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ABSRACT: Accurate snowfall measurements in windy areas have proven difficult. To examine a new 
approach, we have installed an automatic scanning terrestrial LiDAR at Mammoth Mountain, CA. With 
this LiDAR, we have demonstrated effective snow depth mapping over a small study area of several 
hundred m2. The LiDAR also produces dense point clouds by detecting falling and blowing hydrometeors 
during storms. Cumulative raw counts of airborne detections from the LiDAR show excellent agreement 
(R2 > 0.90) with automated and manual snow water equivalent measurements, suggesting that LiDAR 
observations have the potential to directly estimate precipitation rate. Thus, we suggest LiDAR scanners 
offer advantages over precipitation radars, which could lead to more accurate precipitation rate estimates. 
For instance, uncertainties in mass-diameter/mass-fallspeed relationships used in precipitation radar, 
combined with low reflectivity of snow in the microwave spectrum, produce errors of up to 3X in snowfall 
rates measured by radar. Since snow has more backscatter in the near-infrared wavelengths used by 
LiDAR compared to the wavelengths used by radar, and the LiDAR detects individual hydrometeors, our 
approach has more potential for directly estimating precipitation rate. A key uncertainty is hydrometeor 
mass. At our study site, we have also installed a Multi Angle Snowflake Camera (MASC) to measure size, 
fallspeed, and mass of individual hydrometeors. By combining simultaneous MASC and LiDAR 
measurements, we estimate precipitation concentration and rate. 
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1 INTRODUCTION 

Accurate and frequent measurement of 
snow water equivalent (SWE) is a longstanding 
problem due to wind and other biases. Manual 
measurement techniques, such as weighing 
snow cores or melting snow collected in a 
cylinder, are accurate, but are tedious and have 
poor temporal resolution (i.e. 1x/day). These 
manual measurements also only account for 
SWE on the ground. Post-depositional 
processes such as: melt, redistribution by wind, 
and sublimation cause differences between 
measurements of falling snow and snow on the 
ground. Automated instruments can measure 
falling snow frequently,  but suffer from a variety 
of biases. In windy areas, automated 
measurements are especially difficult, since 
wind is the single largest contributor to under 
catch. For the most commonly used precipitation 
gauges in the world, catch ratios (the ratio of 
measured to actual precipitation) decrease 

nearly linearly with wind speed. For winds of 6 m 
sec-1 and snow at -2 ºC, one of the more 
accurate shielded gauges, the Canadian Nipher, 
has a catch ratio of 0.76 (Goodison et al. 1998). 
Other shielded gauges have catch ratios < 0.5 
(Rasmussen et al. 2011). 

Radar reflectivity is often used by 
meteorologists to measure precipitation rates. 
Estimating precipitation rate from radar returns 
requires assumptions about the size of the 
hydrometeors. For rainfall, the diameter of the 
drops D over the volume sampled V can be 
used to predict radar reflectivity Z (Marshall et 
al. 1947): 

 
! =

Σ!!

!  (1) 

With rainfall, there is a definite relationship 
between hydrometeor mass m and diameter D: 

 ! =   
!
6 !!

! (2) 

where ρ is the density of water. Thus, radar 
reflectivity is a good predictor of precipitation 
rate R using a power law: 
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with a and b estimated empirically. For snow, 
there is large scatter in the mass-diameter 
relationship. A power law is usually used: 

 ! =   !!! (4) 

,but the coefficients vary widely with b=0.001-
0.070 and c=2.0-2.5 (Heymsfield et al. 2002; 
Matrosov et al. 2009). As a result, radar 
reflectivity is a poor predictor of precipitation rate 
during snowfall. 

Another problem with using radar to 
measure snowfall rate is that snow, unlike rain, 
is weakly reflective in the microwave spectrum. 
For commonly used precipitation radars in the 
US, light to heavy rain shows reflectivities of 20-
65 dBZ, while light to heavy snow has 
reflectivities of 20-35 dBZ, with reflectivities < 20 
dBZ for snowfalls of a single crystal habit 
(Matrosov et al. 2009). 

To examine a new approach, we have 
installed an automatic scanning terrestrial lidar 
at Mammoth Mountain, CA. This instrument can 
effectively map snow depth over a small study 
area of several hundred m2. This LiDAR also 
produces dense point clouds by detecting falling 
and blowing hydrometeors during storms. Using 
measurements from automated precipitation 
gauges and manual SWE cores taken nearby 
daily, we examine empirical relationships 
between the in-air lidar detections and 
precipitation rate. From these empirical 
relationships, we introduce a sampling theory for 
the lidar detections. 

2 METHODS 

2.1 Instrument 

The lidar used is a Riegl LMS-Z390i. The 
instrument uses an infrared laser with 
wavelength 1.55 µm. The scanner is capable of 
360º azimuthal and 80º elevational coverage at 
0.09º angular increments. The beam diameter is 
6.5 mm at the aperture, with 0.3 mrad 
divergence. The lidar is enclosed in a custom-
made glass case (Figure 1) and automatically 
scans every hour or every 15 min. The 
enclosure is mounted on a steel platform, 
approximately 7 m above snow-free ground.  

2.2 Site 

The lidar is installed at the Cold Regions 
Research and Engineering Laboratory/University 
of California – Santa Barbara Energy balance 
site (CUES, www.snow.ucsb.edu/cues/). The 
site is located at 2940 m on Mammoth Mountain, 
CA. 

The vegetation at CUES is sub-alpine, 
consisting of sparsely spaced  conifers. CUES 
has significant wind exposure, averaging 4 m 
sec-1 from the southwest. 

2.3 Data processing 

Because of an internal range gate, the lidar 
does not record detections closer than about 2 
m. Also, to eliminate artifacts caused by seams 
in the glass enclosure and to ensure that only in-
air hydrometeors were sampled, a small sample 
volume within each scan was used. The 
resulting sample volume was approximately 10 x 
10º at 3-4 m distance, or 0.37 m3. The sample 
volume location was directly in front of the 
scanner, about level with the ground, but at least 
3 m above the snow surface (Figure 2). 

The lidar produces files in a proprietary 
format (3dd), which we converted to an ASCII 
format containing Cartesian coordinates (X,Y,Z) 
and relative intensities (0-1) for each detection. 
From the coordinates, we recorded the number 
of detections in the sample volume and the 
associated scan time. 

2.4 Ancillary precipitation measurements 

 Precipitation measurements are available 
from several sources. At CUES, there is a Lufft 
WS-600  precipitation sensor that uses at 24 
Ghz Doppler radar.  The nearest manual SWE 
measurements come from the Mammoth 

  
Figure 1 Lidar and enclosure at CUES 
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Mountain Ski Patrol Sesame snow plot at 2,743 
m, also on Mammoth Mountain. Wind exposure 
here is slightly less; winds average 3.3 m sec-1. 
The Sesame site also has two different shielded 
automated precipitation gauges and another 
WS-600. 

Based on comparisons with manual SWE 
measurements at the Sesame site, we found 
that both precipitation cans consistently under 
caught precipitation, with catch ratios of 0.20 or 
worse. Wind effects and clogging from ice build-
up were the main causes. At both sites, the 
WS600 underestimated precipitation by similar 
amounts. 

At the nearby Mammoth Pass, el. 2835 m, 
the US Bureau of Reclamation operates a 
precipitation gauge in a more wind sheltered 
area. Comparisons with manual SWE 
measurements at Sesame show a less severe 
under catch bias (catch ratios around 0.80). 
Thus, because of under catch issues, we 
decided the daily manual SWE measurements 
were the only reliable precipitation 
measurements from similar sites nearby. 

We also attempted to correlate lidar counts 
with snow depth from ultrasonic depth pingers at 
CUES, but on going snow settlement during 
storms made it impossible to separate the 
effects of settlement from those of accumulation. 

2.5 Sampling issues: 

From Mar 2011 to Feb 2012, the LiDAR 
scanned hourly. On 13 Feb 2012, the scan 
frequency was increased to 15 min to obtain 
more accurate precipitation rate estimates.  

3 RESULTS 

3.1 Empirical correlations 

Hourly (Figure 3) and 15 min scans (Figure 
4), summed daily, both followed manually 
weighed SWE from Sesame. The 15 min scans 
had stronger correlation (r=0.73) than the hourly 
data (r=0.58), which was expected. The day with 
the highest manually weighed SWE amount (17 
Mar 2012, 145 mm SWE) had the highest sums 
of lidar counts for both sampling frequencies, but 
the rank of other days did not match. For 
instance, the day with the 2nd most manually 
weighed precipitation during the 15 min scans 
(14 Apr 2012, 77 mm SWE) ranked 16th in the 
15 min lidar sums. 

4 SAMPLING THEORY AND DISCUSSION 

 To better understand what the lidar records 
during precipitation, we developed a sampling 
theory. 

4.1 Beam coverage 

Because of spacing between laser beams, 
they overlap at short distances and leave gaps 
at longer distances. To model beam coverage, 
we computed the beam area A as:  

 !(!) = !!!! (5) 

where rf is the radius of the beam footprint at 
distance d. The beam radius was computed 
using right triangle geometry (Figure 5): 
 

 
!!(!) = ! + !! tan

!
2 (6) 

where δ is the divergence angle, 3 x 10-3 rad, 
and di is the internal distance; that is distance 
from a hypothetical origin to the laser aperture, 
such that: 

 
!! =

!
2 cot

!
2 (7) 

where w is the width of the laser beam at the 
aperture, 6.5 x 10-3 m. The beam area was then 
converted to a solid angle Ωb, 

 Ω!(!) =
!(!)
!!  (8) 

 

  
Figure 2 Overlay of clear weather lidar scan with 
precipitation in sample volume 
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Figure 3 Daily manual SWE and summed lidar counts, hourly. The sums are from hourly lidar scans from 
March 2011-April 2012. The correlation coefficient r=0.58. 

Figure 4 Daily manual SWE and summed lidar counts, 15 min. The sums are from 15 min lidar scans 
from Feb-April 2012. The correlation coefficient r=0.73. 
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and compared to the solid angle Ωs 
 Ω! = 2! sin

!
2  (9) 

subtending the square bounded by ± δ/2 on each 
side. The ratio of Ωb to Ωs gives an efficiency E 

 
!(!) =

Ω!(!)
Ω!

 (10) 

that represents coverage by the beam at distance 
d. Efficiency decreases as a power law with 
distance (Figure 6). At 3-4 m, the distance for the 
sample volume, the lidar oversamples; 
efficiencies range from 1.9 to 1.1. Knowing that 
the lidar oversamples at the distances chosen, we 
can develop an adjustment factor α,  

 !" = ! (11) 

This factor adjusts the concentration of 
hydrometeors detected n to the actual 
concentration of hydrometeors q. It should equal 
the reciprocal of E multiplied by β, the ratio of lidar 
pulses transmitted to those received: 

 ! =
1
!" (12) 

Mass flux j is: 

 !"# = ! (13) 

where m is the mass of each hydrometeor, kg, 
and v is fallspeed, m sec-1. To convert j into mm 
hr-1 to compare with the Sesame average 
precipitation rate measurements !: 

 
! =

!
3600mm   hr-­‐1 kg-­‐1  m2  sec 

(14) 

since 1 mm water per m-2 weighs 1 kg. Combining 
Eqs. 11, 13, and 14; and solving for α yields: 

 
! =

!
!"#× 

1
3600mm   hr-­‐1 kg-­‐1  m2  sec 

(15) 

We analyze a specific day of precipitation, 26 
Mar 2012, since that is one of the few days when 
the MASC was working where we have mass and 
fallspeed measurements. Over 25 hr, 20 mm of 
SWE was manually weighed, corresponding to 
!=0.8 mm hr-1. Over the same period, there were 
45,949 lidar detections (taken every 15 min) in a 
sample volume of 0.37 m-3. Thus, for each scan, 
the average concentration n=1,241 m-3. Using 
median values from measurements taken by the 
Multi-Angle Snowflake Camera (MASC, Garrett et 
al. 2012) installed at CUES, m=0.4 mg and v=0.6 
m sec-1 (Figure 7). Note there is no relationship 
between mass and fallspeed in the MASC 
measurements, as has been suggested in other 
studies (e.g. Mitchell et al. 1990). Using these 
values in Eq. (15) gives α=0.75. Solving for β   in  
Eq. (12) gives   0.89, using a mean efficiency 
value of  E=1.5. This value for β  indicates that 
89% of the hydrometeors in the sample volume 
were detected. This is feasible, given that snow is 
forward scattering at 1.55 µm, but the reflectance 
is dependent on snowfall rate. Absorption at 1.55 
µm is negligible, since the complex refractive 
index of ice at 1.55 µm is 10-3 (Wiscombe and 
Warren 1980). Reflectance values similar to β 
have been measured in falling snow using forward 
scatter meters (Koh 1987), which suggests that 
0.89 is a reasonable value for β. 

  
 
Figure 5 Beam geometry 

 
Figure 6 Lidar efficiency vs. distance to 
target. The power law fit is y=axb, with 
a=14.63 and b=-1.85 (RMSE=0.066). 

Proceedings, 2012 International Snow Science Workshop, Anchorage, Alaska

927



 

The MASC shows wide variation in measured 
values of m and v. For instance, using 25th and 
75th percentiles of measurements taken by the 
MASC, m=0.2-1.1 mg and v=0.2-1.1 m sec-1. 
Those percentiles give a wide range for the 
adjustment factor, α=0.15-4.48, highlighting its 
sensitivity to mass and fallspeed.  

Values in the literature show similar variation 
and indicate the MASC mass estimates are too 
large. Ranges reported are m=0.002 to 0.100 mg 
and v=0.5-1.2 m sec-1, depending on the crystal 
size, habit, and amount of rime (Mellor 1966; 
Gunn 1967; Mitchell et al. 1990). Using these 
smaller mass values would give values for the 
adjustment factor α that are up to two orders of 
magnitude larger. Such high values for α would 
indicate that we are not detecting nearly as many 
hydrometeors as we think (β << 0.89). Yet given 
the wide range and experimental difficulties in 
measuring hydrometeor mass, it is unclear if our 
sampling theory or measurements are flawed. In 
the past, studies have struggled with mass 
measurements of snowflakes, especially the 
larger ones. 

It should be stated that the MASC does not 
directly measure mass; it uses images of 
snowflakes and image processing functions to 
estimate the amount of ice in each snowflake. 
Snowflakes with high dendricity (e.g. stellars) will 

likely have mass estimates that are too high, while 
rimed snowflakes with less dendricity should have 
more accurate mass estimates. 

5 CONCLUSION 

We have shown that, in addition to snow 
depth mapping (i.e. Deems et al. 2006; Prokop 
2008), lidar can also be used for snow mass flux 
estimates.  

We found good empirical agreement between 
lidar counts in a sample volume, summed over 
one day, and manually weighed SWE from a 
nearby site. 

Currently, we lack precise hydrometeor mass 
estimates that are essential for validating our 
approach of measuring mass flux. For mass 
measurements, we are relying on a prototype 
instrument, the MASC, that requires constant 
maintenance and repair. Also, its mass 
measurements have not been independently 
verified. As we improve the MASC and validate its 
measurements, we will obtain reliable estimates 
for hydrometeor mass, which will improve our 
mass flux estimates. 

Another goal is to co-locate the lidar with a 
reliable precipitation gauge, which would likely 
involve moving it to a sheltered area that is more 
suitable for precipitation gauge measurements. 
This would give a reliable ground truth for 
precipitation rate to compare with lidar counts. 
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