DOES AQUAPORIN 3B AFFECT THE NUMBER AND CHARACTERISTICS OF CALCIUM WAVES IN THE NEURAL PLATE OF XENOPUS LAEVIS EMBRYOS?

Dean Ricker *, Chemical Engineering, Montana State University, Bozeman Christa Merzdorf, Cell Biology and Neuroscience, Montana State University, Bozeman

Early in the development of the nervous system, vertebrate embryos undergo neural tube closure. This is a process where the cells in the dorsal part of an embryo, the neural plate, constrict on their outward facing side (apical constriction) to form a tube. The Merzdorf lab has found that inhibiting expression of the protein Aquaporin 3b (Aqp3b) in Xenopus laevis embryos prevents neural tube closure from happening. Given that aqp3b is only expressed in a well-defined line along the outer edge of each side of the neural plate, this action at a distance suggests some form of intercellular communication. In fact, calcium waves are required for neural tube closure. My hypothesis is that Aqp3b triggers the calcium waves that cause neural plate cells to apically constrict. To address this question, the number and characteristics of calcium waves will be compared between normal embryos and embryos that have been inhibited from expressing Aqp3b. My specific hypothesis is that the neural plate in embryos with inhibited aquaporin expression will have fewer calcium waves with different characteristics. Working towards the goal of answering this question I have developed and finetuned a method for injecting the embryos with a calcium indicator and imaging them. I have begun collecting time lapse images of calcium activity during neural tube closure and am designing methods for analyzing the time lapses I capture. This research is significant because, while calcium transients are known to be necessary to neural tube closure, no triggers of these calcium waves are known.