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Snow avalanches hold great 
importance for people who live and work in 
mountainous locations.  Every winter, snow 
avalanches result in extensive property 
damage, interrupt transportation corridors 
and harm people (McClung and Shaerer 
1993).  As a consequence, much research 
has been devoted to understanding 
mountain weather and climate, properties of 
the mountain snowpack, terrain 
characteristics and avalanche mechanics 
and dynamics.  This information has allowed 
snow scientists and avalanche professionals 
to develop and employ a variety of tools and 
strategies for avalanche forecasting, 
protection, land use planning, and 
education.   

Because snow avalanches 
commonly disturb alpine and subalpine 
ecosystems, they also have broad 
ecological implications.  Snow avalanche 
disturbance in conjunction with local 
topography often determines the distribution 
and assemblages and successional stage of 
plant species in avalanche paths (Smith 
1974; Butler 1979; Malanson and Butler 
1984; Butler 1985). Grasses, herbaceous 
plants and shrubs typically occupy the inner 
portion of avalanche paths frequently 
disturbed by small avalanches and where 
snow deposition retards plant growth (Smith 
1974; Cushman 1976; Butler 1979; 

Malanson and Butler 1984).  Deer, elk and 
other ungulates benefit from the diverse and 
nutritious forage these plant communities 
provide (Krajick 1998).  Stands of small 
trees and shrubs become established 
toward the flanks of paths where avalanche 
return intervals average approximately 5 
years (Malanson and Butler 1984).  
Increasingly older deciduous trees and 
conifers comprise the margins and trim lines 
of avalanche paths that experience less 
frequent avalanching (Malanson and Butler 
1984).    

Rarely, unique combinations of 
weather, terrain and the mountain snow 
pack result in major avalanches and/or 
widespread avalanche cycles.  These 
events may be attributed to the development 
of unusually unstable snow structures when 
continental-like climate patterns prevail, or 
occur during winters characterized by heavy 
seasonal snowfall, or rain (Roch 1949; 
LaChapelle 1966; Armstrong and Armstrong 
1987; Mock and Kay 1992; Changnon 1993; 
Mock and Birkland 2000; Birkland and Mock 
2001; Hebertson and Jenkins 2004).  Major 
avalanches often cause extensive damage 
to forests adjacent to avalanche paths.  
Stress caused by stem breakage, wounds 
and severe root system disruption 
predispose injured trees to attack by insects 
and decay fungi (Cobb 1989; Wargo and 
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Harrington 1991).  Dead, broken and 
uprooted trees may contribute to local fuel 
loads and increased fire hazard (Taylor and 
Fonda 1990).  The production of downed 
woody materials, however, also benefits 
many terrestrial animal species by providing 
food, shelter, hiding cover and breeding 
habitat (Dueser and Shugart 1978; Bartels 
et al. 1985; Hecnar 1994; Butts 1997; 
Krajick 1998; Ruggiero et al. 1998).  
Wounds on trees damaged by avalanches 
can serve as entry courts for decay fungi 
that over time create cavities important for 
nesting birds (Miller et al. 1979). The 
deposition of woody avalanche debris in 
streams stabilizes channels and creates 
pools that enhance habitat for fish and other 
water-dwelling species (Bilby and Likens 
1980; Dudley and Anderson 1982; Sedell et 
al. 1988).  Conversely, the rupture of debris 
jams can also scour stream channels 
destroying critical spawning habitat (Sedell 
et al. 1988). Downed woody material 
prevents erosion from wind, rain and melting 
snow and facilitates the regeneration of 
trees by trapping soil and litter and providing 
shade (Maser et al. 1988; Harmon and 
Franklin 1989).  The decomposition of 
woody material contributes organic matter to 
the soil and is important for nutrient cycling 
(Maser et al. 1988; Arthur and Fahey 1990; 
Edmonds and Marra 1999). Avalanche 
paths also create discontinuities in otherwise 
contiguous forests that can influence the 
spread of fire (Veblen et al. 1994).   

Perhaps one of the most important 
ecological consequences of major snow 
avalanches affecting subalpine forests is the 
production of large quantities of downed 
host material for bark beetles (Coleoptera: 
Scolytidae) such as the Engelmann spruce 
beetle (Dendroctonus rufipennis Kirby) and 
the Douglas-fir beetle (D. pseudotsugae 
Hopkins).  Endemic populations of these 
beetles typically infest the inner bark of 
downed spruce to mate and lay eggs.  After 
hatching, beetle larvae feed and develop 
within the inner bark until they have reached 
maturity.  The life cycle of bark beetles 
commonly requires two years, although one 
and three-year populations often occur.  
With insufficient quantities of downed host 
material, newly emerged adults may attack 
and kill live trees.  Local bark beetle 
mortality is often observed in forests 
adjacent to avalanche runout zones.  Snow 

avalanches produce downed host material 
at a time and in an environment optimal for 
successful spruce beetle colonization and 
brood production (Hebertson 2004).  Spruce 
beetle and Douglas-fir beetles begin flight in 
the spring just when melting debris exposes 
fresh host material. Avalanche debris 
covering host material helps prevent 
desiccation and deters competing insects 
and fungi from initial colonization. The 
deposition of host material typically 
coincides with lower slope positions in 
drainages and creek bottoms and on 
aspects sheltered from direct sun.  These 
conditions provide an optimal environment 
for successful spruce beetle colonization 
and brood production.  These beetles may 
also attack large trees within runout zones 
that have been seriously injured by 
avalanche debris.   

Bark beetle outbreaks can cause 
extensive tree mortality.   For example since 
the late 1980’s,  spruce beetle epidemics 
have resulted in the deaths of over one 
million mature and old growth spruce on the 
Manti-LaSal and Dixie National Forest in 
south-central and southern Utah (Dymerski 
et al. 2001; Matthews et al. 2005).  Similar 
levels of spruce mortality were documented 
for historic epidemics in Utah, Colorado, 
Arizona and New Mexico during the mid 
1800’s, 1916-1928, 1940’s, and the 1950’s.   

Extensive bark beetle tree mortality 
modifies stand structure and species 
composition in affected forests with 
reductions in average tree diameter, height, 
basal area and age (Baker and Veblen 
1990; Veblen et al. 1991; Veblen et al. 
1994).  Heavy tree mortality can adversely 
affect watershed, timber, wildlife, aesthetics, 
and recreational resources (Bethlahmy 
1974; Schmid and Frye 1977; Holsten et al. 
1999). Tree mortality can also alter fuel 
loads and profile development potentially 
resulting in high fire hazard over time 
(Schmid and Frye 1977; Arno 1980, Jenkins 
et al. 1998).  The lack of bare, mineral soil 
following beetle disturbance may deter the 
establishment of seedlings (White 1979).  
Stands affected by past beetle outbreaks 
generally have a scarcity of old trees and 
non-host species typically become stand 
dominants (Veblen et al. 1994; Jenkins et al. 
1998). 

Unprecedented large, widespread 
avalanche cycles during the winters of 1982 

888



to 1986 may have contributed to the most 
recent spruce beetle epidemic on the 
Wasatch Plateau in south-central Utah 
(Hebertson and Jenkins 2004).  Small 
pockets (1-10 trees) of spruce beetle 
mortality were first aerially detected on the 
Wasatch Plateau in 1986 in the vicinity of 
several large avalanche paths.  The 
occurrence of avalanches dated in these 
paths fit within the time frame expected for 
spruce beetle populations to build in host 
material and initiate attacks on live trees. 
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