 
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INTRODUCTION 
In this paper, general definitions for 

n-dimensional Liu pyramids and their
feedback iteration functions on monoids
are given in section 1. The relation
between them is discussed, namely,
given an initial set and a set of initial
conditions on it, we will find the Liu
pyramid from its feedback iteration
functions and vice versa. In section 3,
four examples of 1-dimensional
pyramids and their feedback iteration
functions are demonstrated. In section 4,
several special cases of 2-dimensional
pyramids on monoids, their
subpyramids, and their feedback
iteration functions are studied in detail.
A proposed problem in the Spring 1994
issue of Math Horizons (published by
M.A.A., p. 13, Problem 6) can be
answered by Note (4.11) in that section.
In section 5, Liu coefficient notation is
introduced. Then 3- and higher­
dimensional pyramids on monoids,
their subpyramids, feedback iteration
functions, initial set, initial conditions
are discussed.
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DEFINITIONS AND NOTATIONS 
Let M be a nonempty abstract space. 

Let W be the whole number system, i.e., 
W = {0,1,2, ... ) with the usual addition 
and multiplication so that for a and b

in W, a - b is well defined if and only if 
a is not less than b (the trichotomy 
property of the whole numbers that do 
not fonn a ring). Let n be a natural 
number. Let W be the n-multiple 
product space of W. A mapping 

Z • {Z _ } 
...... �---•.> • .,. 

from W to M is called a 
n-dimensional Liu pyramid (in honor of
Ju-Hsieh Liu [about 1100A.D.]: refer to
Needham and Wang 1959, Temple and
Needham 1989) on M. Let I�� be a
subset of W. Let m be a natural
number such that m � I JI where I JI is
the cardinal number of /. Let M'" be the
m-multiple product space of M. Let

F • (Fz} z t .,. 

be a set of functions from M'" to M 
such that F

x 
= Cx is a constant function 

for each XE /. We say that Z is a Liu 
pyramid generated from F with the 



initial conditions 

on J provided 

where 

if XE I; 
otherwise, 

arc predefined or pregenerated clements 
in Z. The set of functions F is called a 
set of feedback iteration functions for Z, 
I is called the initial set on W, and 

is called the set of initial conditions. 

RESULTS 

I-Dimensional Liu Pyramids:
Sequences

When n = 1, a 1-dimensional Liu 
pyramid is usually called a sequence. A 
few exampll's arc gi\'cn below: 

Example (3.1). Let M be a ring with the 
usual addition and multiplication 
notations. Let c be the multiplication 
identity of M. Let / = {Ol. Let m = 1. 
Define F as follows: 

{ e if XE I; 
Fz (CI ) = (Xe)u otherwise. 

Let 

if XE I1 
otherwise. 

Then we obtain a f,ictorial sequence in 
the ring. 

Example (3.21. Let M be the whole 
number �\·stem with the usual addition. 

Let I= (0,1). Let m = 2. Let F be 
defined as below: 

F (. A) _ { X if X f: I; 
z '.., - • + p otherwise.

Let 

if XE I; 
otherwise, 

It yields the Fibonacci number sequence. 

Example (3.3). Let M be the real field. 
Let / = (0). Let m = 1. Let 

{ X if XE I; 
Fz (CI) • cs + x-• otherwise 

if XE I; 
otherwise. 

This is the sequence used by Euler 
(Peitgen and Jurgens and Saupe 1992, 
Temple and Needham 1989) to estimate 
7t

4 /90. 

Example (3.4). Let M be the complex 
field. Let c be a complex number. Let 
I= 10). Let m = 1. Let 

{ X if XE I; 
Fz (CI) = cs 3 + c otherwise

and 

if XE I; 
otherwise. 

This is the sequence whose 
b()undcdness is used to determine 
whl'lhL'r the complex number c is in the 
Mandelbrot set or not. 

2-Dimensional Liu Pyramids:
Triangles

When n = 2, the 2-dimensional Liu 
pyramids arc usually called triangles. 
Let's consider some special cases: 
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and 

z = z 



Definition (4.1). Let (M,#) be a monoid. 
Let notations be the same as in section 2. 
Let 

be a sequence on the monoid. Let I 
={(k,l) I kl= 0 and k,l e W). Let m = 2. 
Let 

Let 

i
i'. J if (Jc, l) E I1 

z • •. 1t,J F..,_ 1 (Z..,_ 1_, ,z..,_,. 1) otherwise.

Then the triangle Z generated by F is 
called the Liu triangle on the monoid M

with respect to C. 

Theorem (4.2). Let notations be the 
same as in (4.1). Let a be an element in 
M. Let 

Then we have 

Z1,,J 
= ( k

;
l 

)a= ( k
;

l )•. 
ct:

Proof. Let Z be as defined as in (t). For 
kl = 0, we have 

if k•O. 

So Zu =a= F
u 

and Z satisfies the 
initial conditions. Now for kl c# O, we 
have 
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Thus Z satisfies the feedback iteration 
functions F. Therefore Z is the triangle 
generated from F, and the proof is 
complete. 

Note that if k + l = i is fixed, then we 
obtain the elements of the ith row of the 
triangle, namely, 

Example (4.3). When M is the natural 
number system N and a = 1 so that 

we get the original Liu triangle 
(Needham and Wang 1959, Peitgen, 
Jurgens, and Saupe 1992, Temple and 
Needham 1989). 

Example (4.4). Consider the sequence 

of all those elements on the bisector of 
the original Liu triangle. Obviously, this 
sequence can be constructed from the 
feedback iteration functions defined 
below: 

{ l if k • O;
F

1,
(a) • 12(2k-1)111 if k> 0

Jc 
• 

where a e N, with only one initial 
condition and each element is 
constructed from its exact predecessor. 

In the rest of this paper, we will 
construct n-dimensional Liu pyramids 
from given feedback iteration functions 
and then conversely, find the feedback 
iteration functions for its lower 
dimensional subpyramids. Let us 
consider a special type of triangle on a 
ring in the next example. 

C • {Ck = a}~ 

( k+ l) • J I !) "' 1 if l •O I 

k l ~) • 1 

{Z • (2k)>• 
k,k k .t-G 



Example (4.5). Let R be a ring with 
traditional addition and multiplication 
operators. Let e be the multiplication 
identity. Let a and b be elements in R.

Let C be the sequence defined as 
follows: 

{• ifknO; 
C -= b"12 if k is positive and even; " e if Jc is odd. 

Then we obtain a Liu triangle 

with respect to C on the ring R. In 
other words, Y is a mapping from W ¥ 
W to R so that 

From the above iteration rules, we will
find an explicit expression for each entry 
of the triangle. 

Theorem (4.6). Let notations be the 
same as above. Then we have l a if k-=l-=O; 

b 1 if l>k•O;
y • e if k>l•O;

"·1 

(k+l-l
)e+E(k•l=j-1\hJ

l j•l l j I 
if k>l>O.

Proof. It suffices to show that Y defined 
in this theorem satisfies the conditions 
(1), (2), and (3) in the above section. 
Plainly, YO/) = Q = co and YI) = b

1 = ell 

for / > k = 0. This implies YI) = c2, for k

= 0, so (1) is satisfied. For k > I= 0, 
we get Y1J = e = C

21 ,
, so (2) is satisfied 

also. To show Y satisfies (3) that 

for kl#- 0. There are four cases: 
Case 1 : When k = I = 1, we get 

Case 2: When k > 0 and / = 1, we have 
Y1J 1 = Y1/J = e and 

y_ ,,.( k-l)e+ Y(k-l+l�j-1\h.1
11,l l � 1-J / 

""(k-l)e+b. 

These imply 
1 

Y.t,l • ( �)e + fri ( :=�y,J 
"'ke + b 
-= e + ( (k-1) e + b)
• Y.t, l-1 + Y.t-1. l'

Case 3: When k = 1 and / > 0 we have 

+ bl
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Case 4: When k > 1 and I > 1, we obtain 

Thus Y satisfies the feedback iteration 
functions in (3) and the proof is 
completed. 

Now consider the sequence of those 
points Yu in Y such that k - I - 1 = 0.
They fonn a subtriangle of the triangle. 

where 

if Jc• 0; 

if b • e; 

if le > 0 

Proof. If k = 0, from theorem (4.6), we 
get Y

h
u = Y

1
,o = e. Now if k > 2, again 
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We will find its feedback iteration 
functions. Let us state the next theorem 
first. 

Theorem (4.7). Let notations be the 
same as in (4.6). Then we have 

and b-e is invertible, 

making use of theorem (4.6), we then 
have 



This yields, by setting j + 1 = h and j - 1 = i, 

It implies 

(2k-l\h (2k} 2 (b-e) Ylr•1,ir .. 
k I - k 

e + b Y
.1r ,.1r-1 

,. 
( 

2k-l \h _ 2( 
2k-l )e + b2 y 

k I k .t,lr-1 

• ( 2k-l} (b-2e) + b:iy 
k lr, ir-1 • 

(•) 

One may check that (•) holds for 1 � k � 
2 also. Now if b = c, then we have 

is generated by a set of feedback 
iteration functions. We state it formally. 

So 

(2k-l) (2k-l) Yir,ir-1 • k e • k-1 e,

for k > 0. Thus we obtain 

( 2k+l) Y.._..1,., "' k e,

for k :::> 0. 

Again from(•), if k > 0 and b - c is 
invertible, then we obtain 

Yk+1,k-

(b-et1 ((2k;l) (b-2e) + b2 Yk, .,_1).

This completes the proof. 
From the ab<n:t' theorem, we sec that the 
sequence 

Corollary (4.8). Let notations be the 
same as in (4.5). If b - c is invertible, 
then the sequence 

is generated by the feedback iteration 
functions defined below: 

for x E R. 

Next let us consider the special case 
when /, = 2c. 

Corollary (4.9). Let notations be the 
same as in (4.5). If b = 2c, then the 
st'qucnce 
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is generated by the feedback iteration 
functions defined below: 

for XE R. 

if k • O; 
if k > O 

Proof. Since b = 2e, we have (b - e)·1 = e, 
the first tenn in the parentheses 
vanishes, and the second tenn becomes 

This completes the proof. 

By mathematical induction, the proof of 
the next corollary is straight forward by 
Theorem (4.7) and Corollary (4.9). 

Corollary (4.10). Let notations be the 
same as in (4.5). If b = 2e, then we have 

for all whole numbers k. 
Now let us consider a special case 

below: 

Note (4.11). In (4.5), if we select the ring 
to be the integer ring and set a= 1 and 
b = 2, then we obtain the triangle shown 
in Math Horizons (1994: 13). A solution 
to that problem 6 is given by the specia­
case of the above corollary when e = 1 

in the integer ring. The original problem 
is rewritten as follows: 
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Problem 6. In the variation on Pascal's 
Triangle, the l's on the right were 
replaced by successive powers (from 0 
up) of 2. Show that the numbers in the 
column on the left of the symmetric axis 
of the triangle are the successive powers 
of 4 (also from O up). 

Three and Higher Dimensional 
Liu Pyramids 
Before we proceed, let us introduce the 
Liu coefficient or notation and show 
some of its important properties. 

Notation (5.1). Let x
1
, ••• ,x. be whole 

numbers. Define 

This is called the Liu coefficient 
notation. Note that when n = 2, we have 

Lemma (5.2). For every natural number 
n, we have 

a 

-<x
1

,•",xa
► "'Y -<x

1
,"•,x

J
-l,"•,Xn► 

f;! 

provided that x
i 

> 0 for all 1 s j s n. 

Proof. One may check that the lemma is 
true for n = 2. Assume that the lemma is 
true for 2 Sn s m. Then 

(Jei +-•+X12 ) I 
Xi_ l-•Xnl 



(Xi +--+x •• 1) I -<X11 -· 
I X_.1 ►=--=-----.!:.:.:._ 

X1 l-•X.•1 I 
• (x1+--+x.> I ( (x1+--+x11) +x •• 1 l I

X1l-•x.1 <Xi•-·•x.> IX-11
= (x1 +--+x.l I

( 
(x1 +--+x .. 1 -1) I

x11--x.1 (x1+--+x,.-l) lx11•11
+ 

(Xi +--•x •• 1 -1) I 
)(x1+-+x11) I (x_.1-1) ! 

• (x1
+••••x.) I (x1+•••+x .. 1-1) I

X1l-x.1 (x,.+ .. •+x.-1) IX_.1I
(x1 +-+x .. 1-1) I +-..,..-=----,.aa-.:...-.,..... 

x11-•x111 (x_.1-1) I 
• 

• ('r' -<x1 ,-·, x_,-1, ... , x. ►)
t-1. 

(x1 +•••+x .. 1-1) I + (x1 
+--+x .. 1 -1) I

Xi.1 ···X• I (x_..1 -1) I 
(x1

+•••+x .. 1-l) I

This implies that the lemma is true for n 
= m + 1. Therefore, by mathematical 
induction, the lemma is proved. 

Theorem (5.3). Let (x,, ... ,x) 1c 0. Then 
we have 

-<Xi.,-·,Xn
► 

• E -<x1,"'•,x
.,
-l,···,Xn

► • 

•,>o

Proof. Since Liu notation is independent 
of x 's order, without loss of generality, 
we inay assume that x, > 0 for 1 $ j $ h 
< n and x, = 0 for h < j $ n. Then, by the 
above lemma, we have 

"' E -<X1,• .. ,x
.,
-l,···,Xn

► • 

•1>0 

Now, given a monoid, we arc ready to 
define a special type of n-dimcnsional 
pyramid on it: 

Definitions and Notations (5.4). Let 
(M,#) be a monoid. Let 

I• ( (xl '-·,Xnl I Y' xj • 
f;1. 

o for some 1 � i� n)

be a subset of W. I is called the set of 
edges of the n-dimcnsional pyramid. Let 

be a mapping from / to M. Let 

r...,. .- .... (csl' ···, «n> -

I
C_.,,-,,.• if (x1 ,···,Xn)EI; 

# sign(x
1

> 11
1 

otherwise,
1-, 
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(x1 +-•+x.-l) lx_.1 1 
• (x1+-•+x.-l) I =<'f'--='--=---) pi x 1 1··•(x_,-l) 1-•x.l 

+ 
(X1 +-•+x.+1-1) ! 

x 1 1-•x. t (x.+1 -l) I 



where (a
l
' ... ,a0) CE M•. Let 

l
Fx..-..... if (X1,•-,xn> EI;

ZJEi,-, •• • F &i.,-,•• (Z...<•1-1,01 ,-,••• -. Z.wi,-,-,.,-1,01 ,-,••' ..... _
z

-.
.-.... , ..... 1•01) otherwise. 

We call Z then-dimensional Liu 
pyramid with respect to C. In the next 
theorem, we will show an explicit 
expression for each entry of the special 
pyramid when all the initial conditions 
have the same value. 

Theorem (5.5). Let notations be the 
same as in (5.4). Let a be in M. Let 

for all (x
1
, ••• ,x.) in I. Let Z be the 

pyramid with respect to C. Then, for all 
(x

1
, ••• ,x.) in W', we have 

Proof. Let Z be defined as in the 
theorem. It suffices to show that it 
satisfies the initial conditions and 
feedback iteration functions in (5.4). For 
(x

1
, ••• ,x.) E /, we get 

z
-.

.-... = -<x1,-,xn►•
•a 
- c-.,-. .x.
• F

,,.,_.-,.r.• 

Thus, the initial conditions are satisfied. 
For (x

l
' ... ,x.) e I, by (5.3), we have 

F.r.i,-,.r. <Z...1.r,-1,01 .-,"•' -·,
z.-1,-,MX(Xj-1,0}, -,•■' ••• 1
z.r.i,-,Mal.r0-1,01) 

• I sign(x) z 
.:1•1 :I ",,-.... 1,r,-1,01 .-.,r. 

.. f z .rj
>O •1,-,MX(•J-1,0} ,-,.r■

• I -<x,_,-•,X,1-l,-·,Xn►a
.r,>o 

•( I: -<x,_, .. •,x1-1,-,xn► > ell
•.i>O 

•-<x1, .. ·,Xn►a
•z •.. -.•. •
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Thus, the feedback iteration functions 
are satisfied also. This completes the 
proof. 

For the case when n = 3, let us 
consider two of its special subpyramids, 
namely, 

and 

We want to find their feedback iteration 
functions. 

Corollary (5.6). Let S and T be the 
same as in the discussion after (5.5). We 
then have 

(1) S is the sequence on M generated
by

{ 
ell if k • 0; 

Fk(CI) • (Jk) I a if k > 0
(kl) 3 

so that S
t

= F
t
. Note that all F

t 
are 

constant mappings from M to itself. 

(2) T is a triangle generated by

F C• P>• (l+1)a if k. o; l
(k+l)a if 1 • O· 

k,l ' ■IP#( k;l )a if kl,. o

so that 

Proof. This corollary is a direct 
consequence of the definitions of S

t 
and 

D 



T
1) 

after (5.5) and the following
idcnti tics: 

and 

=Jl!L!.a 
(kl) 3 

where 

Z
1-
,o,1 "' (k+l) a, 

Z0• 1, 1 '"' ( l + 1 ) a , and 

zk,l,O • ( k;l )a

To close this section, we give an 
alternative definition for the Liu 
notation by a single initial condition on 
the vertex of the pyramid and a simple 
iteration rule. 

Note (5.7). When M and a are 
respectively replaced by the integer ring 
and 1, we find that Liu coefficients form 
the Liu pyramid with initial value 1 on 
its edges. Note also that the Liu notation 
pyramid can also be defined directly as 
follows: 

z = 

•1,-, •• 

l
l if(Xi,· .. ,Xtl)=O;

r z _ _ _ _  
1 

x otherwise.L.J -1, •-J .-. ,. 
1C1>0 
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