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ABSTRACT: Avalanche warning services (AWS) are operated to protect communities and traffic lines 
in avalanche prone regions of the Alps and other mountain ranges. In times of high avalanche danger, 
these services may decide to close a road or to evacuate a settlement. Their decisions are based on 
field observations, release statistics, forecasts issued by weather services and the experience of their 
operators. Due to the spatial variability in the snowpack and the insufficient understanding of ava-
lanche triggering, these decisions are characterized by large uncertainty and the knowledge on which 
AWS have to base their safety-relevant decisions is incomplete. In this paper, we will show how signal 
detection theory (SDT) can be applied to make better use of the information that AWS have at hand. 
The proposed SDT-framework allows (i) the evaluation of past decisions on road closures and (ii) the 
improvement of the decision performance of AWS given their diagnostic ability and the disutility of de-
cision failures. We will exemplify the use of this framework by evaluating the decision performance of 
two AWS and discuss the advantages of a formalized decision-making upon road closures.  
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1 INTRODUCTION 

Technological improvements in forecasting 
and early warning systems have increased the 
use of active mitigation strategies in avalanche 
risk management (Bründl et al., 2004; Margreth 
et al., 2003; Rheinberger et al., 2009). Unlike 
structural control measures, active measures 
such as closing roads or evacuating settlements 
are only imposed in times of elevated avalanche 
danger. While they incur significantly less direct 
costs than structural measures, the effective-
ness of these strategies depends greatly on the 
ability of avalanche warning services (hence-
forth AWS) to forecast hazardous situations and 
to close roads or evacuate endangered areas in 
a timely manner (Blattenberger and Fowles, 
1995). 

In their decisions AWS face the classical di-
lemma of choosing between accident avoidance 
and productivity losses as it is often costly to 
deny access to a ski resort, to interrupt commut-
ing traffic from and to Alpine valleys, or to eva-
cuate endangered settlements. Depending on 
the utilization of the road, interruption costs 
might be high (Blattenberger and Fowles, 1995) 
providing strong incentives to avoid false alarm 
closures. On the other hand, avalanches cross-
ing an open road may cause fatal accidents that 
yield much higher costs, as the social cost per 
avalanche causality are estimated at €1.9-5.6 
million (Rheinberger et al., 2009). 

  Both types of errormissed avalanche oc-
currences and false alarmsmust be consi-
dered to prevent accidents in a cost-effective 
way. AWS typically feature flat hierarchies and 
decentralized decision-making, allowing their 
operators to quickly and adaptively react in ha-
zardous situations and to deviate from routine. 
This enables the AWS to operate under the 
conditions of uncertainty inherent to avalanche 
forecasts, using decision rules that emerge from 
field experience and operational practice rather 
than preceding it (McClung, 2002). 

Closing decisions are often made within 
hours and do not allow for a formal risk analysis. 
A fortiori, AWS operators should seek as much 
information on the likelihood of avalanche occur-
rences as they can obtainnotwithstanding that 
insufficient or inconsistent information and expe-
riences may lead to ambiguous situations im-
peding their decision-making. Comparable to a 
physician who learns from past diagnoses and 
subsequent courses of disease, AWS operators 
may improve their closing performance by learn-
ing from past decisions and outcomes. 

In this paper, we illustrate (i) how signal de-
tection theory (Swets, 1996) can be applied to 
evaluate the performance of AWS and (ii) how 
AWS may improve their decisions based on the 
results of this evaluation. We first define the de-
cision problem that AWS are faced with. Then, 
we formulate an framework to evaluate the deci-
sion performance of AWS, which could be 
adapted to decisions about other road hazards 
as well. To exemplify the use of this framework, 
we evaluate the decision performance of two 
Swiss AWS. 
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2 DECISION PROBLEM OF AWS 

Swiss AWS rely on a decision system com-
posed of three coupled components. Early warn-
ings issued by the national avalanche forecast-
ing service indicate meteorological conditions 
that substantially increase the probability of ava-
lanche releases. These warnings are issued to 
local AWS whenever the probability for new 
snow depths of 1m or more over the next three 
days exceeds 40%. Triggered by early warn-
ings, local AWS align the meteorological fore-
casts with field observations to obtain a regional 
forecast. Alerted by regional forecasts, the local 
AWS may assess the danger at particular ava-
lanche paths. Based on these site-specific as-
sessments, the operators then face the decision 
whether or not to close or re-open a road. 

The decision tree in Fig. 1 shows the options 
the operators have: they can either close the 
road ( = 1) or keep it open ( = 0). Once this 
decision is made, an avalanche may occur ( = 
1) or may not occur ( = 0). This leads to four 
potential outcomes, each described by a dis-
utility vector D(,). 

However, due to a lack of understanding of 
the complex physical processes underlying 
snow avalanche formation (Schweizer et al., 
2003), expert knowledge and field experience 
still play a key role within avalanche forecasting 
and warning (McClung, 2002). The local variabil-
ity in the snowpack makes accurate forecasting 
a challenging task, which has led many AWS 
operators to adopt a “safety-first” strategy, al-
though such precautionary behavior may lead to 
overprotective decisions at the extra costs of 
unnecessary road closures. 

 

 
 
Figure 1. Decision tree for AWS. 
 

The four potential outcomes of the decision 
problem are multidimensional and include eco-
nomic, social and behavioral components. In the 

trivial case, the operators decide to keep the 
road open and no avalanche occurs ( = 0, = 
0). Given that all four outcomes require the 
same cost to operate the AWS, this correct re-
jection does not entail any additional cost and its 
outcome-specific disutility function is assumed 
to be neutral: D(0,0) = 0. 

In uncertain situations such as after periods 
of heavy snowfall on peak traffic days, the oper-
ators may decide to close the road, but even-
tually no avalanche occurs ( = 1, = 0). This 
false alarm causes direct costs c for the inter-
vention and indirect economic losses i due to 
business interruption. Further, if the operators 
act overcautiously producing many false alarms, 
this may entail a loss of confidence into the fo-
recasting system (Williams, 1980) and into the 
forecasting authorities, which we here denote by 
η. The disutility of a false alarm is written as: 
D(1,0) = f10(c,i,η). 

Evidently, closing the road should coincide 
with avalanche occurrences as often as possible 
( = 1, = 1) in order to approve the site-specific 
forecast. Though effective, such a hit still entails 
direct costs c for the intervention as well as indi-
rect economic losses i due to business interrup-
tion, and the avalanche occurrences may cause 
additional costs by damaging infrastructure de-
noted by s. On the other hand, successful clo-
sures stabilize confidence into the forecasts and 
may foster their acceptance among the affected 
road users. The disutility function of hits can be 
written as: D(1,1) = f11(c,i,s). 

The worst outcome can occur when one or 
more avalanches cross the open road ( = 0, = 
1). Such a miss may lead to fatal accidents in-
volving casualties, injuries, and emotional distor-
tions as well as to a loss of confidence into the 
forecasts. Therefore, the disutility of misses is 
notated by the most complex disutility function: 
D(1,0) = f01(e,m,ω,η,s), where e denotes the 
exposure of cars to the occurring avalanche, m 
denotes the mortality rate of occupants given a 
car gets hit, ω denotes the injury rate of occu-
pants, η is the loss in confidence into the road-
closing policy and s is the potential damage of 
infrastructure.  

By this definition, the disutility of a miss 
D(0,1) depends on the site-specific probability of 
an avalanche accident and the consequences 
thereof. As the probability and the conse-
quences of an accident are not predictable with 
certainty, we may model them by defining ran-
dom variables E for the exposure and M for the 
mortality rate conditional on the exposure. For 
casualties, the expected disutility of a miss be-
comes: 
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where P(e) and P(m|e) denote the probability 
density functions of the random variables. Eq. 
(1) illustrates that the outcome-specific disutility 
of a miss does not necessarily have to be larger 
than that of a false alarm or a hit asin many 
casesa miss would not result in an accident. 

For a particular road, the outcome-specific 
disutility can be determined via monetary esti-
mates for the disutility functions. The operators 
of the responsible AWS face the classical prob-
lem of decision-making under risk, requiring 
them to minimize the expected disutility that 
comes along with the decision : 

 
,),()()()]([Emin  
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where D(,) denotes the disutility of each deci-
sion outcome, P() is the probability of an ava-
lanche (non-)occurrence, and P(|) is the con-
ditional probability to decide appropriately given 
the (non-)occurrence of avalanches. 

It is not known in advance whether and 
when an avalanche will occur, but P() at a par-
ticular avalanche path can be approximated by 
the frequency of past avalanches. P(|) can be 
deduced from past decisions and their success 
or failure. In section 3, we build on earlier re-
search from meteorology (Brooks, 2004; Harvey 
et al., 1992) to develop an SDT-framework that 
allows evaluating this decision performance. 

3 EVALUATION FRAMEWORK 

SDT provides a theoretical framework to 
deal with any forecasting process (Swets, 1996). 
With respect to road-closing policies, the opera-
tors of an AWS must decide whether the site-
specific forecast indicates to close a road or not. 
This decision leads to the four outcomes dis-
cussed above, whose relative frequencies can 
be organized in a 2  2 contingency table.  

Based on these relative frequencies, three 
statistical performance measures have been 
established that can be used to evaluate road-
closing decisions (Wilks, 2006). The false alarm 
ratio (FAR) measures the diagnostic ability: 
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where FAR = 0 means that every road closure is 
followed by one or more avalanche occurrences 
implying perfect diagnosis. The probability of 
detection (POD) characterizes the reliability of 
the AWS: 
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where POD = 1 means that avalanche occur-
rences are never missed. 

A third measure that states how many safe 
situations are misinterpreted as being danger-
ous leading to false alarms is the probability of 
false detection (POFD): 
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where POFD = 0 means that no safe situation is 
wrongly interpreted as dangerous. 

3.2 Decision thresholds 
In a particular decision, the FAR, POD and 

POFD depend on how much weight is given to 
the observed evidence such as the occurrence 
of avalanches on neighboring paths, the overall 
snow depths, and the new snow depth. The 
weight that the operators attach to the observed 
evidence can be conceived as a decision thre-
shold t (Brooks, 2004). Whenever the weight of 
evidence is above t, the road should be closed.  

The probability that the evidence for a road 
closure exceeds the threshold given that one or 
more avalanches occurred is given by 
P(Evidence  t | =1), and the probability that 
the evidence for a road closure is below the 
threshold given that no avalanche occurred is 
given by P(Evidence < t | =0). SDT assumes 
that the operators are able to establish the deci-
sion threshold t so that it reliably distinguishes 
an event signal from the non-event noise. 

Since signal and noise may interfere, evi-
dence for closing a road is often ambiguous. To 
statistically separate them, the SDT-framework 
assumes that signal and noise are normally dis-
tributed variables (Abdi, 2007). For ease of 
computation, let us assume that the noise is a 
standard normally distributed random variable 
X() ~ N(0,1) and the signal is a normally distri-
buted random variable Y() ~ N(μY,σY). POFD 
and POD for any decision threshold t may then 
be described by the complementary error func-
tions of X() and Y(): 
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The difference between the means of both 
distributions is called the distance d' and reflects 
the decision maker’s ability to separate between 
signal and noise (Abdi 2007). Since the mean of 
the noise distribution is normalized to zero, d' 
equals the mean of the signal distribution. 
Based on d' the ideal observer, which is the 
most popular standard for the decision threshold 
t, can be derived as t* = d'/2. It jointly minimizes 
the probability of misses and false alarms. How-
ever, since in most cases D(1,0)  D(0,1), one 
may use what we call the utility maximizer’s 
threshold: tD = d'/2 × [D(1,0)/D(0,1)]. Depending 
on the ratio between the disutility of misses and 
false alarms, this threshold moves toward/away 
from the mean of the noise distribution. 

3.3 ROC Curves 
FAR, POD and POFD can be estimated 

from data on past road closures. However, this 
static perspective on the decision performance 
may not be sufficient, as it does not allow the 
assessment of changes over time in the diag-
nostic ability of an AWS. Alternatively, receiver 
operating characteristics (ROC) graphs might be 
used (Wilks, 2006) to depict the locus of all pairs 
of values POFD, POD, illustrating the ideal 
observer and other possible thresholds (Fig. 2). 

 

 
 
Figure 2. ROC graphs for different d' values. 
The red line indicates the ideal observer t*, the 
black line exemplifies the utility maximizer’s 
threshold tD assuming that D(1,0)/D(0,1) = 1/2. 
 

From Fig. 2, it is obvious that if d' increases 
the performance of the decision maker increas-
es as well. As d' is not known a priori, it has to 
be estimated from the observed data by d' = Φ–1 

(POD) – Φ–1(POFD), where Φ–1 denotes the 
inverse normal distribution. POD and POFD are 
estimated from Eqs. (4) and (5). 

4 CASE STUDY APPLICATION 

We now apply the outlined SDT-framework 
to evaluate the road closing decisions of two 
Swiss AWS, highlighting the options that they 
would have by changing their decision strategy. 
The first case (AWS#1) draws on observations 
from 1991/92 to 2004/05 of an AWS, monitoring 
a single road with multiple avalanche paths in 
Eastern Switzerland, the second case (AWS#2) 
draws on observations from 1990/91 to 2006/07 
of an AWS in Western Switzerland, monitoring 
several roads with single or multiple paths. 

As mentioned by Brooks (2004), the deter-
mination of non-events is a thorny task. We ap-
proximate it by the relative frequencies of the 
four outcomes based on the mean number of 
days per winter on which the Swiss bulletin fore-
casts the avalanche danger to reach or exceed 
the third level on the European avalanche dan-
ger scale: n = 54 days (SLF, 2007). On these 
days, we expect considerable avalanche danger 
as the snowpack is moderately to weakly 
bonded on many steep slopes. Hence, we re-
strict the event space making stratification be-
tween trivial and difficult decision situations 
(Murphy, 1995).  

Multiplication of these danger days by the 
period of observation gives the total number of 
avalanche-prone days (APD) within the sam-
ples. The observed hits, misses, and false 
alarms were then divided by the APD to obtain 
their relative frequencies. Correct rejections 
could not be directly observed, but were as-
sumed to hold the share of the APD on which 
none of the described events was observed. 
This procedure allows compiling the POD, FAR, 
and POFD as well as the distance d’ between 
signal and noise to outline the differences in the 
decision performance of the two AWS.  

AWS #2 had a distinctly higher POD, a dis-
tinctly lower FAR and a somewhat lower POFD 
than AWS #1 (Table 1). The FAR shows that the 
operators of AWS #2 discriminated better be-
tween noise and signal. This difference might be 
explained by the fact that the monitored road 
system in Western Switzerland consists of mul-
tiple roads with independent avalanche paths, 
whereas AWS #1 watches over a single road 
with multiple interdependent avalanche paths. 

 
 

Closing 
decision 

AWS#1: Avalanche 
occurrences  

AWS#2: Avalanche 
occurrences  

 1 0 1 0 
1 0.04 0.15 0.09 0.10 
0 0.05 0.76 0.01 0.80 
 

Table 1: 2  2 contingency table of the decision 
outcomes for the analyzed AWS. 
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However, even AWS#1’s probability to cor-
rectly issue a road closure was about three 
times higher than to give a false alarm, implying 
that their warning and forecast system has good 
ability to discriminate between situations of low, 
medium, and high avalanche danger. Moreover, 
if we assume the disutility of a miss larger than 
that of a false alarm, decision behavior under 
risk suggests that neutral decisions, such as by 
the ideal observer’s threshold t*, are no longer 
desirable (Brooks, 2004). In that case, a higher 
POD at the costs of a higher FAR might be well 
accepted by the decision maker. 

Based on the estimated distance d', we con-
struct a receiver operating characteristic (ROC) 
graph (Wilks, 2006), wherein we mark the actual 
position of both services on their respective 
ROC curve (Fig. 3). Obviously, both AWS have 
so far given more weight to the prevention of 
misses as their actual position is below the ideal 
observer’s threshold t*. 

 

 
Figure 3. ROC graphs for the AWS under analy-
sis. Their actual decision points are marked on 
the curves. 

5 CONCLUSIONS 

A major task of AWS is to maintain high lev-
els of safety and accessibility on Alpine roads. 
Balancing safety and productivity losses caused 
by road closures is thus an essential objective 
for the design and performance of AWS. So far, 
AWS have been operated mainly based on the 
experiences of their staff. In the preceding sec-
tions we have presented a generic SDT-
framework, which might help the operators of 
these AWS to evaluate their statistical decision 
performance in road closures. As this perform-
ance varies with the complexity of the decision 
task, the proposed framework can also be used 

to compare the diagnostic ability of different 
AWS under varying conditions of the monitored 
road systems. 

This diagnostic ability isat least in the 
short runinert and improvements in the POD 
come at the cost of increasing the FAR. The 
decision performance analysis of two exemplary 
AWS has shown that there is scope to improve 
the discrimination between noise and signals of 
avalanche danger. Learning from past decisions 
is one key aspect for such an improvement and 
the presented framework provides the tools to 
analyze data of past road-closing decisions, 
helping AWS to exploit the data they have at 
hand in a formalized way. 
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