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ABSTRACT 

in modeling applications involving wave propagation (seismic data analysis for example), 
one needs to obtain very accurate numerical solutions lo wave equations. Standard finite difference 
(FD) techrriq11es suffer serious shortcomings-numerical dispersion and spurious oscillations. 
The essentially non-oscillatory (ENO) method overcomes these shortcomings. it utilizes an 
adaptive finite difference techniq11e and is applied to a system of first order partial differential 
equations that is equivalent to the aco11stic wave equation. The ENO method and FD techniques 
are applied to an acoustic wave equation with constant wave speed in one dimension with both 
smooth and non -smooth initial data. These simple examples are sufficient to illustrate how 
spurio11s oscillations are introduced into the FD approximation when the initial data is not 
smooth, and shows that the ENO method does not suffer the same effects. A two dimensional 
problem is also presented with similar results. 
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INTRODUCTION 
The need for accurate, efficient 

numerical methods for solving wave 
equations arises in many applications, 
e.g., seismic inversion, medical 
ultrasound imaging, and radar and 
sonar imaging. The methods to be 
considered in this paper apply to 
time-dependent _wave equations like the 
acoustic (scalar) wave equation 

This equation models the 
propagation of a disturbance through a 
fluid at speed c. A simple example is 
sound traveling through the air. These 
methods can also be applied to models 
for more complicated phenomena like 
elec tromagnetic waves (e.g., radar) and 
elastic waves (e.g., shock waves 
traveling through the earth). 
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The standard approach to 
numerically solving wave equations like 
(1) is the finite difference (FD) method. 
The FD method is based on 
approximations to derivatives obtained 
using Taylor expansions. It has the 
following features: 

(i) If the solution u is smooth (i.e., if 
it has continuous higher order 
derivatives), then it yields very accurate 
approximations. 

(ii) If the solution u is not smooth, 
spurious oscillations may arise in the 
approximations. 

(iii) The method suffers from a 
phenomena known as "numerical 
dispersion". This means that FD 
approximations to sharp features have a 
tendency to spread, or loss sharpness, as 
they propagate. 

The shortcomings (ii)-(iii) may have 
very serious ramifications. For instance, 
in seismic prospecting, spurious 
oscillations may cause one to predict 
structure where none exists. Numerical 
dispersion may cause one to miss 
structure that should be present. 

In this paper we apply essentially 
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non-oscillatory (ENO) numerical 
methods to the scalar wave equation (1 ). 

As the name implies, these methods do 
not suffer from shortcoming (ii) of 
standard FD methods. These methods 
also have the desirable property of 
maintaining sharp wave fronts. Hence 
their popularity in solving model 
equations which describe phenomena 
like flame front propagation (Osher and 
Sethian 1988). ENO methods have also 
recently been applied to solve equations 
which arise when high frequency 
asymptotic methods are applied to (1) 
(Engquist et al. 1993). 

This paper is organized as follows: 
The next section contains a very brief 
discussion of the standard FD method 
for the scalar wave equation (1). This is 
followed by a brief introduction to the 
ENO method and its implementation for 
the scalar wave equation in section 3. 
Some preliminary numerical results are 
presented in the final section. 

THE FINITE DIFFERENCE (FD ) 
METHOD 

FD methods can be derived from 
Taylor approximations. For instance, 
from 

u(:r., l 1c + 61) = u(:r.., t1c) I-

D1 11(x.,t1c) 6t + lligher Or<ler Terms, 

one obtains the difference approximation 

To derive a numerical method, one 
lays-down a grid, or mesh, on the region • 
of interest and approximates the 
solution u at the mesh points (X,,t

1
) by 

the components u,,1 of a mesh function. 
These components solve a discrete 
system obtained from the differential 
equation by replacing derivatives with 
their difference approximations. 

When the FD method is applied to 
the one-dimensional version of the 
scalar wave equation (1),

54 IIOGr ond Vogt/ 

llj,/c-1 - '211;,I: -f- lti,l:+a 
at2 

(2) 
Df 11 - c2D;u = 0, 

the discrete system takes the form 

One can explicitly solve for u� "-•I
and obtain an algorithm to explicitly 
"time-march" from the previous time 
levels to the next time level, li..

1
• 

Provided certain smoothness and 
stability conditions are met, this method 
is second order accurate in both the 
spatial and temporal discretiz.ation 
levels tu. and 61. This, together with 
ease of implementation, account for its 
popularity. 

THE ENO METHOD 
In (1), Crandall and Lions adapt the 

ENO method for the numerical solution 
of equations of Hamilton-Jacobi type, 

iJ11t • //(iJ.,u) = 0. (4) 

Here H is a (possibly nonlinear) 
scalar-valued function. In order to apply 
ENO, the differential equation (1) must 
first be converted to Hamilton-Jacobi 
form. To illustrate this conversion, 
consider the one-dimensional scalar 
wave equation (2) and assume c = c(x.).

We first put (2) in first order system 
form, 

where 

__ [ D., 1t ] 

V - D ' I II 
[ 0 -l ]

✓

1 
= -c2 0

Next, we diagonalize the matrix A using 
the eigendecomposition A = EDE-1, with 

H=[ l l],
-C C 

lJ=[c O ]·
u -c

il111(:r.,, lk)::::: u(:r.;, IA:+ ~l) - 11(:r.;, ti) 
6t 

lli-1,A: - 211;,A: + t&;+t,A: 
6x2 = 0. (3) 



Left multiplying (5) by E·1 and 
defining iii = 1,·- 1 fi, one obtains by 
the product rule 

Since 

the equation (6) has component form 
(with 1u =- [ 11,f 1), 111{2)J t· ) 

(8) 

Here the prime(') denotes differenti­
ation with respect to X· When the wave 
speed c is constant, c' = 0, and this 
system decouples into two Hamilton­
Jacobi equations with H =±ca 11. When 
c' '# 0, the ENO method can stifI be 
applied, since the principal parts 
(derivative terms) arc in Hamilton­
Jacobi form. Once the solution to (6) has 
been obtained, the solution to u the 
original system (5) is obtained by 
backtransforming, ii= Ciii. 

The E O method for system (7)-(8) 
uses the same computational grid as the 
FD technique described in the previous 
section. Basically, this involves using a 
forward time-difference approximation 
to the iJt'1 and iJ,""v terms and adaptive 
spatial difference approximations to the 
iJ """ and iJ u,1v terms as described in 
Crandall a�1d Lion;

,
1984 and outlined 

below. We make a minor modification to 
handle the non-zero terms on the right 
hand side. 

The principle part of equation (7) 
corresponds to propagation of 
information from left to right. A 
standard numerical approach for 

directional wave propagation, called 
"upwinding", requires (in this case) the 
derivative of ul" with respect to x from 
the left. ENO can be viewed as a scheme 
for adaptively computing this (left) 
derivative approximation. At each 
spatial point x,one constructs an 
interpolatory polynomial P/'Yx) through 
data (xrw'0(x,t), where the points x are 
" r'' Th1 

be f • 1 nea x,. e num r o pomts used 
determines the accuracy of the spatial 
discretization, and remains fixed. The 
construction is adaptive in the sense that 
the set of points used is selected to 
minimize the oscillation of the 
polynomial. Near the computational 
boundary, the order of the 
approximation can be maintained, but 
one limits the selection procedure to 
incorporate boundary data and utilize 
only points inside the region of interest. 
A rigorous formulation of the selection 
procedure and polynomial construction 
can be found in the appendix of Osher 
and Sethian 1988. One then takes 

d (I) 
I = -1' (�·) (9) 

I 1h I • I 

to approximate the left derivative of w<0. 
Then (9) and a forward difference in 
time substituted for J,ul" in (7) yield 

11•).'}+1 = 111),1} - c,,t c(J·,) I,+

c'(.T,) (2) (l)) --(w - Hl· . 
'.l ,,k ,,k 

A similar computation based on 
equation (8) with an ENO approx­
imation to the derivative of w121 with 
respect to x from the right is used to 
propagate w121 from the k'� to the (k + l)'h 
time level. 

Crandall and Lions (see [1]) have 
shown that even when the solution is 
not smooth, this ENO scheme converges 
and its accuracy is 0( J',S,1) . When the 
solution is smooth and n" degree 
interpolating polynomials are used, 
O(o ,") 1 l'(o<) accuracy can be attained. 

We have extended this technique to 
higher dimensional scalar wave 
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equations. For example, the two­
dimensional version 

can be written in system form 

ii, >' I l ), :: :' j ii,,' I 

l:: :; �1],ly ri=U. 
0 - C l () 

where j7 - [il,.11 ilu 11 il1 11 l 1
. We then apply

an operator splitting method due to 
Strang (LcVcquc 1992) to break the 
problem in two space dimensions into a 
series of one-dimensional problems, 
each of which yield systems analogous 
to (7)-(8). A similar approach can be 
applied to the three-dimensional scalar 
wave equation (1 ). 

A NUMERICAL COMPARISON 
In this section we present numerical 

results comparing FD and ENO for one­
and two-dimensional scalar wave 
equations. 

When the wave speed c is constant, 
the solution to the one-dimensional 
scalar wave equation (2) with the initial 
data 

ll(.1', !J )=/(r), 01 11(.1,0)=0 

(11) 

is 
J 

11 ( .r , t ) = ;/f ( r I d ) I- f ( ,. - cl ) ) .

(12) 

Example 1: A Smooth Solution 
in 1-D. 
The first example has a solution to (2) 
which is smooth. Take c = 1 and initial 
data. 

11 ( T , () ) = f ( .1· ) = 
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.r < I . r, 
.!i :::; ;/' � '.2.!i 

_,. > '.2 . .'i 

The exact solution is obtained using 
(12). In order to compare the two 
methods, we display the computed 
values of au rather than u itself. The 
ENO meth�d calculates this directly, 
while the FD method calculates u and 
from that, a high or order 
approximation to iJ,u computed. The 
spatial and temporal mesh spacings arc 

1 
L\.r -

!j()' 
., L.'i..r 
Lll -

•I

Figure 1 shows "fixed time snapshots", 
or plots of iJ,u as a function of x for fixed 
I= I, at times I= 0, .5, 1, and 1.5. Plots in 
the left column were obtained using FD, 
while those on the right were obtained 
from ENO. In each of these plots, the 
computed approximations are 
illdistinguishablc from the exact 
solution. 

Example 2: A Non-Smooth 
Solution in 1-D. 
This second example involves a solution 
to (2) which is not smooth. Take c = 1 
and the initial data 

II (I,()) = j ( .I ) -

l ()

-1.r - G

�-Ir -I 10 

,,. < 1.r, 
I . .'i ::; .1.· < J. 7 G 

J.,.'i:; .r < 2.25 
'2.'2!:, S .r < '.2.!j 

:r > '2.S 

with the same grid spacings as in 
Example 1. Figure 2 gives fixed time 
snapshots of the computed 
approximation to a"' for this case. Again, 
plots in the left column arc for the FD 
method, while those in the right column 
arc for the E O method. Here we see 
that as time progresses, spurious 
oscillations enter into the FD 
approximation. Note also that the 
oscillations spread (disperse) with 
increasing time throughout the entire 
computational domain. On the other 
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Figure 1. FD approximation to u(x,t) on left, ENO on right. 
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Figu re 2. FD approximation to u(x,t) on left, ENO on right (the square wave is the 
exact solution). 
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hand, the ENO approximations in the 
right column have no spurious 
oscillations and only a small amount of 
dispersion. 

Example 3: A Nonsmooth 2-D 
Solution. 
Consider the two-dimensional scalar 
wave equation (10) with constant wave 
speed c = 1. The initial data for this 
example is shown in Figure 3. 

In Figures 4 and 5 we again display 
fixed-time snapshots of a,u. Figure 4 
contains the FD approximations and 5 
contains the ENO approximations. 
Again the FD solutions have spurious 
oscillations, while the ENO solutions 
clearly do not. 

0 

-1 ·1

-1 -1
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Figure 3. Initial data for two dimensional example. 
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Figure 5. ENO app roximation to xu(x,y,t). 
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