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ABSTRACT 
 

Nearest neighbour algorithms using manual observation data can provide useful and 
accurate predictions of avalanche activity (McClung and Tweedy 1994, Floyer and McClung 
2003, Roeger et al. 2003a, Zeidler and Jamieson 2004, Purves 2003).  Here, a system is 
proposed that will use electronic data from automated weather stations in two distinctly different 
avalanche prone transportation corridors:  Kootenay Pass and Bear Pass in British Columbia, 
Canada.  The goal is to create a flexible, modular framework for numerical avalanche prediction 
using nearest neighbours that is automated, scalable, and that can be easily applied to different 
forecast operations.  In addition to now-casts of avalanche probability, the program will provide 
advanced forecasts based on numerical or human meteorological forecasts (Roeger et al. 
2003a).  Furthermore, two methods of incorporating snowpack information into the avalanche 
predictions are outlined.  The first is a simple threshold sum method similar to the one proposed 
by Schweizer and Jamieson (2003), and the second employs a data mining algorithm called 
MART (multiple additive regression trees).  Probabilities generated by each algorithm will be 
combined using a Bayesian framework (McClung and Tweedy 1994). 
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1 INTRODUCTION 
 
 The primary goal of this research is 
to implement a lasting solution for numerical 
avalanche prediction in highways corridors 
in British Columbia, Canada.  Previous work 
(McClung and Tweedy 1994, Floyer and 
McClung 2003, Roeger et al. 2003a) 
focused on manual data and was difficult to 
integrate into the British Columbia Ministry 
of Transportation’s (hereafter:  MoT) 
computer systems and forecaster protocols.  
Forecasters had to manually enter data into  
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the prediction algorithm and the software 
soon became obsolete as the MoT updated 
its computing infrastructure.  

The current research aims to 
reintroduce numerical prediction for 
maximum flexibility, functionality, longevity, 
and minimal effort on the part of forecasting 
personnel.  Meteorological data will be fed 
automatically to the prediction algorithm, 
prediction outputs will be scalable and 
customizable for transplantation to any 
avalanche corridor for which sufficient data 
exists.  The software will be implemented in 
Java so that it can be integrated into the 
MoT computer systems and so that it can be 
updated along with changes in MoT 
computer infrastructure.  Nearest neighbour 
analysis is the chosen prediction algorithm 
due to its simplicity and success in many 
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studies (McClung and Tweedy 1994, Floyer 
and McClung 2003, Roeger et al. 2003a, 
Zeidler and Jamieson 2004, Purves 2003). 
 New challenges and opportunities 
arise in the shift from manually collected 
observations to an electronic weather station 
network. The proposed system makes use 
of hourly information and can be 
supplemented with manual data.  
Forecasters will also be able to 
automatically or manually input weather 
forecast information to extend the range of 
avalanche predictions into the future. 

Solutions are also presented here for: 
• missing values in the historic and 

current data. 
• problems of disparity between the 

number of avalanche days versus 
non-avalanche days in the data,  

• generation of hourly interval 
memory variables, 

• mismatched observation intervals 
among electronic, manual, and 
snowpack data. 

 Finally, a method is proposed for 
integration of snowpack information into the 
numerical prediction system. 
 
2 FUNCTIONAL DESIGN 
 
 The default prediction algorithm is a 
nearest neighbours analysis, but the 
program has been designed to allow 
substitution of other classification 
algorithms, and future versions will include a 
choice of algorithms such as Multiple 
Additive Regression Trees (MART) and a 
threshold sum for snowpack information. 
 
2.1 The Nearest Neighbour model 
  

The nearest neighbour algorithm is 
still among the best classification algorithms 
available (Hastie et al 2001).  Nearest 
neighbours analysis ranks the historic data 
in terms of similarity to meteorological 
conditions (predictors) in the current datum.  
The dominant class among the nearest 
historic data is the predicted class of the 
current datum.  Similarity is measured by 
Euclidian distance metric in predictor space 
in which each predictor is represented along 
an axis in this space.  By adjusting the 
relative weights of each predictor using a 
genetic algorithm (Purves 2003), predictive 
accuracy can be optimized with respect to 

the Hanssen-Kuipers fitness metric (Roeger 
et al. 2003b).  The predicted avalanche 
probability is given by the proportion of 
nearest neighbours associated with 
avalanches to the total number of nearest 
neigbours (k).  The default k is 30 nearest 
neighbours.  When optimizing the genetic 
algorithm, k=6 (20% probability) is the 
“threshold k” that classifies a day as an 
avalanche day (McClung and Tweedy 
1994). 
 A nearest neighbour is considered 
to be associated with avalanches if 
avalanches occurred in a twelve hour period 
following the prediction time on that day.  
Future versions of the program will allow the 
forecaster to vary this period such that 
nearest neighbours are associated with 
avalanches that occur before the prediction 
time or more than 12 hours afterward.   
 All available information about the 
nearest neighbours, including avalanche 
activity, forecaster generated avalanche 
hazard forecast levels, and meteorological 
conditions will be displayed to the 
forecaster. 
 
2.2 Customization and scaling 

 
 Avalanche occurrence data can be 
filtered by type (natural, explosive triggered, 
wet or dry) and size, so that the algorithm 
predicts only the type and size of 
avalanches that are of interest.  The user 
can also select which of the available 
predictor variables are to be used by the 
prediction algorithm.  If manual observation 
predictor variables are used, the program 
will prompt the user to input the necessary 
data and these values will be used hourly 
until changed by the user on or before the 
next standard observation.  Manual data are 
taken near electronic standard observation 
times (0600 and 1800) instead of hourly.   
Interval manual data will be interpolated 
simply by using the most recent values until 
the next standard observation.  

Future versions will also enable 
forecasters to vary most other aspects of the 
prediction algorithm, including; 

• predictor variable lags (such as 
cumulative snowfall for 24 or 48 
hours) 

• k and threshold k 
• intervals for which maximum and 

minimum temperatures are logged. 
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• filtering avalanche occurrences by 
path number. 
Thus the program is scalable; the 

algorithm can make a prediction for the 
entire region using all occurrences in all 
paths, or predictions can be made for sub-
regions by considering only avalanche 
occurrences from select paths.  
 
2.3 Hourly prediction intervals 

 
The nearest neighbour algorithm is 

run every hour.  The time when the 
algorithm computes a prediction is referred 
to as the prediction time.  The prediction is 
based on the nearest data out of all of the 
historic data from the same hour.  For 
example, if the prediction time is 1400 hours 
the nearest neighbour prediction algorithm 
will only reference the data taken at 1400 
hours on each of the historic days in the 
database.  This procedure reduces 
computation time and ensures that 
observation and prediction data are well 
matched.   
 
2.4 True forecasts 
 

The program can also use weather 
forecasts (Roeger et al. 2003a) instead of 
current observation values given by the 
automated weather stations.  There will be 
the choice of manual and numerical forecast 
inputs.  Numerical forecast inputs will be 
automatically queried from UBC 
Atmospheric Science Kalman-corrected 
predictions (Roeger et al. 2003b) at regular 
intervals specified by the forecaster.  If the 
forecaster chooses to use local non-
numerical weather forecasts, the manual 
forecast input window will allow them to 
enter values taken or estimated from local 
weather forecast service providers.  These 
values are then used by the prediction 
algorithm to make a one-time only forecast.   
 
2.5 Missing values 
 
 Occasionally there are missing 
values in the historic data, or an electronic 
sensor is not recording observations with 
confidence.  The nearest neighbour 
algorithm will therefore only reference rows 
of historical data that have valid values for 
all of the predictors that the algorithm 
requires; the program will skip over rows 

with missing data.  In the event that there is 
no current observation for a given predictor 
at prediction time, then the nearest 
neighbour algorithm will only calculate 
distance in predictor space based on the 
available values. 
 Future versions of the program will 
include observation estimator algorithms in 
which linear regression estimates the value 
that would be given by an inoperative 
electronic sensor using the value of a 
nearby operational sensor and the statistical 
relationship between the two.  Another, 
perhaps more accurate, solution is to use 
the UBC atmospheric science Kalman-
corrected prediction for the missing value at 
the inoperative sensor.  
 
2.6 Data bias and forecaster prior 
 
 Avalanche days are much less 
common than non-avalanche days and this 
can bias the classification results toward 
non-avalanche days if the classification 
algorithm assumes parity between classes.  
In order to ensure meaningful prediction 
probabilities, Bayes rule (posterior 
probability α likelihood x prior) is used to 
account for this bias (Hastie et al. 2001).  
The likelihood is given by the nearest 
neighbours output, and the prior is a function 
of the ratio of avalanche days to non-
avalanche days.  Then, in the second round 
of inference, the forecaster can set their own 
prior belief as to the probability of 
avalanching as in McClung and Tweedy 
(1994).  
 
2.7 Memory variables 
 

Early iterations of the predictive 
system will use standard observation values 
for maximum and minimum air temperature, 
as well as cumulative (lagged) snowfall from 
the past two standard observations.   

In future versions of the program, 
extra columns will be added to the database 
that log the maximum and minimum air 
temperature during the 12 hours preceding 
the observation time (hereafter referred to 
as “logs”), and that calculate the cumulative 
snowfall during the 24 hours preceding the 
observation (hereafter referred to as “lags”).  
When using the additional lag and log 
variable columns, the observation period 
shifts hourly in unison with the other 
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variables instead of shifting discretely by 12 
hour jumps for variables taken at standard 
observations. 

Lagged and logged variables will 
have real time filters that sum the lagged 
value or log the maximum or minimum of a 
value of these predictors from current 
observations. 
 
3 FUTURE EXPANSION 
 
 In order to improve the accuracy of 
this prediction system, methods are 
presented here for inclusion of snowpack 
structure information. 

Snowpack models will make 
predictions whenever the forecasters dig a 
snow pit and enter this information into the 
program.  The relative contribution of these 
predictions will decrease with time as the 
snowpack inevitably changes from the 
observed state.  Output probabilities from 
snowpack models will be combined using 
the Bayesian framework discussed above; a 
snowpack prior will be combined with the 
likelihood given by the bias prior adjusted 
nearest neighbour output.  As before, the 
final round of inference merges the 
combined numerical model likelihood with 
the forecaster’s prior.  Early versions of the 
program will include a threshold sum model, 
and Multiple Additive Regression Trees will 
be offered later. 
 
3.1 The threshold sum model 

 
This model is based on the 

threshold sum method of Schweizer and 
Jamieson (2003).  It is a simple prediction 
algorithm in which one chooses a critical 
threshold and a weight for each variable.  
The critical threshold is the value above (or 
below) which a variable is expected to 
significantly contribute to avalanche 
instability.  The weight reflects the relative 
importance of a given variable in predicting 
instability.  The threshold sum score is 
calculated by summing the weights of all the 
variables that have exceeded their threshold 
(or failed to exceed their threshold for 
variables where low values increase 
avalanche instability).  Initially the ratio of 
threshold sum score to maximum possible 
score will give the probability of avalanching 
given the snowpack information.  This value 
might have to be adjusted by a bias prior 

such as in the nearest neighbours analysis, 
but in contrast to the nearest neighbours 
bias prior, the snowpack bias prior might 
have to be estimated by the forecaster. 
 
3.2 Multiple Additive Regression Trees 
(MART) 

 
MART is a boosted version of a 

Classification and Regression Tree (CART) 
(Hastie et al. 2001).  CARTs are optimized 
by a recursive binary partitioning of the 
predictor space such that each partition, or 
“rule” is made on a threshold of a single 
variable such that the data is separated into 
two classes with the least number of 
misclassified points.  Thus a new datum 
filters down the rule branches until reaching 
a terminal node where the dominant class in 
that node dictates the class of the new 
datum.  

Tree methods for classification are 
attractive for several reasons:  they require 
virtually no data preprocessing, they are 
insensitive to missing data, they naturally 
perform feature selection, and data can be 
categorical, ordinal, numerical or a mixture 
of types with different distributions. 

The MART algorithm generates a 
forest of trees of limited size and the 
predictions from all trees are averaged.  
Tree classifications are boosted in the 
following way:  trees are built iteratively, and 
misclassified points from earlier trees carry 
heavier penalty for misclassification in 
successive trees.  This way most of the 
variance is accounted for by early trees, and 
later trees capture outliers. 

Since MART is normally used only 
as a classifier and not to generate 
probabilities, the program will output the 
model’s verification accuracy as the 
probability of avalanching.  Alternatively, the 
ratio of avalanche days to total days in the 
terminal nodes reached by the current 
datum can provide a probability of 
avalanching, but this method may be 
unstable. 

In order to initiate MART analysis on 
snowpack data, relevant information must 
be mined from snow profile data files and 
tabled in a database.  This process will be 
different for each geographical region  Once 
the new snowpack variables are imported 
into the model, they are associated through 
their date stamp to the appropriate 

615



avalanche occurrences from a relevant 
response period surrounding the snowpack 
observation.  A reasonable approach is that 
the window should extend a few days after 
of the observation date and only one day 
previous. The user will, of course, have the 
freedom to choose whatever response 
period they feel is appropriate.   
 Unlike the nearest neighbour 
algorithm, once MART has been optimized 
there is no need to reference the historic 
data.  One need only input the new 
snowpack structure values (and/or data from 
other variables upon which the MART 
module was optimized) and the algorithm 
will provide a prediction.  The goal is to 
automate this process by standardizing the 
way forecasters enter data into a snow 
profile software package such that a single 
data mining algorithm can extract the data.  
 
4 CONCLUSIONS 
 
 Methods presented here aim to 
largely automate the process of numerical 
avalanche prediction such that the 

algorithms merge seamlessly with the MoT 
database and protocols.  Nearest 
neighbours analysis forms the core of the 
predictive system, and the forecaster has 
many choices as to the algorithm 
parameters, predictors, memory variables, 
occurrence data filters, and eventually the 
choice of prediction algorithm.  Bayesian 
inference is used to combine probabilities 
given by different models and the 
forecaster’s prior knowledge, as well as 
remove class size disparity bias.  Avalanche 
predictions can be extended into the future 
using human or numerical weather 
forecasts.  Prediction accuracy may be 
improved by the inclusion of snowpack 
structure information either by a simple 
threshold sum algorithm, for which no data 
mining is required, or by MART, which 
requires a historic snow profile database.  
The avalanche prediction system proposed 
here is designed to grow along with the 
evolving database, electronic weather 
station and computer infrastructure at the 
British Columbia Ministry of Transportation. 
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