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ABSTRACT: When a slab avalanche is triggered, the weak layer and all sides of the slab (crown, flank, 
and stauchwall) are fractured. Wet slab avalanches frequently involve thick, strong slabs. At present, the 
stability index is defined as the ratio of the strength of the weak layer to the stress induced by the slab 
weight; we think that this index underestimates stability, especially in warm heavy-snow regions such as 
those in central Japan. For more realistic stability evaluation of wet slab avalanches, we propose a 
stability index that considers the slab strength. 
To estimate the slab strength, slabs are classified into three size-based groups: 10 m × 10 m, 50 m × 50 
m, 100 m × 100 m. Furthermore, the slab states are classified into four types depending on the effective 
part of the slab acting as support: wcfs (weak layer, crown, flank, and stauchwall), wcf (weak layer, crown, 
and flank),wfs (weak layer, flank, and stauchwall), and wf (weak layer and flank). The results of our test 
calculation suggest that the slab strength should not be disregarded when evaluating stability, especially 
for small, high-density slabs. We believe that the proposed stability index will be useful in avalanche 
safety operations because it can lower the false alarm rate by considering the slab size and effective part 
of the slab. 
 
1. INTRODUCTION 
 
As an index for evaluating avalanche danger = 
stability of snow on a slope, a stability index (SI) 
has been proposed and defined as a ratio of the 
drive force in the direction of the slope initiated by 
shear strength of the weak layer to the stress 
induced by the slab weight (e.g., Roch, 1966; 
Perla, 1977) :  
 
SI = σw / W · sin θcos θ (1)

 
σw: shear strength of the weak layer (N·m-2) 
W: Snow weight per unit of horizontal area (N·m-2) 
θ: Slope angle (°) 
 
In many cases, the shear frame index (SFI) is 
used to denote the strength of the weak layer 
upon calculation of SI (Roch, 1966; Perla, 1977). 
SFI is the shear strength of a weak layer and is 
measured by using a shear frame with a constant 
effective shear area divided by the effective shear 
area. Methods to determine the SFI from snow 
density and hardness have been proposed in 
recent years to make the calculation of SFI even 
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easier (Yamanoi et al., 2004). However, SFI is 
different from the actual shear strength, because it 
is measured on  deformation rate different from on 
an avalanche initiation, and there is the impact of 
the size of the shear frame. SI also has no 
mechanism to consider the fracture propagation, 
and the index has been criticized for being 
incomplete in explaining the actual occurrence of 
an avalanche (Schweizer et al., 2003). However, 
its applicability has been widely recognized as one 
of the indexes that best estimates the danger of 
occurrence of an avalanche to this day, and it has 
been used in situations such as road management 
(Jamieson, 1995).  
Studies on predicting avalanches using a 
snowpack model (e.g., Lehning et al., 2002; 
Hirashima et al., 2008) have often employed SI as 
an output of stability. However, such studies 
focused primarily on modeling the snow layer 
structure and reproducibility of the snow grain 
shapes and failed to discuss the validity of the 
calculation method for snow stability.  
 As shown in figure 1, avalanches involve not 
only fracture at the weak layer under the slab but 
also in all four sides of a slab (crown, flank, and 
stauchwall). The strength of the slab is expected 
to affect its stability, especially for heavy snow and 
warm region where high density strong snow 
layers consisted by Rounded Grains and Melt 
Forms are prominent, and during the snowmelt 
period. Therefore, we propose a new form of snow 
stability that takes slab strength into account and 
discuss its usability in order to estimate snow 
stability more accurately.  
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Fig. 2 Observation data for snow profile used to 
calculate stability 
(The Tohkamachi Experimental Station, Forestry 
and Forest Products Research Institute, March 24, 
2005) 
 
The average maximum annual snow depth at the 
site was over 2 m, but the average temperature 
was warm at -0.3  during January and 0  
during February; the snow was typically moist 
throughout the winter (Yamanoi et al., 2000). We 
used the snowpack model developed by 
Katsushima et al. (2009), which considers vertical 
water channels, but the equation for the water 
retention curve was changed to that proposed by 
Yamaguchi et al. (2012) for calculation. Since the 
permeability for the ground varies greatly by 
location, the value was set to that of the bottom 
layer of the snow; infiltration of water from the 
bottom snow layer to the ground was treated as 
continuous. Thus, water saturated layer was 
avoided at the boundary between the snow and 
ground, which in turn may have caused the water 
equivalent at the bottom layer of the snow to be 
underestimated. As a result, the stability of the full 
depth avalanche may be overestimated, but the 
surface avalanche is appropriately simulated. The 
meteorological data used were for the temperature, 
humidity, precipitation, solar radiation (upward and 
downward), and radiation budget.  
 
2.4 Calculation of snow strength and slope angle 
σw and σf were calculated from the push-pull 
hardness using the same method as Yamanoi et 
al. (2004) for test calculations of the observed data 
and from the snow density and water equivalent 
using the same method as Yamanoi and Endo 

(2002) for test calculations on one winter period.  
σc was calculated from the shear strength using 
the tensile strength and shear strength ratio of 
27.3:4.2, which was determined by Keeler and 
Weeks (1968) for dry snow. σs was assumed to be 
the same as σc since there is no great difference 
between the compressive and tensile strengths of 
low-density snow (Maeno and Kuroda, 1986). The 
calculated results for SIwcf and SIwfs yielded the 
same value; hence, their results are shown from 
here onwards as SIwcf(SIwfs) instead of being 
listed individually.  
Slope angle θ was assumed to be 40° from the 
peak in frequency of avalanche occurrence 
(McClung and Schaerer, 2006). 
 
3. RESULTS AND DISCUSSION 
 
3.1 Results of test calculation for snow profile 
observation 
 
Figure 3 shows each calculated stability for a slab 
size of 10 m × 10 m. SI focusing on the fragile 
places at the bottom and middle (100 cm height) 
was 0.8 and 0.9, respectively, and the drive force 
exceeded the strength. On the other hand, SI at 
the bottom and middle for SIwcfs was 6.3 and 4.8, 
SIwcf(SIwfs) was 3.9 and 3.1, and SIwf was 1.5 
and 1.4, respectively; the strength exceeded the 
drive force.  
SIwcfs at the bottom for bl = 50 m × 50 m and 100 
m × 100 m was 1.8 and 1.3, respectively, and 
SIwcfs in the middle was 1.6 and 1.2, respectively; 
the strength exceeded the drive force in both 
places (figure 4).  
 Table 2 shows each calculated stability in the 
middle and at the bottom of the snowpack. 
Stability differed greatly based on whether or not 
the slab strength was considered; this implies that 
the slab strength is a factor that cannot be ignored 
during estimation of the snow stability. However, in 
cases where the upper and lower strengths are 
not effective (SIwf) or in larger cases with slab 
sizes of 50 m × 50 m and 100 m × 100 m, 
changes in stability through the inclusion of slab 
strength were small. The impact of slab strength 
on stability large depends on the slope size and 
state of the slope (effectiveness of the upper and 
lower strengths of the slab). Additionally, this case 
study used a snow layer in which the entire layer 
consisted of Melt Forms, so the overall snow 
density and slab strength were high. The impact of 
slab strength on slab stability is thought to be 
lower for snow layers in which new or Rounded 
Grains makes up the snow structure.  
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Table 3 Time of occurrence of an unstable state 
for each form of stability 

 
<1.0 <1.5 <4.0 

h % h % h %

SI 817 26 1377 43 2869 90

SIwcfs100 688 22 1135 36 2819 88

SIwcfs50 594 19 993 31 2745 86

SIwcfs10 54 2 305 10 1908 60

SIwcf(SIwfs10) 143 4 569 18 2038 64

SIwf10 590 19 991 31 2743 86

 
SIwcfs100: 1135 h (36%), SIwcfs50: 993 h (31%), 
and SIwcfs10: 305 h (10%).On the other hand, for 
SIwcf(SIwfs10) where the slab size was 10 m × 10 
m but the slab lacked support from either the 
crown or stauchwall, the time for the slab to reach 
instability was 569 h (18%). For SIwf10, where 
only the flank support is effective, the time for the 
slab to reach instability was 991 h (31%). 
Variances in these results revealed that taking the 
effectiveness of the bearing power of the slab into 
account greatly affects the calculation results for 
stability. 
Figure 6 shows the transition in minimum value for 
SI and SIwcfs10 (the value for the point in all snow 
layers with the lowest stability at each point in 
time). The figure reveals that the overall stability 
was not simply rated higher for SIwcfs10 
compared to SI but sometimes decreases rapidly; 
this suggests that SIwcs10 accurately captures the 
state of snow and is quite accurate at reflecting 
unstable states.  
 

 
Fig. 6 Transition of minimum values for SI and 
SIwcfs10 
 
4. CONCLUSION 
 
The following four stabilities were proposed as a 
new form of stability that takes slab strength into 
account:  
Siwcfs: Support from all four sides of the slab is 

effective 
Siwcf: Support from the crown and the flank are 
effective 
Siwfs: Support from the flank and the stauchwall 
are effective 
Siwf: Support from the flank is effective 
Upon conducting a test calculation for an actual 
observed snow profile and one winter period and 
comparing the results with the conventional 
stability index SI, the slab strength was shown to 
be a factor that cannot be ignored when estimating 
the stability of snow, although the stability also 
depends on the size of the slope and state of the 
slab support. The impact of slab strength is 
greater on slopes with a smaller scale, especially 
during the snowmelt period as the snow density is 
generally higher than the midwinter. Therefore, the 
stability proposed in this paper is effective at 
assessing the danger of avalanches on smaller 
slopes for road management and behind 
residences.  
The proposed snow stability is able to consider the 
effectiveness of the bearing power of the slab due 
to the landscape form, cracking conditions on the 
slab surface, and loss of bearing power by snow 
removal; thus, the stability can be calculated in 
more detail and in correspondence with daily 
inspections of a slope.  
The proposed stability may also be able to lessen 
instances of the false alarm rate in which stable 
snow is assessed as unstable and calculate 
stability more accurately than before. 
Finally, the new stability focuses on the strength of 
the weak layer as well as the strengths of multiple 
layers above the weak layer; thus, it utilizes the 
output from a multi-layer snowpack model more 
effectively.  
On the other hand, this study used the ratio of 
tensile and shear strength proposed by Keeler and 
Weeks (1968) to calculate the slab tensile strength 
σc, but there have been reports of observations 
where the tensile strength was less than the shear 
strength of fragile materials, including snow 
(Podolskiy, 2010). Because the impact of the slab 
strength on stability varies greatly based on how 
tensile strength is derived, future studies need to 
evaluate the tensile strength for various snow 
qualities, including wet snow. 
In addition, while the new stability can decrease 
the false alarm rate by considering slab strength, 
which ultimately estimates the stability to be larger 
than conventional SI, the new stability may also 
overestimate and assess unstable snow as stable. 
Therefore, the proposed form of stability needs to 
be tested against actual avalanche cases to 
establish its validity and an appropriate threshold 
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for its use.  
Finally, a slab not only develops a drive force 
through its weight and strength but also from 
shrinking of the slab itself. Future studies need to 
address this.  
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